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1 Introduction

Let k£ be a positive integer. A k-arc in a projective plane is a set of k points,
no three of which are collinear, and is said to be complete if not contained in a
(k + 1)-arc. If the projective plane is finite of order ¢, the' maximum possible
value of k is either ¢+1 or g+2 according to whether ¢ is odd or even. More
precisely, a (g+1)-arc is an oval and, when qis even, a (g+2)-arc is an hyperoval,
that is an oval together with its nucleus. If ¢is a prime power and the projective
plane is Desarguesian, conics are examples of ovals. If g is odd, ¢ > 5 and the
plane is Desarguesian, each oval is a conic, [9], [2]. The study of arcs in finite
projective Desarguesian planes has attracted the attention of several authors,
and the main problem is that of constructing arcs which are not conics and to
see how closely these resemble conics.

In particular, it is proved, see (8], [13], that a k-arc in a projective Desar-
guesian plane of order q which is neither an oval nor an hyperoval contains
at most q — 4 + % points for ¢ odd and ¢q — v/q + 1 points for q even. Fur-
thermore, if ¢ is even, examples of hyperovals which are not conics plus nu-
cleus can exist. The hyperovals of PG(2,9), ¢ = 2", containing the points
(0,1,0),(1,0,0),(0,0,1),(1, 1, 1), can be described as the set of points
{(F@),t,1) | te GF(q)} U {(0,1,0), (1,0,0)} where F is a permutation poly-
nomial such that:

1) F(0)=0, F(1) = 1;

2) For each s € GF(q), Fy(z) = E(”LZ"'F“—) Is a permutation polynomial.

Reserach supported by M.U.R.S.T. (progetto “Strutture Geometriche Combinatoria e loro
Applicazioni") and by G.N.S.A.G.A. of C.N.R.(progetto “Applicazioni della Matematica per
la tecnologia e la societa "sottoprogetto “Calcolo Simbolico"). Mathematical Subject classifi-
cation: 51B15 Laguerre Geometries
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This description applies to conics plus nucleus and also hyperovals which do
not arise from conics.

A k-arc in a projective space of three dimensions is a set of k points no four
of which are complanar, and is said to be complete if not properly contained
in a (k + 1)-arc. The complete (¢ + 1)-arcs of PG(3,¢) have been classified.
If ¢ is odd, ¢ > 5, a complete (¢ + 1)-arc of PG(3,q) is a twisted cubic. If
q is even a complete (¢ + 1)—arc of PG(3,q), ¢ = 2", n > 1, is the set of
points C(2") = {(tF(t), F(t),t,1) | t € GF(2")} U {(1,0,0,0)} with F(t) = 2"
GCD(h,n) = 1.

Recently, the notion of a k-arc in finite Benz planes has been introduced,
[10], while arcs in Minkowski and in Mobius planes have also been studied, [7],
[11], [12]. In this paper we investigate arcs in Laguerre planes.

A Laguerre plane £ = (P, B,||,Z) is an incidence structure consisting of a
point-set P, a set B of at least two circles, an incidence relation Z C P x B and
an equivalence relation || (parallelism) on P such that:

(i) three pairwise non-parallel points are incident with a unique circle;

(ii) each circle is incident with at least three points;

(iii) the circles which are “tangent" to a fixed circle C in a point p partition
the set of points not parallel to p;

(iv) each parallel class intersects each circle at exactly one point.

We will denote the set of parallel classes under the equivalence relation ||
by G, and each class will be called a generator. If p € P, 9p denotes the

unique generator containing p, a set of non-parallel points will be called a set
of independent points.

)

If P is finite, any two circles are incident with the same number g+1 of points
and ¢ is said to be the order of £. In a finite Laguerre plane of order q there
are ¢* + ¢ points, g+1 generators and ¢3 circles, and each generator contains g
points. If £ is of order ¢ and p is a fixed point, the derived incidence structure
of £ at p is denoted by £,. The points of £, are the points of £ which are
not contained in g,, the blocks are the elements of G—{g,} together with the
circles containing p, with p deleted. £, is an affine plane of order ¢ under the
incidence relation naturally induced by Z. We will denote the projective closure
of £, by L5, the improper line of £, by l, and the common point of the lines
of G—{gp} by zo. When g is a prime power, examples of Laguerre planes are
given taking a quadratic cone in the 3-dimensional space PG(3, q) : the points
of the plane are the points of the cone except the vertex; the generators are the
generators of the cone without the vertex; the circles are the non-trivial plane
sections. Such a plane is said to be Miquelian and the derived plane at any of
its points is Desarguesian. If ¢ is even, a Laguerre plane is constructed in the
same way by taking a cone over an oval of PG(2,¢). In this case the Laguerre
plane is said to be ovoidal. If we consider the oval plus its nucleus, we construct
q+ 2 ovoidal Laguerre planes, some of which, however, are isomorphic. Let ¢ be
an odd prime power, ¢ > 5. If £ is a Laguerre plane of order ¢ and there exists
a point p such that £, is Desarguesian, then £ is Miquelian, [4]. This result
fails when ¢ is even (see the non-Miquelian translation Laguerre plane of order
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16 found in [3]).

2 Arcs in Laguerre planes

Let £ be a Laguerre plane of order ¢, and P, B, G its set of points, circles and
generators respectively. According to [10], we have the following definition:

DEFINITION 1 Let k > 3 be a positive integer and let K C P be a set of k
independent points. K is called a k-arc of L if every circle contains at most

three points of it. K is said to be complete if not properly contained in a (k+1)-
arc.

REMARK 1. If p is a point of K, then K= K — {p} U {0} is a k-arc of £g
Furthermore, |G| = ¢ + 1 implies & <g+1.

Investigating the maximal cardinality of arcs in finite Laguerre planes, we
obtain the following general result:

PROPOSITION 1 An arc in q Laguerre plane L of even order q, with q = 1
(mod 3), contains at most q points.

Proof. Suppose K to be a (q+1)-arc , let a and b be two independent points
such that b is a point of K and a is not. K= K — {6} U {2z} is an oval of L
with nucleus on the improper line. Therefore a unique line contains a and is
tangent to K at a point different from Too- This means that exactly one circle
containing a,b and with two points in common with K does exist. Let now
K* = K — (K Ng,), we construct an incidence structure S as follows: K* is the
set of points, the blocks are the 3-tuples of points of X* obtained by intersecting
K™ with the circles of £ containing a and 3-secant K*. The incidence relation
is obviously induced by that of £. Each point of S is contained in exactly

r=9- blocks of S; in fact, if b€ K *, as observed above, there is exactly one

circle of £ containing a,b and 2-secant K in b and b’ #b Lety € K* — {b, ¥/ 1
the block containing a, b,y is 3-secant K*; as |[K* — {b,b'}|

exactly <

= q — 2, there are
block of S containing b. We conclude that S is an incidence

. L -2
structure with ¢ points, each block contains three points, each point is on d

blocks. Therefore the total number of blocks of S is ¢ - q-2 = = alg —2) 3

3
This contradicts the hypothesis ¢ =1 (mod 3), and hence K does not exist. O

- In the Laguerre plane £ is obtained from a cone in PG(3,q) and if K is a
k-arc of L, then K is a k-arc of PG(3,q). However, the completeness of KX in
L does not guarantee the completeness in PG(3,q). The arc K together with
the vertex of the cone is itself an arc in PG(3,q). As already observed in [10],
each twisted cubic lying on a quadratic cone of PG(3, q) contains the vertex of
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the cone, [5 pag.238], and, when ¢q > 5, gives an example of complete g-arc in
the associated Miquelian Laguerre plane.

Nevertheless, when ¢ is an odd prime power, each (¢+1)-arc in PG(3,q) is
a twisted cubic, [5 pag.243]. This, together with the result mentioned in [5
pag. 238], allows us to state that an arc in a Miquelian Laguerre plane of odd
order ¢, ¢ > 5 contains at most g points, see [10]. In the following proposition
2 we redemonstrate this result with a different technique. Furthermore, we
find the number of complete g-arcs. Hence this number coincides with the
number of twisted cubics lying on a quadratic cone, as we state in a corollary to
Proposition 2.

Recall that in a Desarguesian projective plane of order q (¢ prime power,
g > 5), there is exactly one conic containing any five fixed points no three of
which collinear. So, given four points no three of which are collinear, and a line
containing only one of them, there is exactly one irreducible conic among the
q — 2 through the four given points which is tangent to the given line. Then:

PROPOSITION 2 Let L be a Miquelian Laguerre plane of odd order q, q > 5. An

arc in L contains at most q points. L contains ezactly ¢*(q+ 1)(g—1) complete
q-arcs.

Proof. Suppose K to be a (g+1)-arc in £ and let p be a point of it; then
K=K —{p}U{zs} isa (g+1)-arc in the projective Desarguesian plane L. As
¢is odd, with ¢ > 5, K is a conic, [9], [2]. Let p1,p2,p3 be three distinct points
of f—{zoo} and let C be the unique circle of £ containing them. As K is an
arc, then p is not a point of C; let {p'} = C N g,, therefore C= C — {PIu{z}
is a (¢ + 1)-arc, that is a conic of Ly. Both C and K contain p; ,D2,p3 and are
tangent to the line Iy in . Therefore it is C= K; the relation (g—1) >4
implies |[K N C| > 4: a contradiction.

Now let p;,ps,p3 be three fixed independent points of £ and let-C be the
unique circle containing them. Let p be a point not contained in C and such
that {p1,p2,p3,p} is still a set of independent points. Denoting with p' the point
of C contained in g,, the set C — {p'} U {Zw} is an oval in Ly, that is a conic
tangent to lo, in Zo. Let D be one of the g—3 conics of L, containing p; ,p2,p3,Zc0
and not tangent to leo, then D Nlg = {Zoo,Yoo}. D= D — {Zoo, Yoo} U {p} is a
complete g-arc of £. In fact, D contains q points; these points are independent
(the generators of £ are lines of L} containing z.,). Furthermore, each circle
of £ has at most three points on D. Supposing B to be a circle of £ such that
|BND| > 4, then there are two possibilities:

(1) pis a point of B and B — {p} is a line of L, which intersects the conic D
at three points: a contradiction;

(2) pis not a point of B, then B= B — (BNg,) U{zs} is an oval, that is a
conic of £, which is tangent to lo, in zo and such that B—{2} has at least
four points in common with D. Therefore B and D have at least five points in
common (one being =, ) and this is a contradiction as they do not coincide
(the conic B is tangent to [, while D is not).
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Finally, as D contains ¢ points, it is complete. In this way, at least q-3
complete g-arcs containing the fixed independent points P1,D2,p3,p are found.

These are the only ¢-arcs containing these four points. In fact, suppose K
to be a g¢-arc containing p;,ps,ps,p and let 4 be the unique block containing
P1,p2,p3 With ANg, = {p'}, p' # p. Therefore A= A — {P'}U{zx} is a conic of
Ly and K= K — {p}U {r} is a g-arc of Ly. A well known result, [6], assures
that K is contained in a unique conic, say C. This conic ¢ contains py,py,p3,Teo,
but, as ¢ > 5, it does not coincide with 4. Therefore, the only point to adjoin K
to obtain C'is on the improper line I, and C'is one of the q—3 conics containing
P1,P2,P3,Too and not tangent to lo,. There are exactly ¢*(q + 1)(q — 1)%(q — 2)
ordered 4—tuples of independent points of £ not contained in a circle. The
number of ordered 4—tuples of points on a g-arc is (g — 1)(¢—2)(g - 3). Thus
the total number of complete g-arcs is ¢*(q + 1) (g — 1). o

A strightforward consequence is the following:

COROLLARY. The number of twisted cubics lying on a quadratic cone of PG(3, q),
g odd, ¢ > 5 is ¢*(g + 1)(g ~ 1).

REMARK 2. Propositon 2 holds when ¢ > 5. A Laguerre plane of order ¢ = 3
contains 4-arcs. It is sufficient to fix three independent points: P1,P2,p3 and,
denoting with g the only generator which does not contain any of them, the set
{P1,p2,p3,p} (With p a point of g not contained in the circle through py,ps,p3) is
a 4-arc. There are exactly two 4-arcs containing three fixed independent points.

ProrosITION 3 A4 Miquelian Laguerre plane of odd order q, ¢ > 121, does not
contain complete (g-1)-ares.

Proof. Let C be the cone of PG (3,9) corresponding to the Miquelian plane and
let V be the vertex of C. Suppose the Miquelian plane to contain a (g — 1)-arc
K and let K= KU{V}. The point-set K is an arc in PG (3,9). Every projection
of K from one of its points onto a plane is a plane (¢ — 1)-arc. When q> 121,
the relation ¢ —1 > g — 14_'1 + % holds, thus the plane (g — 1)-arc is contained in
a conic. This condition forces K to be contained in a unique twisted cubic (see
[5 pag.243]), say KU{P}. The twisted cubic KU{P} has more than six points
on C, this forces P to be a, point of C and K U {P} is a g-arc of the Miquelian

Laguerre plane. Therefore the (¢ — 1)-arc K is not complete in the Miquelian
Laguerre plane. O

Suppose now £ to be a Laguerre plane of even order g = 2" If nis even,
m=2), we have: ¢ -2 =22 _ 9= (22 _ D(1+4.--4+220-1)) _1 =37 _1 and
¢ =1 (mod 3). The previous Proposition 1 assures that an arc in L contains
at most ¢ points.

If £ is ovoidal, that is, £ arises in PG(3, q) from a cone over an oval, the
following result holds:

PROPOSITION 4 An arc in an ovoidal Laguerre plane of even order q = 2",
1 > 2, contains at most q points.

X7 s iy

Rl o
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PROPOSITION 4 An arc in an ovoidal Laguerre plane of even order q = 27,
q > 2, contains at most q points.

Proof. Suppose K to be a (g4 1) — arc in £. Then K is an arc in PG(3,q)
and the generators of £ are special unisecants to ‘K. Recalling the result of [5
pag.247|, the special unisecants to K are the generators of a hyperbolic quadric.
On the other hand, these lines are concurrent at the vertex of the cone, hence
a contradiction. ]

Let C(2") be a (g+1)-arc in PG(3,q), ¢ = 2", ¢ > 2, GCD(n,h) = 1.
The projection of C'(2") from Up = (1,0,0,0) onto the plane z, = 0 gives the
translation hyperoval § = {(O,tzh,t,l) | t € GF(q)} U {U1,U,} with {U; =
(0,0,1,0) and U, = (0,1,0,0)}, [5 pag.249]. Let £ be the ovoidal Laguerre
plane constructed taking the cone of vertex U on either the oval § — {U1} or
6 — {U.}, then K — {Uy} is a complete g-arc in L. This proves the following:

PROPOSITION 5 Let £ be an ovoidal Laguerre plane of order ¢ = 2™ obtained
by projecting the points of a (g+1) — arc of PG(3,q) from one of its points onto
a plane. The plane L contains complete g-arcs.

A Miquelian Laguerre plane can be obtained by projecting the points of a
twisted cubic, as previously described. Then, the property that a Miquelian
Laguerre plane of order ¢ = 2™, ¢ > 2, contains complete g-arcs, is a corollary of
Proposition 5. Follow the previous notation and let P; = (0,72",7,1), € GF(q).
Let £ be the ovoidal Laguerre plane which arises from the cone of vertex Uy on
the oval § — {P}. Let P! = (#"+1,2" 1,1), then:

PROPOSITION 6 Let ¢ = 2" > 8. The set C(2") — {Up, P2} is a complete (g-1)-
arc in L.

Proof. Let K= C(2") — {Up, P/}. The set K contains ¢ — 1 independent points
of . Suppose K to be non complete and let T be a point of £ such that K
U {T} is still an arc in £. Observe that T is either a point of the line UyU;
or of the line UpUs. Furthermore K U {T} is an arc in PG(3,q) as well as K
U {T,Uo}. Therefore K U {Up} is a g-arc of PG(3,q) which is contained in

two different (g-+1)-arcs: K U {Up, T} and C(2"). This contradicts the result
of [1]. O

REMARK 3. Recall that there exist two Laguerre planes of order 8. They are
both ovoidal and can be obtained from the same cone of PG (3, 8) over the unique
10 — arc of PG(2,8), which is a conic plus its nucleus. If we delete the line of
the cone containing the nucleus, we obtain the Miquelian plane; by deleting any
other line we obtain the non-Miquelian plane. Following the construction of
Proposition 5, these planes are obtained by projecting the points of a twisted
cubic of PG(3,8) from one of its points onto a plane. Therefore, the previous
Propositions 5 and 6 assure that the Miquelian plane contains a complete 8-arc
and the non-Miquelian plane contains complete 8-arcs and complete 7-urcs.
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, ~ oval of PG(2,16), which is a conic minus one point plus its nucleys. So, both
’ these planes contain complete 16-arcs and the non-Miquelian one also contains
| complete 15-ares.

Furthermore, We can prove the following:

oW

contain g-arcs.,

W

Proof. Suppose K to be a g—arcin £ and let V be the vertex of the cone; then

KuU{V}isa (@+1) —arcin PG(3,q). We can assume V= (1,0,0,0) and K

u{r}= C(2h), GCD(h,n) = 1. Projecting K from V' onto the plane z, = 0,

we obtain a translation oval 3. This is a contradiction, as § coincides with 9. O
The first example of a n

on translation oval can be found when g =16. In
the next section we will study this particular case.
1

- W

) PROPOSITION 8 Let £ pe

a Miquelian Laguerre plane of order
The number of complete q-

ares of L is ¢*(q — 1)(q + 1).

; | Proof. Suppose K to be a g-arc in L. Let V be the verte

A ! sponding to £. Then K {v}
1 from V onto a plane, we obtaj

i conic. Therefore, this q

1 | polynomial F(z) = 42" 44 either h =1 or

g=2"n>3

x of the cone corre-
isa(g+1)—arcof PG(3,q). Projecting K U {v}
n a plane q — i ints i

qg—1)(g+ 1). In fact, in PG(3,q)
ted cubic containing five fixed points no four of which
coplanar. Furthermore, the number of ordered 5 — tuples of independent points
of £ no four of which on g circle is ¢*(q + 1)(q — 1)*(g-2)(q - 3)(¢ —4). The
number of ordered 5 — tuples on a q — are is q(q—1)(qg - 2)(g-3)(q— 4). This
yields N < g3(g - 1)(g +1). Now consider the following representation of £ :
P={(a)|ac GF(2™)} U{(z, Ylz,y € GF(2™)} is the point-set;
9={90}U{gs | ae GF(2")} is the generator-set and: 1
90 ={(a) |a€ GF(2m)}; ¢, = {(a,2) | z € GF(2m)), ]
={Basc | a,b,c € GF(2™)} is the circle-set and : |4
Babe = {(,9) | y = az? + by +c}U{(a)}.
Set By, = Baye — {(@)} u {(0,1,0)} and observe that {B,

B l a,b,c €
GF(2"),a # 0} is the set of all the conics of c{o) which are tangent to loo
inze, = (0, 1,0).

Let py,py,p3 be three fixed independent points of £ and let ¢ be the only
circle containing them. Let P be a point not contained in C and such that
{P1,p, P3,p} is still a set of independent points. [et {r}=0cn 9p- We may
always suppose P = (0). Let D be one of the (¢ — 3) irriducible conics of C'(*o)
containing p;,p, P3, Too and 2 — secant lso, so that DN

0 = {Zoo, Yoo }. Observe
that if B is a circle not containing p, then B — (B n 90)) U {#s} is a conic of

S




C. BISI AND G. RINALDI

E’(‘O), now follow Proposition 2 and prove that D — {Too, Yoo} U {(0)}is @ g—arc
of £. By counting as in Proposition 2 we find at least ¢3(q — 1)(¢ + 1) arcs in
L. This ends the proof. m]

Again we have the following :

COROLLARY The number of twisted cubics lying on o quadratic cone of
PG(3,q), q even, ¢ > 8, is ¢*(¢+ 1){g —1)-

3 Examples of arcs in “small” Laguerre planes

The Miquelian Laguerre plane of order g over the conic y = z* can be described
as follows:

P ={(a) | a € GF(q)} U{(z,y) | =,y € GF(q)} is the point-set;

G = {900} U {90 | @ € GF(g)} is the generator-set, B = {Cabc | a,b,c €
GF(q)} is the circle-set, with: geo = {(a) | a € GF(Q)}; 9o = {(a,7) |z €
GF(a)};

Cabe = {(z,9) | y = az® + bz +c} U{(a)}-

When g is even and 8 = {(z, F(z),1)|z € GF(q)} U {(0,1,0)} is an oval of
PG(2,q), the ovoidal Laguerre plane over f can be described as above, taking:

Care = {(z,9) | y = aF (@) + bz + c} U{(@)}.

Using this description, we have developed a search with computer-aided
experiments. Our aim was to find examples of arcs in Laguerre planes of order
g containing less than ¢ points.

First we examine the Miquelian Laguerre planes of order ¢ € {8,9,11,13,16}.

The Miquelian Laguerre plane of order 8 contains complete 6-arcs.

Let i be a root of the polynomial z3 +z+1 € Z»[z] and let GF(8) = {a+bi+
ci®|la,b,c € Zy}. Theset K = {(0);(0,0); (1,0); (144, 1); (1442, 1+4%); (4, 1+3%)}
gives an example of a complete 6 — arc.

The Miquelian Laguerre plane of order 9 contains complete 7-arcs.

Let i be a root of the polynomial z*> + z + 2 € Z3(z] and let GF(9) =
{a +bila,b € Z3}.

The set K = {(0);(0,0); (1,0); (1 +1,1); (2 + i,1);(2i,24); (2,2 + 21)} gives
an example of a complete 7 — arc.

The Miquelian Laguerre plane of order 11 contains complete 6-arcs and complete

7-arcs.

The set K1 = {(0); (0,0); (1,0);(2,1); (3,1); (4, 4)}is an example of a complete
6 — arc.

The set K> = {(0);(0,0); (1,0); (2, 1);(3,1);(4,9);(10,3)} is an example of
a complete 7 — arc.

The Miquelian Laguerre plane of order 13 contains complete 7-arcs and complete

8-arcs.
The set K, = {(0);(0,0);(1,0); (2,1);(3,1); (4,4); (5,8)} is a complete 7 —

arc.
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The set Ky = {(0); (0,0); (1,0); (2, 1); (3, 1); (4, 4); (5,8)} is a complete 7 —
arc

The set K, = {(0); (0,005 (1,0); 2, 1); (3, 1); (4,11); (6, 6); (11,6)} is a
complete 8 — arc.

The Miquelian Laguerre plane of order 16 contains complete 8-arcs and complete
10-arcs.

Let i denote a root of the polynomial z* + z + 1 € Zs[z] and let GF(16) =
{a+bi+ci® + didla,b,c,d € Z,).
The set Ky = {(0); (0,0); (1,0); (3, 1); (1 +14,1); (62, 1); (1 + 42,1 + i); (1+i+
i%,i%)} is a complete 8 — arc.
- The set Ky = {(0);(0,0); (1,0); (s, D (1 + 14,1 +4);(%,i%); (1 + i2,42);
(4220 +3%); (L+5+42,42); (G +43, 1+ +42 + %)} is a complete 10 — arc.

A Laguerre plane of order g = 2", which is obtained from a cone over a

non-translation oval, does not contain q — arcs (see Proposition 7). The first -

example of non-translation oval can be found when the order is g = 16.

Let i be a root of the polynomial z4 +z+1 € Zs[z]. The hyperoval obtained
with the permutation polynomial F(z) = (i%z7 + 1226 + 65 4 954 + %28 +
°z? + i%2)? is an irregular hyperoval (see [6 pag.177)).

We have found examples of complete 8 —arcs and 9 = arcs in the Laguerre
plane which is ovoidal over the non-translation oval {(z,F(z),1)|z € GF(16)}
U {(0,1,0)}.

The set K; = {(0); (0,0); (1,0); (1 + 4, 1); (2,1); (1 +42,1 4+ 33); (i + 42,1 +
)i (L+4i+4%,i+14% + %)} is a complete 8 — arc.

The set K> = {(0); (0,0); (1,0); (1 +1, 1); (12, 1); (1 + 2,140 +42 4+43); (i +
2,1+ 4%); (144 +42,4); (43,5 + 42 +1%)} is a complete 9 — arc.

The authors are grateful to Dott. A. Sonnino for his valuable comments and
suggestions.

References

[1] CassE L.R.A., GLYNN F.G., On the uniqueness of (g + 1)4 — arcs of
PG(4,q), q=2" h > 3, Discrete Math. 48 (1984), 173-186.

[2] Cossu A., Sulle ovali in un piano proiettivo sopra un corpo finito, Atti
Accad. Naz. Lincei Rend., 28 (1960), 342-344.

[3] GLYNN D.G., STEINKE G.F., Translation Laguerre planes of order 16,
Europ. J. Combinatorics, 14 (1993), 529-539.

[4] HEISE W., QUATTROCCHI P., Una puntualizzazione sui piani di Laguerre,
Atti Sem. Mat. Fis. Univ. Modena, 27 (1978), 222-224.

[5) HIRSCHFELD J -W.P., Finite projective spaces of three dimensions, Oxford
Math. Monographs, (1985).




o e e S s S I
. VE TR IR R

32 C. BISI AND G. RINALDI

(6] HIRSCHFELD J.W.P., Projective Geometries over finite fields, Clarendon @ Som
Press, Oxford 1979-XIL ‘1
|
7] QUATTROCCHI P., RivaLpt G, Arcs in Minkowski planes J. Geom., 57 ’t,
(1996), 151-159.
[8] SERGE B, Introduction to Galois Geometry (Ed. by J W.P. Hirschfeld)
Memorie Accad. Naz. Lincei, VIII, 5 (1967), 133-236.
[9] SEGRE B., Ovals in a finite projective plane Canad. J. Math.,7 (1960), _
414-416. i
[10] SONNINO A., k-archi et piani di Benz, Note di Matematica n.1, 15 (1995),
111-119.
Abstra
[11] SoNNINO A., Linear collineation groups preserving an orc in o Mobius of sor:;:
plane, Discrete Math., To appear. tence of
‘ this fun
| [12] SONNINO A., Large k-arcs in inversive planes of odd order, J. Geom., To symmet
1 appear. Eubgon
‘ : Mathe:
[13] THAs J .A., Elementary proofs of two fundamental theorems of B. Segre e
without using the Hesse- Weil theorem, Jour. of Comb. Th., 34 (1983), 381-
384. 1 Intr
Let G be as

group algeb:
functions frc

Then one ¢
in this pape
the operati
Let Vb
field C and
the norm ¢
there corre
P(oe~')v®
vy = Ug(1)
tensor proc
: For f €

symmetry

tensors of 1
and are ca




