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Proper Polynomial Self-maps of the Affine Space:
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Abstract. Two proper polynomial maps f1, f2 : Cn −→ Cn are said to be
equivalent if there exist Φ1, Φ2 ∈ Aut(Cn) such that f2 = Φ2 ◦ f1 ◦ Φ1. In
this article, we investigate proper polynomial maps of topological degree d ≥ 2
up to equivalence. In particular, we describe some of our recent results in the
case n = 2 and we partially extend them in higher dimension.

0. Introduction

The semi-group of proper polynomial self-maps of the affine space An is a basic
object both in complex analysis and algebraic geometry. It is therefore surprising
how little is known about its structure. Although there has been some progress in
the last few years, many basic questions remain unanswered.

Two proper polynomial maps f1, f2 : C
n −→ Cn are said to be equivalent if

there exist Φ1, Φ2 ∈ Aut(Cn) such that f2 = Φ2 ◦ f1 ◦ Φ1. In this article, we
investigate proper polynomial maps of topological degree d ≥ 2 up to equivalence.

In Section 1 we set up notation and terminology and we state without proof
some preliminary results. For further details, we refer the reader to [BP10]. In
Section 2 we explain our recent work in dimension n = 2. In [Lam05], Lamy
proved that any proper polynomial map f : C2 −→ C

2 of topological degree 2
is equivalent to the map (x, y) −→ (x, y2); in other words, if d = 2 there is
just one equivalence class. When d ≥ 3, we show that the situation is entirely
different, since there are always infinitely many equivalence classes (see Theorems A,
B and B1). Theorems A and B already appeared in our paper [BP10], whereas
Theorem B1 is new. Moreover, by using Shephard-Todd’s classification of finite
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16 CINZIA BISI AND FRANCESCO POLIZZI

complex reflection groups ([ST54]), we also obtained a complete description of
Galois coverings f : C2 −→ C2 up to equivalence (Theorem C).

Finally, in Section 3 we give an account on the situation in dimension n ≥ 3 and
we partially extend some of our theorems in this setting. For instance, we prove that
for d ≥ 3 there are still infinitely many equivalence classes (Theorem D). It would
be certainly desirable to extend Theorem C in higher dimension, by describing
all finite Galois covers f : Cn −→ C

n up to equivalence. The main difficulty in
carrying out this project is that the linearization theorem proven in [Ka79] for
n = 2 cannot be generalized in dimension n ≥ 3 (see [Sch89], [Kn91], [MaPe91],
[MaMoPe91] for some counterexamples), so the classification method of [BP10]
in this case breaks down. Although this problem is at present far from being solved,
we can nevertheless give some partial results (see Theorem 3.1, Theorem 3.2 and
Remark 3.3).

1. Proper polynomial maps

Definition 1.1. Let f : Cn −→ Cn be a dominant polynomial map. We say
that f is proper if it is closed and for every point p ∈ Cn the set f−1(p) is compact.
Equivalently, f is proper if and only if for every compact set K ⊂ Cn the set f−1(K)
is compact.

Every proper map is necessarily surjective; the converse is not true, for instance,
(x, y) −→ (x+x2y, y) provides an example of surjective self-map of C2 which is not
proper. There is a purely algebraic condition for a polynomial map to be proper,
see [Jel93, Proposition 3]:

Proposition 1.2. A dominant polynomial map f : Cn −→ Cn is proper if
and only if the push-forward map f∗ : C[s1, . . . , sn] −→ C[x1, . . . , xn] is finite, i.e.,
f∗C[s1, . . . , sn] ⊂ C[x1, . . . , xn] is an integral extension of rings.

We recall that if f : Cn −→ Cn is the proper polynomial map

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

with f1, . . . , fn ∈ C[x1, . . . , xn], then f∗ is defined as

f∗ : C[s1, . . . , sn] −→ C[x1, . . . , xn]

s1 −→ f1(x1, . . . , xn)

...

sn −→ fn(x1, . . . , xn).

Moreover, if we denote by Jf the determinant of the Jacobian matrix of f, then the
critical locus Crit(f) is defined as the affine hypersurface V (Jf ), and the branch
locus B(f) is the image of Crit(f) via f . The restriction

f : Cn \ f−1(B(f)) −→ C
n \B(f)

is an unramified covering of finite degree d; we will call d the topological degree of f .

Definition 1.3. We say that two proper polynomial maps f1, f2 : C
n −→ C

n

are equivalent if there exist Φ1, Φ2 ∈ Aut(Cn) such that

(1) f2 = Φ2 ◦ f1 ◦ Φ1.

16
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If f1 and f2 are equivalent, they have the same topological degree; more-
over, the chain rule implies that Crit(f1) is biholomorphic to Crit(f2) and B(f1)
is biholomorphic to B(f2). Notice that this equivalence relation in the semi-group of
proper polynomial maps is weaker than the conjugacy relation, in which we require
Φ2 = Φ−1

1 . For instance, the two maps f1(x, y) = (x, y2) and f2(x, y) = (x, y2+x)
are equivalent in our sense but they are not conjugate by any automorphism of C2,
since their sets of fixed points are not biholomorphic. The study of conjugacy classes
of proper maps of given topological degree is certainly an interesting problem, but
we will not consider it here; some good references are [FJ07a] and [FJ07b].

2. The case n = 2

In [Lam05] Lamy proved that any proper polynomial map of topological
degree 2 is equivalent to the map (x, y) −→ (x, y2); in other words, if d = 2
there is just one equivalence class. In [BP10], we showed that the situation is
entirely different when d ≥ 3; in fact, we proved the following two results:

Theorem A. For every d ≥ 3, consider the polynomial map fd : C
2 −→ C

2

given by

fd(x, y) := (x+ y + xy, xd−1y).

Then f is proper of topological degree d, and it is not equivalent to any map of the
form (x, y) −→ (x, Q(x, y)).

Theorem B. For all positive integers d, a, with d ≥ 3 and a ≥ 2, consider the
polynomial map fd, a : C

2 −→ C
2 given by

fd, a(x, y) := (x, yd − dxay).

Then fd, a and fd, b are equivalent if and only if a = b. It follows that if d ≥ 3
there exist infinitely many different equivalence classes of proper polynomial maps
f : C2 −→ C2 of fixed topological degree d.

The proof of Theorem B follows from the fact that, when d ≥ 3 and a �= b, the
critical loci of fd, a and fd, b have different Milnor number at their unique singular
point o = (0, 0), so they cannot be biholomorphic. Theorem B provides a discrete
family {fd, a}a≥2 of proper maps of degree d which are pairwise non-equivalent.
Now we refine this result, by showing the existence of a continuous family of maps
with the same property. For all d ∈ N, λ ∈ C, set

Fd, λ(x, y) := yd + λxd−1y + xd,

Γd := {λ ∈ C | the polynomial Fd, λ(x, y) is square-free, i.e., it is the

product of d pairwise distinct homogeneous linear factors}.

One immediately sees that C \ Γd is a finite set of points, and that if λ ∈ Γd then
the affine variety Cd, λ := V (Fd, λ) is the union of d distinct lines through the origin.

Proposition 2.1. Assume d ≥ 4 and λ, μ ∈ Γd. Then the two germs of plane
curve singularities (Cd, λ, o) and (Cd, μ, o) are analytically equivalent if and only if
λd = μd.

Proof. See [K93, Theorems 1.3 and 2.2]. �
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Notice that the Milnor number of Cd, λ at the origin does not depend on λ, since
two ordinary d-multiple points are always topologically equivalent. Proposition 2.1
is a particular case of a more general result saying that when d ≥ 4 there are
infinitely many analytic types of ordinary d-multiple points. For instance, if d = 4
then the analytic type depends precisely on the cross-ratio of the four tangents, see
[GLS07, Example 3.43.2].

Now, setting

Qd, λ(x, y) :=
1

d+ 1
yd+1 +

λ

2
xd−1y2 + xdy,

we can prove

Theorem B1. For all d ≥ 4 and λ ∈ Γd, consider the proper polynomial map
defined by

fd, λ(x, y) := (x, Qd, λ(x, y)).

If λd �= μd, then fd, λ and fd, μ are not equivalent. In particular, for all d ≥ 4 there
exists a continuous family of proper polynomial maps of degree d whose members
are pairwise non-equivalent.

Proof. The critical locus of fd, λ is precisely the curve Cd, λ. Then the asser-
tion is an immediate consequence of Proposition 2.1. �

The previous results suggest that a satisfactory description of all equivalence
classes of proper polynomial maps f : C2 −→ C2 in the case d ≥ 3 is at the moment
out of reach; nevertheless, one could hope at least to classify those proper maps
enjoying some additional property. In [BP10] we completely solved this problem
in the case of Galois coverings ; some of our computations were carried out by using
the Computer Algebra Systems GAP4 and Singular, see [GAP4] and [SING].
Let f : C2 −→ C

2 be a polynomial map which is a Galois covering with finite
Galois group G. Then f is proper and its topological degree equals |G|; moreover
G ⊂ Aut(C2), and f can be identified with the quotient map C2 −→ C2/G. Since
G is a finite group, we may assume G ⊂ GL(2,C) by a polynomial change of
coordinates ([Ka79, Corollary 4.4]) and, since C

2/G ∼= C
2, it follows that G is

a finite complex reflection group. Let us denote by C[x, y]G the subalgebra of G-
invariant polynomials; then the following two conditions are equivalent, see [Coh76,
p. 380]:

(i) there are two algebraically independent homogeneous polynomials φ1, φ2 ∈
C[x, y]G which satisfy |G| = deg(φ1) · deg(φ2);

(ii) there are two algebraically independent homogeneous polynomials φ1, φ2 ∈
C[x, y]G such that 1, φ1, φ2 generate C[x, y]G as an algebra over C.

We say that φ1, φ2 are a basic set of invariants for G. Furthermore, putting d1 :=
deg(φ1), d2 := deg(φ2), the set {d1, d2} is independent of the particular choice of
φ1, φ2. We call d1, d2 the degrees of G. Complex reflection groups were classified
in all dimensions by Shephard and Todd, see [ST54] and [Coh76]. Let us explain
their classification in the case n = 2. If G is reducible, i.e., if there exists a
1-dimensional linear subspace V ⊂ C2 which is invariant under G, then we are in
one of the following cases:

(1) G = Zm, generated by g =

(
1 0
0 exp(2πi/m)

)
;

18
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(2) G = Zm × Zn, generated by g1 =

(
exp(2πi/m) 0

0 1

)
and

g2 =

(
1 0
0 exp(2πi/n)

)
.

If G is irreducible, there exists an infinite family G(m, p, 2), depending on two
positive integer parametersm, p, with p|m, and 19 exceptional cases, that in [ST54]
are numbered from 4 to 22. We start by describing the groups belonging to the
infinite family. One has

G(m, p, 2) = Z2 �A(m, p, 2),

whereA(m, p, 2) is the abelian group of orderm2/p whose elements are the matrices(
θα1 0
0 θα2

)
, with θ = exp(2πi/m) and α1+α2 ≡ 0 (mod p), whereas Z2 is generated

by ( 0 1
1 0 ). In particular, G(m, m, 2) is the dihedral group of order 2m.

Now let us consider the exceptional groups in the Shephard-Todd’s list. We
closely follow the treatment given in [BP10], which was in turn inspired by [ST54].
For p = 3, 4, 5, the abstract group

〈s, t | s2 = t3 = (st)p = 1〉

is isomorphic to A4, S4 and A5, respectively. These are the well-known groups of
symmetries of regular polyhedra: A4 is the symmetry group of the tetrahedron, S4
is the symmetry group of the cube (and of the octahedron) and A5 is the symmetry
group of the dodecahedron (and the icosahedron). We take Klein’s representation
of these groups by complex matrices ([Kl84]), and we call S1, T1 the matrices
corresponding to the generators s and t, respectively. Therefore the exceptional
finite complex reflection groups are generated by matrices

S = λS1, T = μT1, Z = exp(2πi/k)I,

where λ, μ are suitably chosen roots of unity and k is a suitable integer. The
corresponding abstract presentations are of the form

(2) 〈S, T, Z |S2 = Zk1 , T 3 = Zk2 , (ST )p = Zk3 , [S,Z] = I, [T, Z] = I, Zk = I〉

where p = 1, 2, 3 and k1, k2, k3, k are suitably chosen integers. We shall arrange the
possible values of λ, μ, k1, k2, k3, k in tabular form, according to Shephard-Todd’s
list ([ST54, p. 280-286]).

Exceptional groups derived from A4. Set ω = exp(2πi/3), ε = exp(2πi/8). We
have

S1 =

(
i 0
0 −i

)
, T1 =

1√
2

(
ε ε3

ε ε7

)
.

The four corresponding groups are shown in Table 1 below. Here IdSmallGroup(G)
denotes the label of G in the GAP4 database of small groups, which includes all
groups of order less than 2000, with the exception of 1024 ([GAP4]). For instance,
one has [24,3]= SL2(F3) and this means that SL2(F3) is the third in the list of
groups of order 24.
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IdSmall

No. Group(G) λ μ k1 k2 k3 k Degrees
4 [24,3] −1 −ω 1 2 2 2 4, 6
5 [72,25] −ω −ω 1 6 6 6 6, 12
6 [48,33] i −ω 4 4 1 4 4, 12
7 [144,157] iω −ω 8 12 3 12 12, 12

Table 1

Exceptional groups derived from S4. We have

S1 =
1√
2

(
i 1
−1 −i

)
, T1 =

1√
2

(
ε ε
ε3 ε7

)
.

The eight corresponding groups are shown in Table 2 below.

IdSmall

No. Group(G) λ μ k1 k2 k3 k Degrees
8 [96,67] ε3 1 1 2 4 4 8, 12
9 [192,963] i ε 8 7 8 8 8, 24
10 [288,400] ε7ω2 −ω 7 12 12 12 12, 24
11 [576,5472] i εω 24 21 8 24 24, 24
12 [48,29] i 1 2 1 1 2 6, 8
13 [96,192] i i 4 1 2 4 8, 12
14 [144,122] i −ω 6 6 5 6 6, 24
15 [288,903] i iω 12 3 10 12 12, 24

Table 2

Exceptional groups derived from A5. Set η = exp(2πi/5). We have

S1 =
1√
5

(
η4 − η η2 − η3

η2 − η3 η − η4

)
, T1 =

1√
5

(
η2 − η4 η4 − 1
1− η η3 − η

)
.

The seven corresponding groups are shown in Table 3 below.

IdSmall

No. Group(G) λ μ k1 k2 k3 k Degrees
16 [600,54] −η3 1 7 10 10 10 20, 30
17 [1200,483] i iη3 20 11 20 20 20, 60
18 [1800,328] −ωη3 ω2 11 30 30 30 30, 60
19 [3600, ] iω iη3 40 33 40 60 60, 60
20 [360,51] 1 ω2 3 6 5 6 12, 30
21 [720,420] i ω2 12 12 1 12 12, 60
22 [240, 93] i 1 4 4 3 4 12, 20

Table 3
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This allows us to obtain the classification, up to equivalence, of finite Galois
coverings f : C2 −→ C2. Set

a4(x, y) = x4 + (4ξ − 2)x2y2 + y4, ξ = exp(2πi/6),

b6(x, y) = x5y − xy5,

c8(x, y) = x8 + 14x4y4 + y8,

d12(x, y) = x12 − 33x8y4 − 33x4y8 + y12,

e12(x, y) = x11y + 11x6y6 − xy11,

f20(x, y) = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20,

g30(x, y) = x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30.

Then we have

Theorem C. Let f : C2 −→ C
2 be a polynomial map which is a Galois cov-

ering with finite Galois group G. Then f is equivalent to one of the normal forms
described in Table 4 below. Furthermore, these maps are pairwise non-equivalent,
with the only exception of f2, 1, 2 and f4, 4, 2.

Map φ1, φ2 G Branch locus
fm x, ym Zm y = 0
fm,n xm, yn Zm × Zn xy = 0
fm, p, 2 xm/pym/p, xm + ym G(m, p, 2) x(y2 − 4xp) = 0 if p �= m

y2 − 4xp = 0 if p = m

f̃4 a4, b6 G4 =[24, 3] x3 + (−24ξ + 12)y2 = 0

f̃5 b6, (a4)
3 G5 =[72, 25] y(x2 + ( 1

18ξ − 1
36 )y) = 0

f̃6 a4, (b6)
2 G6 =[48, 33] y(x3 + (−24ξ + 12)y2) = 0

f̃7 (b6)
2, (a4)

3 G7 = [144, 157] xy(x+ ( 1
18ξ − 1

36 )y) = 0

f̃8 c8, d12 G8 =[96, 67] y2 − x3 = 0

f̃9 c8, (d12)
2 G9 = [192, 963] y(y − x3) = 0

f̃10 d12, (c8)
3 G10 =[288, 400] y(y − x2)=0

f̃11 (d12)
2, (c8)

3 G11 =[576, 5472] xy(x− y) = 0

f̃12 b6, c8 G12 =[48, 29] y3 − 108x4 = 0

f̃13 c8, (b6)
2 G13 =[96, 192] y(x3 − 108y2)=0

f̃14 b6, (d12)
2 G14 =[144, 122] y(y + 108x4)=0

f̃15 (b6)
2, (d12)

2 G15 = [288, 903] xy(y + 108x2) = 0

f̃16 f20, g30 G16 =[600, 54] y2 − x3 = 0

f̃17 f20, (g30)
2 G17 =[1200, 483] y(y − x3) = 0

f̃18 g30, (f20)
3 G18 =[1800, 328] y(y − x2) = 0

f̃19 (g30)
2, (f20)

3 G19 = [3600, ] xy(x− y) = 0

f̃20 e12, g30 G20 = [360, 51] y2 − 1728x5 = 0

f̃21 e12, (g30)
2 G21 =[720, 420] y(y − 1728x5) = 0

f̃22 e12, f20 G22 =[240, 93] y3 + 1728x5 = 0

Table 4
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The following corollary is a generalization of Lamy’s result to the case of Galois
coverings of arbitrary degree.

Corollary 2.2. For all d ≥ 2, there exist only finitely many equivalence
classes of Galois coverings f : C2 −→ C2 of topological degree d.

3. The case n ≥ 3

We have only a few general results about proper polynomial self-maps of Cn

for n ≥ 3. First of all, we can prove the following analogue of Theorem B:

Theorem D. Let a := (a1, . . . , an−1) ∈ Nn−1 be such that ai ≥ 2 for all i. For
all d ≥ 3, consider the proper polynomial map fd, a : C

n −→ Cn defined by

fd, a(x1, . . . , xn) := (x1, x2, . . . , xn−1, x
d
n − d(xa1

1 + xa2
2 + · · ·+ x

an−1

n−1 )xn).

If
∏n−1

i=1 (ai − 1) �=
∏n−1

i=1 (bi − 1), then fd, a and fd,b are not equivalent. It follows
that for all d ≥ 3 there exist infinitely many different equivalence classes of proper
polynomial maps f : Cn −→ Cn of topological degree d.

Proof. The critical locus of fd, a is the affine hypersurface Cd,a of equation
xd−1
n − (xa1

1 +xa2
2 + · · ·+x

an−1

n−1 ) = 0, whose unique singular point is o := (0, . . . , 0).
The Milnor number of Cd, a in o is

μ(Cd, a, o) = (d− 2)

n−1∏
i=1

(ai − 1).

It follows that if d ≥ 3 and
∏n−1

i=1 (ai − 1) �=
∏n−1

i=1 (bi − 1), then Cd, a and Cd,b are
not biholomorphic, hence fd, a and fd,b are not equivalent. �

It would be also desirable to extend Theorem C in higher dimension, in other
words to classify all the finite Galois covers f : Cn −→ Cn up to equivalence. The
main difficulty in carrying out this project is that the linearization theorem stated
in [Ka79] for n = 2 cannot be generalized in dimension n ≥ 3. So the classification
method of [BP10] in this case breaks down. For the reader’s convenience, let us
give a short account of these topics; for further details we refer to the survey paper
[Kr95].

In [Ka79] it was conjectured that if G is a linearly reductive algebraic group
acting regularly on C

n, then G has a fixed point, say p, and the action of G is
linear with respect to a suitable coordinate system of Cn having p as its origin (the
so-called Algebraic Linearization Conjecture). The first results in this direction
were very promising, indeed any such action on C2 is linearizable as a consequence
of the Jung’s Theorem on the structure Aut(C2). Any torus action with an orbit
of codimension one is linearizable by Bialynicki-Birula, see [BiBi66], [BiBi67],
and Kraft, Popov and Panyushev showed that every semisimple group action is
linearizable on C3 and C4, see [KrP85] and [Pa84].

On the other hand, in 1989 Schwarz discovered the first examples of non-
linearizable actions of the orthogonal group O(2) on C4 and of SL2 on C7, [Sch89].
Using these results, Knop showed that every connected reductive group which is not
a torus admits a faithful non-linearizable action on some affine space Cn, [Kn91].
Using a different approach, Masuda, Moser-Jauslin and Petrie produced more ex-
amples and discovered the first non-linearizable actions of finite groups, namely,
dihedral groups of order ≥ 10 on C4, see [MaMoPe91]. So far, all these examples
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of non-linearizable actions have been obtained from non-trivial G-vector bundles
on representation spaces V of G using an idea of Bass and Haboush: for example
in [MaMoPe91] it is proven that if G is a dihedral group of order ≥ 10, then there
exists a positive-dimensional continuous family of isomorphism classes of G-vector
bundles to which corresponds a positive-dimensional continuous family of inequiva-
lent actions on C4. This method does not work in the holomorphic setting, however
in [DerKut98] it is shown how to construct non-linearizable holomorphic actions
on Cn for all reductive groups.

These results are not conclusive, and in particular the problem of describing
all finite, non-linearizable automorphism subgroups of An for n ≥ 3 is at present
far from being solved. For instance, it is not even known whether there exist non-
linearizable involutions on A3.

It is not our purpose to investigate these deep questions here, so we just present
the following two results:

Theorem 3.1. Let n ≥ 2 and f : Cn −→ Cn be a polynomial map which is
a Galois covering with finite Galois group G ∼= Zm = 〈σ〉, where σ is a triangular
automorphism of Cn of the form

σ(x1, · · · , xn) = (s1x1 + a1, s2x2 + a2(x1), · · · , snxn + an(x1, · · · , xn−1)), si ∈ C
∗

such that σm = I. Then f is equivalent to fm(x1, · · · , xn) = (x1, x2, · · · , xn−1, x
m
n ).

Proof. By [Ivan98] the group generator σ is linearizable, so the group ac-
tion is also linearizable. By using Shephard-Todd’s classification of finite complex
reflection groups, we see that G is conjugated in U(n) to the group generated by
σ̃(x1, · · · , xn) = (x1, x2, · · · , xn−1, θmxn), where θm is a primitive m-th root of
unity. �

Theorem 3.2. Let f : C3 −→ C
3 be a proper polynomial map which is a Galois

covering with finite Galois group G, and assume that the action of G is linearizable
and reducible. Then G is one of the groups in Table 4 and f is equivalent to the map
(xm

1 , f(x2, x3)), where f is the normal form on C2 corresponding to G and m ≥ 1.

Proof. Since the action is reducible, there exists either a 1−dimensional or
a 2−dimensional linear subspace V ⊂ C3 which is invariant under G; then its
orthogonal complement V ⊥ is also invariant, see [Se71], and up to a linear change
of coordinates we may assume V = 〈e1〉, V ⊥ = 〈e2, e3〉 where {e1, e2, e3} is the
canonical basis of C3. Then the assertion follows by using the classification given
in Theorem C. �

Remark 3.3. By using the same methods of [BP10], it is possible to com-
pletely classify the Galois coverings f : Cn −→ Cn such that the G-action on Cn

is linearizable. Indeed, this is equivalent to compute a minimal base of generators
of the invariant algebra C[x1, . . . , xn]

G for each of the 34 exceptional groups in
the Shephard-Todd’s list. This is a standard calculation that can be carried out
by using either invariant theory (as in [ST54]) or some Computer Algebra Sys-
tems (e.g., GAP4 and Singular). However, some of these groups have very large
order (for instance, in the last case of the list we have G = W (E8), whose order is
696729600), so the problem is computationally hard and we think that the outcome
is not worthy of the effort.
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