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a b s t r a c t 

In rough set theory (RST), and more generally in granular computing on information ta- 

bles (GRC-IT), a central tool is the Pawlak’s indiscernibility relation between objects of a 

universe set with respect to a fixed attribute subset. Let us observe that Pawlak’s rela- 

tion induces in a natural way an equivalence relation ≈ on the attribute power set that 

identifies two attribute subsets yielding the same indiscernibility partition. We call indis- 

tinguishability relation of a given information table I the equivalence relation ≈, that can 

be considered as a kind of global indiscernibility. In this paper we investigate the math- 

ematical foundations of indistinguishability relation through the introduction of two new 

structures that are, respectively, a complete lattice and an abstract simplicial complex. We 

show that these structures can be studied at both a micro granular and a macro granular 

level and that are naturally related to the core and the reducts of I . We first discuss the 

role of these structures in GrC-IT by providing some interpretations, then we prove several 

mathematical results concerning the fundamental properties of such structures. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

We denote by I := 〈 U, At t , F , V al−〉 a knowledge representation system (information table in the finite case [41–44] ),

having universe set U , attribute set Att , information map F : U × Att → Val and value set Val . In this paper we introduce and

study some micro-macro granular mathematical structures uniquely associated to any knowledge representation system I . 

1.1. General premise 

Tabular representation of data appears in several fields of research, related to many problems of taxonomy in biology,

economics, social sciences and so forth. At present, many researchers are dedicating themselves to the analysis of Pawlak’s

information tables only through heuristic interpretations and by using an informatic vocabulary. We mainly aim to introduce

and investigate Pawlak’s indiscernibility relation between attributes instead of the usual relation between objects. In order
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Table 1 

Information Table C. 

C Speed Color RoadH 

m 1 Medium Green Good 

m 2 Medium Blue Discrete 

m 3 Medium Green Good 

m 4 High Blue Discrete 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to distinguish the two relations, the term indistinguisuishability will be used in case of attributes. That is, the indistinguisha-

bility is simply the equivalence relation ≈ on the power set P(At t ) that identifies two attribute subsets inducing on U the

same indiscernibility relation. The surprising fact is that the indistinguishability relation induces a very rich interrelation of

several mathematical structures, that we will call indiscernibility hypergraphic structures , and that we will study to different

granularity levels. In this paper, we are mainly interested in developing the mathematical foundations relying on a series

of old and new hypergraphic structures induced by the Pawlak’s indiscernibility relation on information tables. We study

the basic mathematical properties of such structures that arise in a natural way without assuming any extra hypothesis.

One of our basic motivations is to understand which kind of formal theory can be developed in terms of order structures,

hypergraphic structures and their potential links arising when we investigate an information table with GrC methodologies

(abbreviated GrC-IT). From this standpoint, we think that a granular perspective in the study of an information table can

be fruitfully applied also when one tries to develop notions derived from the Pawlak indiscernibility relation that are not

directly connected with rough set theory (RST). In fact, RST main features are the lower and upper approximations and the

reducts, all of which are defined starting from the notion of indiscernibility. Implicitly, the indiscernibility notion is under-

lying also to the relation database theory arisen by the classical Codd’s model (see [17] ). However, in relational database

context, theory lacks the explicit presence of the object set U , because the rows of a table are simply considered as tuples

of an n -ary relation without a specific identity. In this case the indiscernibility must be expressed by means of the notion of

projection on tuples therefore, in a relational context, the indiscernibility relation has not the same epistemological consis-

tence that has in the Pawlak’s context. In this paper we intend to contribute to the development of a possible new research

line based on the generality and simplicity (at the same time) of the Pawlak’s indiscernibility notion on information tables.

To this regard, we can observe that usually in mathematics the nodes of the order structures are studied as points of some

lattices or posets and, in these cases, they have not in itself special types of inner structures interacting with the order

relation that connects them. In our case, the nodes of our construction have an inner structure, that we can call local struc-

ture (the micro-granular level) that is strictly connected with the global order structure (the macro-granular level). In this

work we introduce two new basic constructions based on the maximal and minimal members of the indiscernibility relation

considered to a global level. The first of these structures, denoted by M (I) is a complete lattice (Theorem 3.6 of [16] ); the

second, denoted by m (I) and called minimal partitioner hypergraph is an abstract simplicial complex (see Theorem 5.6 ). In

this paper we first discuss broadly in the initial example of the next subsection the possible interpretative developments of

these new structures. Next, we devote our effort s mainly to the discovery of new formal relations between the two previous

structures. Finally, it is convenient here to highlight that also well-known attribute subset families (such as for example the

reduct family) find a more general collocation within the above discussed structures. 

1.2. A concrete example 

Suppose that an individual should buy a car and has four possible choices: m 1 , m 2 , m 3 , m 4 . We assume that he is

interested in the following properties (attributes): speed, color and roadholding. Therefore, we can consider the information

table C = 〈 U, At t , F , V al−〉 given in Table 1 , where U := { m 1 , m 2 , m 3 , m 4 } is the car set and Att := { Speed , Color , RoadH }. 

Then, the indiscernibility partitions (classifications) of the car set with respect to all attribute subsets are the following: 

πC (∅ ) = m 1 m 2 m 3 m 4 , 

πC (Speed) = m 1 m 2 m 3 | m 4 , 

πC (Color) = πC (RoadH) = πC (Color, RoadH) = m 1 m 3 | m 2 m 4 , 

πC (Speed, Color) = πC (Speed , Road H) = πC (Speed, Color, RoadH) = m 1 m 3 | m 2 | m 4 . 

It is clear that the above indiscernibility partitions induce respectively the information sub-tables C 1 , C 2 , C 3 and C 4 of C
described in Table 2 where: 

U C 1 := { m 1 m 2 m 3 m 4 } , Att C 1 := {∅} ; U C 2 := { m 1 m 2 m 3 , m 4 } , Att C 2 := { Speed} ; U C 3 := { m 1 m 3 , m 2 m 4 } , Att C 3 := { Color, Road} ;
U C 4 := { m 1 m 3 , m 2 , m 4 } , Att C 4 := { Speed, Color, RoadH} . 

We call the information tables C , . . . , C indiscernibility sub-tables of C. 
1 4 
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Table 2 

Car information sub tables. 

C 1 ∅ C 2 Speed 

m 1 m 2 m 3 m 4 ∅ m 1 m 2 m 3 Medium 

m 4 High 

C 3 Color RoadH C 4 Speed Color RoadH 

m 1 m 3 Green Good m 1 m 3 Medium Green Good 

m 2 m 4 Blue Discrete m 2 Medium Blue Discrete 

m 4 High Blue Discrete 

m1m2m3m4

m1m2m3|m4 m1m3|m2m4

m1m3|m2|m4

Fig. 1. Diagram of the lattice P ind (C) . 

∅

{Speed} {Color, RoadH}

{Speed, Color,RoadH}

Fig. 2. Diagram of the lattice M (C) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is well known [76] that for any information table I we can build a lattice structure P ind (I) on the set �ind (I) of

all the indiscernibility partitions of I with the usual refinement order � (the diagram of C is drawn in Fig. 1 ). This lattice

provides to the user the possibility to compare all the distinct indiscernibility partitions of the information table by means

of the refinement order between set partitions on the universe set U . For example, for the information table C, we can

see that the only two incomparable indiscernibility partitions are m 1 m 2 m 3 | m 4 and m 1 m 3 | m 2 m 4 . In general, by using the

diagram of the lattice P ind (I) the user looses all the information concerning the attribute subsets that induce the different

indiscernibility partitions. Again with reference to the diagram in Fig. 1 , we can observe that the user cannot see that the

attribute subsets { Color }, { RoadH } and { Color , RoadH } induce the same indiscernibility partition m 1 m 3 | m 2 m 4 . 

It has been proved that the set �ind (I) of all the indiscernibility partitions of I with the usual refinement order �
is a complete lattice P ind (I) that is order isomorphic to another lattice M (I) (see [16] . The elements of this new lattice

M (I) are called maximum partitioners of I and their set is denoted by MAXP (I) . The maximum partitioners of I are the

greatest subsets of Att that induce all the distinct indiscernibility partitions of I (in our car information table, the maximum

partitioners of C are ∅ , { Speed }, { Color , RoadH } and { Speed , Color , RoadH }). The partial order on M (I) is the dual relation ⊆∗

of the usual set inclusion relation ⊆. The lattices P ind (I) and M (I) have been called respectively the indiscernibility partition

lattice and the maximum partitioner lattice of the information table I (see [16] ; a representation of the diagram of M (C) is

given in Fig. 2 ). 

Another lattice structure G (I) introduced in [16] is defined on the set of all the ordered pairs ( π , Max ( π )), where π ∈
�ind (I) and Max ( π ) is the maximum partitioner of I that induces the indiscernibility partition π . The partial order on G (I)

is the direct product order ⊆∗ × �. The lattice G (I) has been called granular partition lattice of I (see [16] ), by recalling

the granular interpretation given by Yao in [76] . The Hasse diagram of the granular partition lattice for our car example is

represented in Fig. 3 . 

However, we can note that in all the above diagrams the user loses the information concerning the value set of C. On

the other hand, it is also clear that all the lattices P ind (C) , M (C) and G (C) induce an order isomorphic lattice structure S (C)

on the set ISUB (C) := {C 1 , C 2 , C 3 , C 4 } with the following partial order � : 

C k � C j : ⇐⇒ Att C k ⊆∗ Att C j . (1)

The diagram of S (C) is drawn in Fig. 4 . 

In general, for any I, by using the diagram of the lattice S (I) , the user has three types of information: the blocks of any

indiscernibility partition, the maximum partitioners and the corresponding values common to any indiscernibility block. It

is clear that, with respect to the lattices P ind (I) , M (I) and G (I) , the lattice S (I) provides to the user a greater amount of

information. In general, we will call the lattice S (I) indiscernibility sub-table lattice of I . 
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(∅, m1m2m3m4)

({Speed}, m1m2m3|m4) ({Color, RoadH}, m1m3|m2m4)

({Speed, Color,RoadH}, m1m3|m2|m4)

Fig. 3. Diagram of the lattice G (C) . 

C1 ∅
m1m2m3m4 ∅

C2 Speed
m1m2m3 Medium
m4 High

C3 Color RoadH
m1m3 Green Good
m2m4 Blue Discrete

C4 Speed Color RoadH
m1m3 Medium Green Good
m2 Medium Blue Discrete
m4 High Blue Discrete

Fig. 4. Diagram of the lattice S (C) . 

{Color, RoadH}

{Color} {RoadH}

Fig. 5. Some inclusions between attribute subsets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, the usage of the indiscernibility sub-table lattice also involves for the user a loss of information concerning

the set inclusion relation among all the attribute subsets that induce the same indiscernibility partition. For example, in

reference to the car information table, we know that the attribute subsets { Color }, { RoadH } and { Color , RoadH } generate

the same indiscernibility partition m 1 m 3 | m 2 m 4 , but in none diagram of the above lattice structures the user can see the

inclusion relation given in Fig. 5 . 

This remark induces us to introduce a further type of lattice structure to represent also this new type of information.

In order to do this, we first introduce the following equivalence relation ≈ between attribute subsets of any knowledge

representation system I: if A , A 

′ ⊆ Att and π ( A ), π ( A 

′ ) are their corresponding indiscernibility partitions induced on U , we

set 

A ≈ A 

′ : ⇐⇒ π(A ) = π(A 

′ ) . 
Let [ A ] ≈ be the equivalence class of A with respect to ≈. We say that ≈ is the indistinguishability relation of I and [ A ] ≈
the indistinguishability class (or, equivalently, the indistinguishability granule ) of A . Then the maximum partitioner M ( A ) :=
Max ( π ( A )) coincides with the maximum member of the poset ([ A ] ≈, ⊆), named local indistinguishability poset of A . It is easy

to see that we can use the whole equivalence class [ A ] ≈ when we represent the diagram of M (I) instead of using only its

maximum element M ( A ) (see [16] for details). Furthermore, we can consider the equivalence class [ A ] ≈ as a type of macro-

granule within which we can also represent the micro-granular inclusions among the members of [ A ] ≈. We denote this lattice

by I (I) and we call it the indistinguishability granular lattice of I . In Fig. 6 we provide a representation of the diagram of

I (C) . 

At this point it is clear that although all the previous lattice structures are order isomorphic among them, anyone of

these representations provide a different and useful point of view by means of which investigate the granular structure of

all the indiscernibility partitions induced from an information table. Then the basic purpose of this work consists in the

prosecution of the study of these order structures started in [16] . 

Let min ([ A ] ≈) be the family of all minimal members of [ A ] ≈, that we call minimal partitioners of I, and 

MINP (I) := 

⋃ 

A ∈ MAXP(I) 

min ([ A ] ≈) . 

In reference to Fig. 6 , it results that 

MINP (C) = {∅ , { Speed} , { Color} , { RoadHolding} , { Speed, Color} , { Speed, RoadHolding}} . 



C. Bisi et al. / Information Sciences 388–389 (2017) 247–273 251 

∅

{Speed}

{Color,RoadH}

{Color} {RoadH}

{Speed,Color,RoadH}

{Speed,Color} {Speed,RoadH}

Fig. 6. Diagram of the lattice I (C) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we see, if A ∈ MINP (C) , then any of its subsets does. From a mathematical outlook, this means that MINP (C) is an abstract

simplicial complex and this is true in general (see Theorem 5.6 ). Moreover, ( iii ) of Theorem 5.15 tells us that MINP (I) behaves

as the independent sets of a matroid, whereas the elements of M XM N(I) := max MINP (I) are slated to be the bases of this

matroid (see [47] for further notions on matroid theory). Nevertheless, in general MINP (I) fails to be a matroid. In our spe-

cific example, however, this happens. Hence, if we substitute the attribute Color with RoadHolding, the information induced

by { Speed , Color } and { Speed , RoadHolding } is the same and, furthermore, continue to be minimal in the indistinguishabillity

class of Att . In general, to say that MINP (I) is a matroid means that whenever we consider two different minimal partition-

ers of I, the exchange of an attribute of the former with an attribute of the latter, gives rise to another subset of MINP (I) .

In the particular context of C, we also observe that applying the previous argument to reducts, we obtain again a reduct.

At this point, a question arises: how MINP (I) is related to MAXP (I) ? The definition of the max-min function ψ and of the

corresponding set operator ˆ ψ (see (67) ) enables us to find the closed sets of the matroid. Usually, they do not coincide with

MAXP (I) but, in this example at issue, it is easy to verify that ˆ ψ (A ) = M(A ) for any A ⊆ Att . So MAXP (C) coincides with

the closed family of the matroid MINP (C) and the map A �→ M ( A ) is exactly its closure operator. It is then interesting to find

sufficient conditions ensuring that ˆ ψ (A ) = M(A ) for any A ⊆ Att and to verify when MINP (I) is a matroid, though the latter

is a difficult task going beyond the scopes of this paper. From an intuitive outlook, the aforementioned mathematical prop-

erties, i.e. to be an abstract simplicial complex or a matroid, are strictly linked to the variation of knowledge under deletion

or exchange of attributes and to the optimization of the variables to take into account when we extract some knowledge

from a table. 

1.3. Micro and macro granular structures of the indistinguishability 

Taking into account that the granular paradigm [45,46,49,50,62,69,70,74] is permeating much of the new interpretation

of information structures (in rough set theory [35,36,48,69,72,75,80,81] , generalized rough set theory [3–5,34] , data mining

[20–22,32,33,37,51,71] , interactive computing [54,55] , machine learning [73] , computational cognitive science [29] , formal

concept analysis [26,68,77,78] , mathematical morphology [57–61] , graph theory [7–15,52] , hypergraph theory [6,79] , ma-

troid theory [23,24,28,30,31,38–40,63–67,82] , lattice theory [25] ), it seems appropriate to discuss also our above models I (I)

within the context of this new stimulating research paradigm. Therefore we will call the lattices P ind (I) and M (I) the macro
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granular order structures (induced by the indiscernibility) of I . The motivation of this terminology is that we are not inter-

ested in an operation of zoom-in [76] for any node of the aforementioned lattices, but simply to a global vision that takes

into account only the order relation between the nodes. In this interpretation we don’t see what happens inside each node.

In contrast with this macro granular interpretation, we will call the lattices S (I) and I (I) the micro granular order structures

(induced by the indiscernibility) of I . In this case we are interested to both the order relation between the granules and the

inner structure of each granule. For the lattice S (I) , each granule is a sub-information table of I, and this sub-table can be

examined by means of all the classical investigation tools used in RST and granular computing GrC-IT. On the other hand, a

granule of the lattice I (I) contains all the attribute subsets inducing the same indiscernibility partition, and these subsets

have a natural poset structure with respect to the usual set inclusion. Therefore these posets can be studied with the usual

techniques derived from the order theory. Obviously, in both the cases of S (I) and I (I) a relevant question is to understand

if , and how , the micro granular behaviors of the nodes of these lattices interact with their corresponding macro order struc-

ture. To this regard, we can establish an imaginative analogy with the solar system model : a macro granular order structure

correspond to the solar system, whereas any indistinguishability granule [ A ] ≈ consists of a planet (the maximum member

M ( A )) and all its satellites (the members of [ A ] ≈�{ M ( A )}). In this paper we begin to investigate the interactions between the

macro and micro granularity of the above models and we provide the following three types of results as a consequence of

our study. 

• Micro granular results : results concerning the properties of the indistinguishability granules. For example, these granules

are union-closed families and blocks of a set partition of the power set P(At t ) . 

• Macro granular results : results concerning the macro granular order structures. For example, these are complete lattices

and the maximum partitioner family is intersection-closed. 

• Micro-macro granular results : results that concern the possible interactions between the inner structure of any indistin-

guishability granule and the macro granular order structures. To this regard see for example the global-local regularity

property that we discuss in Subsection 1.4 . 

1.4. Interaction between (object) indiscernibility and (attribute) indistinguishability 

Let � be an arbitrary non-empty set. Usually, in mathematics the elements of � do not have a well-specified nature. In

an abstract context, we can imagine the elements of � as a potential attribute set Att on some universe of objects U . Usually,

in GrC-IT, the main emphasis is placed on the family of all the indiscernibility relations ≡ A , that induce on the universe

set a corresponding set of indiscernibility partitions π ( A ). On the other hand, we can also consider the above equivalence

relation ≈ on P(At t ) as a type of relation that induces indiscernibility between attribute subsets. In other terms, we can use

the universe set U simply as an intermediate tool to work on attribute subsets. From this perspective, it is convenient to

give an appropriate name to the equivalence relation ≈, in order to study the formal properties induced from an information

table by means of the attribute subset families described in the previous parts of this introductory section. We say therefore

that ≈ is the indistinguishability relation on I and [ A ] ≈ the indistinguishability class of A . 

Then, two attribute subsets A and A 

′ are indistinguishable when they induce the same set partition on the universe set

U . The important fact is that the equivalence relation ≈ induces a very rich mathematical structure on the power set P(At t ) ,

and the richness of this structure is a consequence of the way in which the family of all the indiscernibility partitions π ( A )

are interrelated with each other. 

For example, one of the more interesting property that we obtain by studying the indistinguishability relation is what

we call global-local regularity , briefly (GLR), and that can be expressed as follows: 

(GLR) M ( A ) � M ( A 

′ ) ⇒ Y � X for any X ∈ [ A ] ≈ and Y ∈ [ A 

′ ] ≈. 

The global-local regularity property tell us that the inclusion between the maximum elements of any two indistinguisha-

bility classes, preserves the same type of inclusion between any two members of these classes. In other terms, we can

say that the macro -inclusion relations between the maximum partitioners of I have a direct influence also on the micro -

inclusion relations between the attribute subsets of their corresponding indistinguishability classes. 

Let us note that the global-local regularity is a property which has its basic foundation in the interesting fact that we

can consider the order structure I (I) as a lattice of posets , i.e. a lattice whose nodes are the posets ([ A ] ≈, ⊆), when A runs

in P(I) . We will call these partially ordered sets local indistinguishability posets . 

By starting from I (I) , we want to analyze how the family of all minimal partitioners MINP (I) behaves. In this paper we

establish several properties of MINP (I) and we will show that this attribute subset family plays a central role in determining

new relations between classical and new notions of GrC-IT. 

A basic relation that relates MINP (I) to the relative reduct family RED ( A ) of any attribute subset A of I is the following

( Theorem 5.4 ): 

MINP (I) ⊇
⋃ 

B ∈ RED (A ) 

P(B ) . (2) 

In general, the complete determination of the reduct family RED (I) of I is not an easy task, because the reducts of I are

exactly the minimal transversals of the subset family ESS(I) (see [9] ) of all the attribute subsets A such that π ( Att �A ) � =
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π ( Att ) and π(Att \ A 

′ ) = π(At t ) for any A 

′ � A (the family ESS(I) was introduced in [9] and its members are called essential

subsets of I). 

Returning now to the above discussion concerning the notion of indistinguishability, the relevant aspect is that in a

very general situation, where we have simply an information table I, we can construct several attribute subset families,

M AXP (I) , M INP (I) , RED (I) , ESS(I) (and others that we introduce in the next sections), that have not trivial links between

them and interesting formal properties. The basic tools for such an investigation are the above discussed subset families and

their related structures that will be the main object of study in this paper. 

1.5. Content of the paper 

We now describe briefly the content of any section of the paper. In Section 2 we recall the basic notions and fix the

notations used in the remaining part of the paper. Furthermore, we relativize the classical notions of discernibility matrix,

essential and reduct to any attribute subset and associate to any knowledge representation system three hypergraphic struc-

tures, i.e. the discernibility hypergraph, the essential hypergraph and the reduct hypergraph. In Section 3 we investigate in

details the structures of three macro granular order structures induced by the indiscernibility relation of I . In order to fulfill

this aim, we focus our attention to the indistinguishability relation definable on the power set of Att and see how it gives

rise to a maximum partitioner lattice. Therefore, in particular, we analyze the behavior of the indiscernibility partitions

induced by all the maximum partitioners. In Section 4 we study knowledge representation systems from a micro granu-

lar perspective, by introducing two new lattice structures isomorphic to the indiscernibility partition lattice. In particular,

these mathematical objects are defined by means of the indistinguishability relation and allow us to associate two canonical

families to any knowledge representation system: the maximum partitioners MAXP (I) (just studied in Section 3 ) and the

minimum partitioners MINP (I) . In Section 5 , our intent consists in studying in details the family MINP (I) , providing all the

main properties it satisfies, such as the global-local regularity (see Proposition 5.3 ) and the inheritance (see Theorem 5.6 ).

Finally, we analyze the strict relation occurring between the minimum partitioners and the relative reducts of any attribute

subset. 

2. Basics and recalls 

If X is a set, we denote by P(X ) the power set of X and by | X | the cardinality of X . If X is a finite set and F is a family

of subsets of X having all the same cardinality, we say that F has uniform cardinality , and we denote by ||F|| the common

cardinality of all members of F . A pair (X, F ) is an abstract simplicial complex (see [27] ) if ∅ ∈ F and whenever Y ∈ F and

Z ⊆ Y , then Z ∈ F . 

A hypergraph (see [1] ) is a pair H = (V (H) , E(H)) , where V (H) = { v 1 , . . . , v n } is an arbitrary finite set and E(H) =
{ Y 1 , . . . , Y m 

} is a non-empty family of subsets Y 1 , . . . , Y m 

of V ( H ). The elements v 1 , . . . , v n are called vertices of H and the

subsets Y 1 , . . . , Y m 

are called hyperedges of H . A hypergraph on V ( H ) is a hypergraph having V ( H ) as vertex set. 

2.1. Posets 

A partially ordered set (abbreviated poset ) is a pair P = (X, ≤) , where X is a set and ≤ is a binary relation on X that is

reflexive, antisymmetric and transitive. If P = (X, ≤) is a partially ordered set and x , y ∈ X , we also write x < y if x ≤ y

and x � = y . If x , y are two distinct elements of X , we say that y covers x , denoted by x �y (or, equivalently, by y �x ), if x ≤ y

and there is no element z ∈ X such that x < z < y . If x ∈ X we set [ x | P ↑ ] := { z ∈ X : x �z } and [ x | P ↓ ] := { y ∈ X : y �x }. We

call the elements of [ x | P ↑ ] covers of x and the elements of [ x | P ↓ ] co-covers of x . By the covering relation, we can provide a

graphical representation of the poset, the so called Hasse diagram of P (see [2] ): draw a small circle for any element of P

and a segment connecting x to y whenever x covers y . An element x ∈ X is called minimal in P if z ≤ x implies z = x, and in

a similar way one defines a maximal element in P . If there is an element ˆ 0 X ∈ X such that ˆ 0 X ≤ x then 

ˆ 0 X is unique and it is

called the minimum of P . Analogously the maximum of P , usually denoted by ˆ 1 X is defined (if it exists). We call upper bound

of a subset X of P an element y ∈ P such that x ≤ y for any x ∈ X . We call least upper bound the minimum of all the upper

bounds. The notions of lower bound and greatest lower bound are dual. We call lattice a poset any two of whose elements

has both the least upper bound that the greatest lower bound. A lattice is complete when each of its subsets X has a least

upper bound and greatest lower bound in the lattice. 

A poset P = (X 1 , ≤1 ) is said isomorphic to another poset P 2 = (X 2 , ≤2 ) if there exists a bijective map φ: X 1 → X 2 such

that x ≤ 1 y ⇔ φ( x ) ≤ 2 φ( y ), for all x , y ∈ X 1 . The dual poset of P is the poset P ∗ := ( X , ≤∗), where ≤ ∗ is the partial order on

X defined by x ≤ ∗y : ⇔ y ≤ x , for all x , y ∈ X . A poset P is called self-dual if P is isomorphic to its dual poset P ∗. For further

details on posets and lattices, see [2] . 

2.2. Set partitions 

We now recall the basic notions of set partitions (for further details, see [56] ). If X is an arbitrary set and π is a set

partition on X , we usually denote by { B i : i ∈ I } the block family of π . If x ∈ X , we denote by π ( x ) the block of π which

contains the element x . If Y ⊆ X and Y ⊆ B , for some index i ∈ I , we say that Y is a sub-block of π and we write Y � π . When
i 
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X is finite we use the standard notation π := B 1 | . . . | B | π | , where | π | is the number of distinct blocks of π . We denote by

π ( X ) the set of all set-partitions of X . It is well known that on the set π ( X ) we can consider a partial order � defined as

follows: if π , π ′ ∈ π ( X ), then 

π � π ′ : ⇐⇒ (∀ B ∈ π) (∃ B 

′ ∈ π ′ ) : B ⊆ B 

′ (3)

A useful and equivalent characterization of the partial order given in (3) is the following: 

π � π ′ ⇐⇒ (∀ x ∈ X ) (π(x ) ⊆ π ′ (x )) (4) 

We will write π≺π ′ when π�π ′ and π � = π ′ . 
The pair P (X ) = (π(X ) , �) is a complete lattice which is called partition lattice of the set X . We now recall the basic facts

about the meet and the join of this lattice. 

Let π1 = A 1 | . . . | A m 

and π2 = B 1 | . . . | B n be two partitions on the same finite universe X , i.e., π1 , π2 ∈ π ( X ), we firstly set 

S π1 , π2 
:= { C ⊆ X : if x ∈ C, then π1 (x ) ⊆ C and π2 (x ) ⊆ C} 

Then the join of π1 and π2 , denoted by π1 ∧ π2 , is the set partition of X whose block set is given by 

π1 ∧ π2 := { A i ∩ B j : i = 1 , . . . m ; j = 1 , . . . , n } . (5)

On the other hand, the more simple way to describe the join of π1 and π2 , denoted by π1 ∨ π2 , is the following: 

π1 ∨ π2 := C 1 | . . . | C k , (6) 

where C 1 , . . . , C k are the minimal elements of the set family S π1 , π2 
with respect to the inclusion. 

Example 2.1. Let us consider X = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 } and let π1 = { x 1 , x 2 }|{ x 3 }|{ x 4 , x 5 }|{ x 6 } and π2 =
{ x 1 , x 3 }|{ x 2 }|{ x 4 }|{ x 5 }|{ x 6 } be two set partitions of X . Then π1 ∧ π2 is the partition 

π1 ∧ π2 = { x 1 }|{ x 2 }|{ x 3 }|{ x 4 }|{ x 5 }|{ x 6 } . 
The family S π1 , π2 

is equal to: 

S π1 , π2 
= {{ x 1 , x 2 , x 3 } , { x 1 , x 2 , x 3 , x 4 , x 5 } , { x 1 , x 2 , x 3 , x 6 } , { x 4 , x 5 } , { x 4 , x 5 , x 6 } , { x 6 }} . 

Then the meet of π1 and π2 is the partition 

π1 ∨ π2 = { x 1 , x 2 , x 3 }|{ x 4 , x 5 }|{ x 6 } . 
2.3. Knowledge representation system and indiscernibility 

In this section we provide a generalization to the classical notion of information table theory (see [41–44] for further

details). 

Definition 2.2. A knowledge representation system is a structure I = 〈 U, At t , V al−〉 , where U is a non-empty set called uni-

verse set and Att = { a i : i ∈ I} is a set of attributes a i : U → Val . We call the map F : U × Att → Val , defined by 

F (u, a i ) := a i (u ) , (7) 

the information map of I . If Val is a set with two elements (usually denoted by 0 and 1), we say that I is a Boolean knowledge

representation system . We call the elements of U objects of I, the elements of Att attributes of I and those of Val values of I .

When both the sets U = { u 1 , . . . , u m 

} and Att = { a 1 , . . . , a n } are finite, we denote by T [ I] the m × n rectangular table having

on the i th row the element u i , on the j th column the attribute a j and the value a j ( u i ) in the place ( i , j ). We call T [ I] the

information table of I . However, in the finite case we identify I with T [ I] and we call I information table . 

Remark 2.3. It is clear that if we start with any set U i , Att and any map F : U × Att → Val then we can set 

a i (u ) := F (u, a i ) (8) 

Therefore a knowledge representation system can be equivalently described as a structure 

I := 〈 U, At t , F , V al〉 , (9) 

where U , Att and Val are given sets and F is a map from U × Att → Val . We will use the form (9) to describe a knowledge

representation system. 

In what follows we assume that I = 〈 U, At t , F , V al−〉 is a given knowledge representation system. 

Definition 2.4. If A ⊆ Att we consider the following binary relation ≡ A on the universe set U : if u , u ′ ∈ U then 

u ≡A u 

′ : ⇐⇒ F (u, a ) = F (u 

′ , a ) , ∀ a ∈ A. (10)

The binary relation ≡ A is an equivalence relation on U that is called A - indiscernibility relation on I [41] . If u ∈ U , we

denote by [ u ] A the equivalence class of u with respect to ≡ A . We also set 

π(A ) := { [ u ] A : u ∈ U} . (11) 
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We call π ( A ) the A - indiscernibility partition of the knowledge representation system I . If B ⊆ U is such that B = [ u ] A , for some

u ∈ U , we say that B is an A - indiscernibility block of I . We also set 

�ind (I) := { π(A ) : A ⊆ At t } . (12)

2.4. Indiscernibility structures of I

In this subsection we introduce some set operator notations that generalize the basic notion of discernibility matrix

[53] for a knowledge representation system. 

Let Z ⊆ U and A ⊆ Att . Then we can consider the map �Z,A : Z × Z → P(A ) defined by 

�Z,A (u, u 

′ ) := { a ∈ A : F (u, a ) � = F (u 

′ , a ) } , (13)

for any u , u ′ ∈ Z . In particular, we set � := �U , Att and �A := �U , A . Therefore we have 

�Z,A (u, u 

′ ) = �Z,Att (u, u 

′ ) ∩ A, (14)

for any u , u ′ ∈ Z . 

Definition 2.5. We say that the hypergraph with vertex set A and hyperedge set 

DISC(Z, A ) := { B ⊆ A : ∃ u, u 

′ ∈ Z s. t. F (u, b) = F (u 

′ , b) ∀ b ∈ B } , 
is the ( Z , A )- discernibility hypergraph . In particular, we set DISC(I) := DISC(U, At t ) and DISC ( A ) := DISC ( U , A ), and we call

D (I) := (At t , DISC(I)) the discernibility hypergraph of I . 

Remark 2.6. 

(i) Let us note that 

DISC(Z, A ) = { �Z,A (u, u 

′ ) : u, u 

′ ∈ Z and �Z,A (u, u 

′ ) � = ∅} . 
(ii) If both the sets Z = { u 1 , . . . , u m 

} and A = { a 1 , . . . , a n } are finite, the m × m table having the objects u 1 , . . . , u m 

on its

rows and on its columns and the attribute subset �Z , A ( u i , u j ) in the ( u i , u j )-entry is the usual discernibility matrix

�[ I] of I [53] . 

The following result relates the subsets �Z , A ( u , u 
′ ) to the indiscernibility relation. 

Proposition 2.7. Let D ⊆ A and u , u ′ ∈ Z. Then: 

(i) D = �Z,A (u, u ′ ) �⇒ u ≡A \ D u ′ ; 
(ii) u ≡ A �D u 

′ ⇒ �Z , A ( u , u 
′ ) ⊆ D; 

(iii) Let C ⊆ A. Then �Z,A (u, u ′ ) ∩ C = ∅ ⇐⇒ u ≡C u 
′ . 

Proof. 

(i) Let D = �Z,A (u, u ′ ) and let a ∈ A �D . By definition of �Z , A ( u , u 
′ ) it holds F (u, a ) = F (u ′ , a ) . Thus u ≡ A �D u 

′ ; 
(ii) Let u ≡ A �D u 

′ and let a ∈ A �D . By definition of the relation ≡ A �D we have F (u, a ) = F (u ′ , a ) , so a �∈ �Z , A ( u , u ′ ). It

follows A �D ⊆ A ��Z , A ( u , u 
′ ) and equivalently �Z , A ( u , u 

′ ) ⊆ D ; 

(iii) Let C ⊆ A . Let us assume that �Z,A (u, u ′ ) ∩ C = ∅ and let c ∈ C . Then c �∈ �Z , A ( u , u ′ ), so F (u, c) = F (u ′ , c) . This proves

that u ≡ C u 
′ . Let us suppose now that u ≡ C u 

′ . Then, by definition of ≡ C , it follows that �Z,A (u, u ′ ) ∩ C = ∅ . The

proposition is thus proved. �

In GrC-IT there are two well studied investigation notions: the core and the reducts of a knowledge representation system

[41] . 

Definition 2.8 [41] . Let A ⊆ Att . An attribute c ∈ A is said indispensable if π ( A ) � = π ( A �{ c }). The subset of all indispensable

attributes of A is called the core of A and it is denoted by CORE ( A ). In particular, we set CORE(I) := CORE(At t ) . 

Definition 2.9 [41] . A subset C ⊆ A is called a reduct of A if: 

(i) π(A ) = π(C) ; 

(ii) π ( A ) � = π ( D ) for all D � C . 

We denote by RED ( A ) the family of all reducts of A and we set RED (I) := RED (At t ) . The members of RED (I) are usually

called reducts of I . We call the hypergraph 

R (A ) := (A, RED (A )) 

reduct hypergraph of A and the hypergraph R (I) := R (At t ) reduct hypergraph of I . 

Core and reducts are linked each other by the following result. 
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Table 3 

Mobile phone information table. 

T RAM Memory Color BatteryLife 

u 1 Insufficient Small Black Very Long 

u 2 Sufficient Middle Blue Short 

u 3 Insufficient Small Black Long 

u 4 Sufficient Big Grey Short 

u 5 Excellent Middle Blue Long 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 2.10 [42] . CORE(I) := 

⋂ { C : C ∈ RED (I) } . 
The notion of relative core has been generalized in [9] in the following way. 

Definition 2.11. Let A ⊆ Att . We say that a subset C ⊆ A is A - essential if: 

(i) π ( A �C ) � = π ( A ); 

(ii) π(A \ D ) = π(A ) for all D � C . 

We denote by ESS ( A ) the family of all A -essential subsets of A and we set ESS(I) := ESS(At t ) . We call the members of

ESS(I) essentials of I . We call the hypergraph 

E (A ) := (A, ESS(A )) 

essential hypergraph of A and essential hypergraph of I, the hypergraph E (I) := E (At t ) . 

In the next result we characterize the A -essentials as the minimal elements of the discernibility hypergraph. 

Theorem 2.12. ESS(A ) = min (DISC(A )) . 

Proof. The proof of Theorem 4.11 in [9] can be easily adapted for the more general statement of this theorem. �

The classical notion of transversal for a finite hypergraph [1] can be also given for an arbitrary hypergraph. 

Definition 2.13. Let H be a hypergraph with vertex set V ( H ) and hyperedge set E ( H ). We say that a subset Y ⊆ V ( H ) is a

transversal of H if Y ∩ A � = ∅ for each non-empty hyperedge A ∈ E ( H ). We say that a transversal A of H is minimal if no proper

subset of A is a transversal of H . We denote by Tr ( H ) the family of all minimal transversals of H . We call the hypergraph H 

tr 

:= ( V ( H ), Tr ( H )) transversal hypergraph of H . 

In literature the hypergraph transversal problem for a finite hypergraph H is the problem of generating all the elements of

Tr ( H ). In general, this is an important mathematical problem which has many applications in mathematics and in computer

science [18] . 

Remark 2.14. It is clear that T r(DISC(A )) = T r(ESS(A )) by Theorem 2.12 . 

The next result shows that the reducts of A are exactly the minimal transversals of the essential hypergraph ESS ( A ). 

Theorem 2.15. Let B ⊆ A. Then: 

(i) π(A ) = π(B ) if and only if B ∈ Tr ( DISC ( A )) . 

(i) RED (A ) = T r(DISC(A )) = T r(ESS(A )) . 

Proof. The proof of Theorem 4.20 in [9] can be easily adapted for the more general statement of this theorem. �

The three hypergraphs D (I) , R (I) and E (I) are interrelated between them by means of Theorem 2.12 and Theorem 2.15 .

These structures are all defined by using the classical indiscernibility relations ≡ A , for any A ⊆ Att , therefore we use the

following terminology. 

Definition 2.16. We call D (I) , R (I) and E (I) indiscernibility hypergraphic structures of I . 

In order to provide an appropriate interpretation for all results that we establish in this paper, we introduce the following

example. 

Example 2.17. Suppose that an individual has to buy a new mobile phone. He is interested in the following attributes: RAM,

memory, color and battery life and suppose he can choose among five models u 1 , u 2 , u 3 , u 4 , u 5 . Hence, we can modelize

the situation occurring by means of the information table T = 〈 U, At t , F , V al−〉 given in Table 3 , where U := { u 1 , u 2 , u 3 , u 4 ,

u 5 } is the mobile set and Att := { RAM , Memory , Color , BatteryLife }. In the following, we indicate by R the RAM, by M the

memory, by C the color and by B the battery life. 

Now, we represent in Table 4 , the discernibility matrix �[ T ] of the knowledge representation system T . 
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Table 4 

Discernibility matrix �[ T ] . 

u 1 u 2 u 3 u 4 u 5 

u 1 ∅ RMCB B RMCB RMCB 

u 2 
∗ ∅ RMCB MC RB 

u 3 
∗ ∗ ∅ RMCB RMC 

u 4 
∗ ∗ ∗ ∅ RMCB 

u 5 
∗ ∗ ∗ ∗ ∅ 

Table 5 

Discernibility matrix �A [ T ] . 

u 1 u 2 u 3 u 4 u 5 

u 1 ∅ RMC ∅ RMC RMC 

u 2 
∗ ∅ RMC MC R 

u 3 
∗ ∗ ∅ RMC RMC 

u 4 
∗ ∗ ∗ ∅ RMC 

u 5 
∗ ∗ ∗ ∗ ∅ 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, we have that 

DISC(T ) = { B, RB, MC, RMC, RMCB } . 
By Theorem 2.12 , we have 

ESS(T ) = { B, MC} 
while, by Theorem 2.15 , we have 

RED (T ) = { BC, MB } and CORE(T ) = { B } . 
Let us now fix A = { R, M, C} . In Fig. 5 , we represent the discernibility matrix �A [ T ] restricted to A . 

Hence, we have that 

DISC(A ) = { R, MC, RMC} . 
By Theorem 2.12 , we have 

ESS(A ) = { R, MC} 
while, by Theorem 2.15 , we have 

RED (A ) = { RC, RM} and CORE(A ) = { R } . 
This means that the attribute subset { R , C } and { R , M } provide the same information given by { R , M , C }. To be more specific,

if we take { R , M }, we can avoid to consider the attribute Color in order to distinguish two models of mobile phones, being

the other attributes enough. Furthermore, if we restrict our global knowledge on the attributes of A , then R provides a

fundamental information in order to deduce which models have the same characteristics with respect to A . Finally, note

that π({ R, C} ) = π({ R, M, C} ) but π ({ M , C }) � = π ({ R , M , C }): roughly speaking, we must delete both M and C in order to lose

some information or, equivalently, to make more difficult the choice of a mobile phone. 

3. The two macro granular order structures of I

In this section we investigate the three macro granular order structures induced by the indiscernibility relations of I . We

set 

P (I) := (π(U) , �) (15)

and 

�ind (I) := { π(A ) : A ⊆ At t } . (16)

Since �ind (I) is a subset of π ( U ), we can consider on �ind (I) the induced partial order � from the previous partition lattice

of I . We set therefore 

P ind (I) := (�ind (I) , �) (17)

In this way P ind (I) becomes a sub-poset of P (I) . According to Yao [76] , the order structure P ind (I) “can be used to develop

a partition model of databases”. 

Definition 3.1. We call the partially ordered set P ind (I) indiscernibility partition poset of the knowledge representation sys-

tem I . 
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Remark 3.2. ( i ): Let us note here that ˆ 1 P ind (I) always coincides with 

ˆ 1 P (I) since π(∅ ) = U = 

ˆ 1 I , whereas (in general) ˆ 0 P ind (I) 

can be different with respect to the minimum 

ˆ 0 P (I) . Thus, in general, P ind (I) is not a sub-lattice of P (I) . 

( ii ): Theorem 6.10 of [16] provides a criterion to establish whether a given partition belongs or not to P ind (I) . 

We now introduce an equivalence relation on attribute subsets of a knowledge representation system and show how it

is related to the partition lattice of a knowledge representation system through the notion of maximum partitioner. 

If A and B are two attribute subsets of I we set 

A ≈ B : ⇐⇒ π(A ) = π(B ) . (18) 

Then the binary relation ≈ is an equivalence relation on P(At t ) , and we denote by π≈(I) the set partition on P(At t )

induced by ≈ . We also set 

[ A ] ≈ := { B ⊆ Att : A ≈ B } . (19) 

Definition 3.3. We call: 

• the equivalence relation ≈ indistinguishability relation of I; 

• the equivalence class [ A ] ≈ indistinguishability class , or also indistinguishability granule , of A ⊆ Att . 

The following result provides several indispensable characterizations concerning the indistinguishability classes for any 

knowledge representation system. 

Definition 3.4. 

• If A ⊆ Att , we call the attribute subset M(A ) = 

⋃ { B : B ∈ [ A ] ≈} the co-maximal of A in I . 

• If π ∈ �ind (I) is such that π = π(A ) , for some A ⊆ Att , we say that M ( A ) is the maximum partitioner of π , and we set

Max ( π ) := M ( A ). Therefore, with this notation, we have that M(A ) = Max (π(A )) . 

Proposition 3.5 [16] . Let A ⊆ Att. Then: 

(i) M ( A ) is the unique subset in [ A ] ≈ such that B ⊆ M ( A ), for all B ∈ [ A ] ≈, . 

(ii) If A 

′ ⊆ Att then 

π(A ) � π(A 

′ ) ⇐⇒ M(A 

′ ) ⊆ M(A ) (20) 

and 

π(A ) ≺ π(A 

′ ) ⇐⇒ M(A 

′ ) � M(A ) . (21) 

(iii) Let A 

′ ⊆ Att such that A ⊆ A 

′ . Then M ( A ) ⊆ M ( A 

′ ) . 

We provide another characterization for the maximum partitioners that will be useful later. 

Proposition 3.6. Let A ⊆ Att. Then 

M(A ) = 

⋂ { B : B ∈ MAX P (I) , A ⊆ B } . (22)

Proof. By ( iii ) of Proposition 3.5 , it’s clear that M ( A ) ⊆ B for any maximum partitioner B ⊇A . Vice versa, the intersection in

the right side of (22) is contained in M ( A ). Hence (22) holds. �

Definition 3.7. The collection of all maximum partitioners is denoted as 

MAX P (I) := { M(A ) : A ⊆ At t } = { Max (π ) : π ∈ �ind (I) } , (23)

and we also introduce the poset 

M (I) := (MAX P (I) , ⊆∗) , (24) 

where ⊆∗ is the dual inclusion order. 

The following result has been implicitly given in the proof of Theorem 3.6 of [16] . 

Proposition 3.8 [16] . The posets M (I) and P ind (I) are two complete lattices isomorphic between them. 

By virtue of the previous result, it is worthwhile to introduce the following terminology. 

Definition 3.9. We call P ind (I) the indiscernibility partition lattice of I and M (I) the maximum partitioner lattice of I . 

The general form of the join and of the meet of a family of maximum partitioners is now given. 

Proposition 3.10. Let { A j : j ∈ J} ⊆ MAXP (I) a family of maximum partitioners of I . Then: 

(i) the join of { A j : j ∈ J } in M (I) is A := 

⋂ 

j∈ J A j . ⋃ 
(ii) the meet of { A j : j ∈ J } in M (I) is B := M( j∈ J A j ) . 
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MC R B

RMC RB

RMCB

Fig. 7. Diagram of M (T ) . 

 

 

 

 

 

 

 

 

 

 

 

Corollary 3.11. The join and the meet in the lattice P ind (I) are obtained as follows. Let { π j : j ∈ J} ⊆ �ind (I) and set A j :=
f (π j ) = Max (π j ) , for all j ∈ J. Then: 

(i) the join of { π j : j ∈ J } in P ind (I) is the partition π ( A ), where A := 

⋂ 

j∈ J A j . 

(i) the meet of { π j : j ∈ J } in P ind (I) is the partition π ( B ), where B := M( 
⋃ 

j∈ J A j ) . 

In the next example, we represent the maximum partitioner lattice of a specific information table. 

Example 3.12. In reference to Example 2.17 , we have: 

MAX P (T ) = {∅ , R, B, MC, RB, RMC, RMCB } . 
In Fig. 7 , we represent its maximum partitioner lattice M (T ) . 

In the next result we provide a first basic link between relative reducts and minimal members of the equivalence class

[ A ] ≈, for A ⊆ Att . 

Proposition 3.13. Let A ⊆ Att. Then 

RED (A ) = { X : X ∈ min ([ A ] ≈) , X ⊆ A } . (25)

Proof. Let C ∈ RED ( A ). Clearly, C ⊆ A . By Definition 2.9 we have then π(C) = π(A ) , therefore C ∈ [ A ] ≈. On the other hand,

if D ∈ [ A ] ≈ is such that D � C , the identity π(D ) = π(A ) is in contrast with the condition ( ii ) of Definition 2.9 . Hence C is

necessarily minimal in the subset family [ A ] ≈. Hence RED ( A ) ⊆ { X : X ∈ min ([ A ] ≈), X ⊆ A }. Conversely, let C ∈ min ([ A ] ≈) such

that C ⊆ A . Then π(C) = π(A ) . Let now C ′ � C . Since C is minimal in [ A ] ≈, it follows that C ′ �∈ [ A ] ≈, so that π ( C ′ ) � = π ( A ). This

shows that the attribute subset C satisfies both the conditions of Definition 2.9 , i.e. C ∈ RED ( A ). �

For the maximum partitioners we have the following stronger results. 

Theorem 3.14. Let A ∈ MAXP (I) . Then: 

RED (A ) = min ([ A ] ≈) . (26)

Proof. Since A is a maximum partitioner, the subset family { X : X ∈ min ([ A ] ≈), X ⊆ A } in (25) coincides with min ([ A ] ≈). The

thesis follows then by Proposition 3.13 . �

Corollary 3.15. We have: 

RED (I) = min ([ At t ] ≈) . (27)

Proof. It is a direct consequence of Theorem 3.14 when we take A = At t . �

Example 3.16. In reference to the information table T given in Example 2.17 , we have 

RED (RCB ) = { BC} 
and 

RED (RMC) = { RM, RC} . 
We now see how to relativize the maximum partitioner lattice to any attribute subset. If A ⊆ Att we set now 

MAX P (A ) := { B ∩ A : B ∈ MAX P (I) } , (28)

so that MAXP (I) = MAXP (At t ) . 

Definition 3.17. We call any element of MAXP ( A ) A - relative maximum partitioner of I . 
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We now give a characterization for the family MAXP ( A ). 

Proposition 3.18. Let A ∈ MAXP (I) . Then 

MAX P (A ) = { B ∈ MAX P (I) : B ⊆ A } = { B ∈ MAX P (I) : A ⊆∗ B } . 
Proof. Let B ∈ MAXP ( A ). Then there exists C ∈ MAXP (I) such that B = A ∩ C. Therefore, B ⊆ A and B ∈ MAXP (I) because is

set-theoretic intersection closed. On the other hand, let B ∈ MAXP (I) and B ⊆ A . Then B = A ∩ B ∈ MAXP (A ) . �

Example 3.19. In reference to the information table T given in Example 2.17 , we have: 

MAX P (RCB ) = {∅ , R, B, C, RC, RB, RCB } 
and 

M AX P (RM C) = {∅ , R, B, MC, RMC} . 
In the next result we show that we can use the structure MAXP ( A ) to provide an alternative characterization of the

relative core of A . 

Theorem 3.20. Let A ⊆ Att. Then 

(i) CORE(A ) = { a ∈ A : A \ { a } ∈ MAXP (A ) } . 
ii) CORE ( M ( A )) ⊆ A. 

Proof. ( i ): Let a ∈ CORE ( A ). We must show that A �{ a } ∈ MAXP ( A ), i.e. there exists B ∈ MAXP (I) such that A \ { a } = A ∩ B .

Let us assume by absurd that A �{ a } � = A ∩ B for any B ∈ MAXP (I) . Since π ( A ) � = π ( A �{ a }), then A \ { a } �≈ A . Let B be the

maximum partitioner of [ A �{ a }] ≈. Clearly, A �{ a } ⊆ B and we have A �{ a } ⊆ A ∩ B therefore, by our assumption, it follows that

A �{ a } � A ∩ B . Hence A ∩ B = A, i.e. A ⊆ B . It follows that π(B ) = π(A \ { a } ) � π(A ) � π(A \ { a } ) = π(B ) , i.e. π(A ) = π(B ) , that

is equivalent to say that A ≈ B ≈ A �{ a }, absurd. Thus A �{ a } ∈ MAXP ( A ). 

Conversely, let a ∈ A such that A �{ a } ∈ MAXP ( A ). Hence, there exists B ∈ MAXP (I) such that A \ { a } = B ∩ A . If B =
A \ { a } , then A \ { a } ∈ MAXP (I) . In this case, by maximality of A �{ a }, then A �∈ [ A �{ a }] ≈, so π ( A ) � = π ( A �{ a }), therefore a

∈ MAXP ( A ) ⊆ CORE ( A ) and the claim is proved. Otherwise, let A �{ a } � B . Clearly, it results that a �∈ B . Furthermore, it results

π ( B ) �π ( A �{ a }). Suppose by contradiction that π(A ) = π(A \ { a } ) . Then, we have π ( B ) �π ( A ), so 

u ≡B u 

′ ⇒ u ≡A u 

′ ⇒ F (u, a ) = F (u 

′ , a ) ⇒ u ≡B ∪{ a } u 

′ . 

In other terms, we have shown that π ( B ) �π ( B ∪ { a }). Nevertheless, we also have π ( B ∪ { a }) �π ( B ), i.e. π(B ) = π(B ∪ { a } ) . This

contradicts the maximality of B , absurd. Thus, a ∈ CORE ( A ). 

( ii ): Let a ∈ CORE ( M ( A )) and suppose by contradiction that a �∈ A . Therefore we have A ⊆ M ( A ) �{ a } ⊆ M ( A ) and, hence, that

π ( M ( A )) �π ( M ( A ) �{ a }) �π ( A ). Since π(M(A )) = π(A ) , we conclude that π(M(A ) \ { a } ) = π(M(A )) , contradicting the fact that

a ∈ CORE ( A ). �

Example 3.21. By referring to the information table given in Example 2.17 , let us fix A = { R, M, C} . It is easy to see that the

only a ∈ A such that A \ { a } ∈ MAXP (I) is R , hence we deduce that CORE(A ) = { R } . Thus the attribute RAM is fundamental

to discover the mobile phones with the same qualities whenever we would evaluate only RAM, Memory and Color. 

By means of MAXP (I) we can introduce two set operators that mimic respectively the extent and the intent operators

of FCA [19] . Let Z ⊆ U and A ⊆ Att . We set 

�↑ (Z) := { a ∈ Att : ∀ z, z ′ ∈ Z, F (z, a ) = F (z ′ , a ) } , (29)

and 

�↓ (A ) := { z ∈ U : ∀ a, a ′ ∈ A, F (z, a ) = F (z, a ′ ) } . (30)

Let us observe that �↑ : P(U) → P(At t ) and �↓ : P(At t ) → P(U) . 

By analogy with the extent and the intent operators, if Z ⊆ U and A ⊆ Att , we can define the following composition: 

�↓↑ (A ) := �↑ (�↓ (A )) (31) 

and, consequently, the following restricted maps: 

γ ↑↓ := �↑↓ 
| MAXP(I) 

(32) 

We obtain then the following immediate result 

Proposition 3.22. γ ↑↓ is an inclusion-preserving set operator from MAXP (I) to MAXP (I) . 

Proof. Straightforward. �

We now illustrate the interpretative meaning of the operator γ ↓↑ in a concrete case and we postpone a thorough inves-

tigation of its formal properties to forthcoming papers. 
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Table 6 

The incidence matrix of the student hypergraph H . 

A L G E A N C S 

Adam 1 1 0 0 

Bill 0 0 1 1 

Carol 1 0 1 0 

Dana 0 1 1 1 

Eve 1 0 1 1 
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Example 3.23. Let Adam, Bill, Carol, Dana and Eve be 5 students chosen in a math class and suppose that we want to

classify their attitudes according to the exams they passed. Let Algebra, Geometry, Analysis and Computer Science be the

courses they attended during the first semester. Let A L = { Adam, Carol, Ev e } , G E = { Adam, Dana } , A N = { Bil l , Ev e, Dana, Carol} ,
 S = { Bil l , Ev e, Dana } be the sets of students that passed respectively Algebra, Geometry, Analysis and Computer Science.

Then we can consider the hypergraph H having the five students as vertices and A L , G E , A N , C S as hyperedges. Let ˆ H be the

Boolean information table given by the incidence matrix Inc ( H ) (see [1] ). In Fig. 6 we represent Inc ( H ). 

We have then the following indistinguishability classes of the information table ˆ H : 

[ ∅ ] ≈ = {∅} , [ A L ] ≈ = { A L } , [ G E ] ≈ = { G E } , [ A N ] ≈ = { A N } , [ C S ] ≈ = { C S } , 

[ A L A N ] ≈ = { A L A N } , [ A L C S ] ≈ = { A L C S } , [ G E A N ] ≈ = { G E A N } , [ A N C S ] ≈ = { A N C S } , 

[ A L A N C S ] ≈ = { A L A N C S } , [ A L G E A N ] ≈ = { A L G E A N , A L G E } , [ G E A N C S ] ≈ = { G E A N C S , G E C S } , 

[ A L G E A N C S ] ≈ = { A L G E A N C S , A L G E C S } . 
Therefore the maximum partitioners of ˆ H are 

∅ , A L , G E , A N , C S , A L A N , A L C S , G E A N , A N C S , A L A N C S , A L G E A N , G E A N C S , A L G E A N C S . 

We now interpret the role assumed by the maps �↑ and �↓ . Let us fix the subset of students Z = { Bil l , Dana } . Then,

by (29) , it is immediate to see that �↑ (Z) = { A L , A N , C S } . By referring to Table 6 , we note that �↑ ( Z ) consists of all exams

whose result had been the same for both Bill and Dana. Hence, in general, �↑ ( Z ) is the biggest subset of exams where all

the students of Z achieved the same result. 

On the other hand, let us fix a subject subset A = { A L , A N , C S } . Then, by (30) , it is immediate to see that �↓ (A ) = { Ev e } .
In fact, as we can see by taking the transpose of the matrix in Table 6 , Eve is the only student who passed all the three

exams of the set A . Hence, we deduce that �↓ ( A ) is the biggest subset of students that achieved the same result in all the

exams of the set A . 

We now provide an interpretation to γ ↓↑ . Let A = { A L , A N } . Since �↓ (A ) = { Bil l , Ev e } and �↑ ({ Bil l , Ev e } ) = { A L , G E , A N } ,
it follows immediately that γ ↓↑ (A ) = { A L , G E , A N } . In other terms, Bill and Eve achieved the same outcome in Algebra and

Analysis, but these are not the only exams in which it is true; in fact, neither of them have passed Geometry, hence we

must add Geometry to the list of exams in which they have the same result. Thus, we can see γ ↓↑ ( A ) as the full list of

exams whose outcome has been the same for both Bill and Eve. In general, whenever we fix a list of exams A , we found the

biggest set of students achieving the same result in each of them. Afterwards, we have found the set γ ↓↑ ( A ) of all exams in

which these students obtained the same outcome. 

4. Local indistinguishability posets as micro-granules of a macro-order structure 

In this section we formally introduce the notions of indiscernibility subtable lattice and of indistinguishability granular

lattice for an information table I, which we have already discussed informally in the introductory section. Our aim consists

in defining some lattice structures that at the macro-granular level provide the same information of the indiscernibility

partition lattice but, on the other hand, give more detailed information at a micro-granular level. As a matter of fact, let us

consider the maximum partitioner lattice provided in Fig. 7 . We observe that the attribute subset { R , M , C } gives rise to a

certain partition of the object set U but, a priori, it is impossible to argue if another attribute subset, with a smaller number

of elements, can yield the same partition. In other terms, maximum partitioner lattice takes into account the variations

of information but does not tell us if there are redundant elements whose deletion does not cause a loss of information.

Hence, an investigation at a micro-granular level is necessary . This leads us to introduce the family MINP (I) , defined in

Eq. (40) . In our context, the family MINP (I) assumes a primary role. In fact, it contains all the minimal elements of any

indistinguishability class or, in equivalent interpretative terms, it contains all the minimal attribute subsets providing any

determined degree of information. 
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Let therefore I be an information table. Let MAXP (I) = { C 1 , . . . , C k } and let B 1 j , . . . , B p j j be the distinct blocks of the

indiscernibility partition of π ( C j ) for 1 ≤ j ≤ k . Let C j = { c 1 j , . . . , c q j j } . Fix 1 ≤ j ≤ k . For any 1 ≤ i ≤ p j and 1 ≤ k ≤ q j we

define the following map 

φ j (B i j , c k j ) := F (u, c k j ) , (33) 

where u is any element of B ij . This map is well defined because, by definition of indiscernibility, the information map F is

constant on the elements belonging to the same indiscernibility block. 

Definition 4.1. We denote by S j (I) the information table having objects B 1 j , . . . , B p j j , attributes c 1 j , . . . , c q j j and information

map φj given in (33) . We call S j (I) the j th - indiscernibility sub-table of I . 

We set now 

ISUB (I) := { S 1 (I ) , . . . , S k (I ) } , (34)

and 

PART (I) := { [ C 1 ] ≈, . . . , [ C k ] ≈} . (35)

Since the elements of PART (I) are also a set partition of the power set P(At t ) , we also use the following set partition

notation: 


 := [ C 1 ] ≈| . . . | [ C k ] ≈. (36) 

At this point we introduce the following partial orders � and � 

′ , respectively on the sets ISUB (I) and PART (I) . 

If S j (I) , S l (I) ∈ ISUB (I) and [ C l ] ≈, [ C j ] ≈ ∈ PART (I) we set 

S l (I) � S j (I) : ⇐⇒ C l ⊆∗ C j ⇐⇒ : [ C l ] ≈ � 

′ [ C j ] ≈ (37)

and 

S (I) := (ISUB (I) , � ) , (38) 

I (I) := (PART (I) , � 

′ ) . (39) 

We have then the following immediate result: 

Theorem 4.2. S (I) and I (I) are two lattices that are both order isomorphic to the maximum partitioner lattice M (I) . 

Proof. The thesis follows immediately from the definition of the sets ISUB (I) , PART (I) and by (37) . �

By virtue of the previous result, we introduce the following terminology. 

Definition 4.3. We call S (I) the indiscernibility sub-table lattice of I and I (I) the indistinguishability lattice of I. 

Example 4.4. In reference to the example of car information table C discussed in the introductory section, we have that

MAXP (C) = { C 1 , C 2 , C 3 , C 4 } , where C 1 = ∅ , C 2 = { Speed} , C 3 = { Color, Road H} and C 4 = { Speed , Color, RoadH} . Moreover, S j (C) =
C j , for j = 1 , 2 , 3 , 4 , and ISUB (C) = {C 1 , C 2 , C 3 , C 4 } . The diagram of the indiscernibility sub-table lattice S (C) is represented

in Fig. 4 . We discuss now some potentialities concerning the interpretation of the lattice S (C) . Let us suppose that a user

is interested to the car color blue. In this case he takes a look only at the nodes C 3 and C 4 in the diagram of Fig. 4 , where

Color Blue only appears. On the other hand, since the node C 4 is smaller than C 3 with respect to the corresponding partial

order, the user can deduce that the examination of the node C 4 is more meaningful for him than the examination of the

node C 3 . In fact, in the sub-table C 3 the cars m 2 and m 4 are indiscernible between them with respect to the color value Blue

and the attribute RoadH , whereas this does not happen in C 4 , inasmuch as the presence of the new attribute Speed provides

a discernibility of m 2 and m 4 with respect to this property. Hence, for a practical use of the diagram of the indiscernibility

sub-table lattice, a user can first select a node N where an attribute value appears that is of interest for him. Next he finds

the other nodes that contain this value and that are located in the down-set of N . Obviously, in order to find a precise

algorithm that provides a uniquely determined node choice for the user, it is necessary to have other information. However,

in a first approximation, we can say that a simple heuristic technique is the following : find some nodes of your interest

and move down along the chains in the down sets of these nodes. In this region you have more probability to find cases more

meaningful for your requests . 

In some sense, we can “navigate” our data with the advantage, with respect to a simple graphical data representation,

to have a richer mathematical structure behind. In this way, we also have the possibility to use all the RST tools in order to

extract knowledge. 

For the indistinguishability granular lattice of C, we have that 

PART (C) = { [ C 1 ] ≈, [ C 2 ] ≈, [ C 3 ] ≈, [ C 4 ] ≈} , 
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where 

[ C 1 ] ≈ = {∅} , [ C 2 ] ≈ = {{ Speed}} , [ C 3 ] ≈ = {{ Color} , { RoadH} , { Color, RoadH}} , 

[ C 4 ] ≈ = {{ Speed, Color} , { Speed, Road H} , { Speed , Color, RoadH}} , 
and 


C = {∅}|{ Speed}|{ Color}{ RoadH}{ Color, RoadH}|{ Speed, Color}{ Speed, RoadH}{ Speed, Color, RoadH} 
The diagram of the indistinguishability lattice I (C) is given in Fig. 6 . When the user observes this diagram, he can see im-

mediately what is the inner inclusion relations in each granule [ C i ] ≈. In each one of such granules there are all the attribute

subsets that determine a same indiscernibility partition of the universe set. For example, if our user chooses to examine the

node C 4 , on the basis of the above discussion, it is possible that he is not interested to examine also the attribute values

concerning the attribute RoadH . Therefore he takes under consideration only the sub-tables having the attributes Speed and

Color . From an observation of the minimum node in the diagram of Fig. 6 , he sees that the attribute subset { Speed , Color } is

more down than { Speed , Color , RoadH } and that, however, it provides the same indiscernibility partition than the latter. In

other terms, a more detailed inner vision of the inclusion relation in each granule could provide interesting information for

a potential user. 

Hence, in general, S (I) is a lattice whose nodes are the sub-tables of I that are associated to all the distinct indiscerni-

bility partitions of I, whereas I (I) is a lattice whose nodes are the posets ([ C j ] ≈, ⊆ ), where C j is a maximum partitioner of

I . 

Definition 4.5. We call ([ C 1 ] ≈, ⊆) , . . . , ([ C k ] ≈, ⊆) the local indistinguishability posets of I . 

Let us note that, in general, a local indistinguishability poset of an information table I is not a lattice: although it

has a maximum element (that is the corresponding maximum partitioner), it has not a minimum element. However, by

Theorem 3.14 we know that the minimal elements of the local indistinguishability poset [ C i ] ≈ are exactly the relative reducts

of RED ( C i ). 

Example 4.6. In reference to the information table T given in Example 2.17 , in Fig. 8 we represent the diagram I (T ) . 
We observe that there are seven local indistinguishability posets: 

([ {∅} ] ≈, ⊆) = (∅ , ⊆) 

([ { MC} ] ≈, ⊆) = ({ M, C, MC} , ⊆) 

([ { R } ] ≈, ⊆) = (R ⊆) 

([ { B } ] ≈, ⊆) = (B ⊆) 

([ { RMC} ] ≈, ⊆) = ({ RM, RC, RMC} , ⊆) 

([ { RB } ] ≈, ⊆) = (RB, ⊆) 

([ { RMCB } ] ≈, ⊆) = ({ CB, MB, RMB, MCB, RCB, RMCB } ⊆) . 

By taking inspiration from the notion of indispensable attribute given by Pawlak (see [41] ), we now introduce a new class

of attributes preserving an indistinguishability granule. In other terms, we are formulating a concept similar to Pawlak’s

indispensability notion in the case of the indistinguishability relation. 

Definition 4.7. Let A ⊆ Att . We say that: 

• an attribute a ∈ A is A - indistinguishability indispensable if there exists B ∈ [ A ] ≈ such that B �{ a } �∈ [ A ] ≈. We denote by K ( A )

the set of all A -indistinguishability indispensable attributes and we call it the indistinguishability kernel of A . 

• an attribute a ∈ A is A - indistinguishability granular preserving if a �∈ K ( A ) and we denote by K 

c ( A ) := A �K ( A ) the set of all
A -indistinguishability granular preserving attributes. We call it the co-indistinguishability kernel of A . 
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Fig. 8. Diagram of I (T ) . 

Table 7 

Information table J . 

J 1 2 3 4 5 

u 1 1 0 0 1 0 

u 2 0 1 0 0 1 

u 3 0 0 0 0 1 

u 4 1 0 0 1 0 

u 5 1 0 0 0 1 

 

 

Example 4.8. Let us consider the information table J given in Table 7 : 

Let A = { 1 , 3 , 4 , 5 } . Then K(A ) = { 1 , 4 , 5 } and K 

c (A ) = { 3 } . 
We set now 

MINP (I) := 

⋃ { min ([ A ] ≈) : A ∈ MAX P (I) } . (40)

This attribute set family can be considered as a dual version of MAXP (I) . In the next section we study in details the family

MINP (I) and we will show that it plays a fundamental role in our investigations. 

In the next result we establish some basic properties concerning the notions introduced in Definition 4.7 . 

Theorem 4.9. The following conditions hold. 

(i) Let A ∈ MAXP (I) . Then a ∈ K ( A ) if and only if there exists C ∈ MAXP ( A ) such that a �∈ C and M(C ∪ { a } ) = A . 
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(ii) Let A ∈ MAXP (I) . Then K 

c (A ) = 

⋂ { B : B ∈ [ A | M (I) ↑ ] } . 
(iii) If A ⊆ Att , then CORE ( A ) ⊆ K ( A ) . 

(iv) If A ⊆ A 

′ and A ≈ A 

′ , then K ( A ) ⊆ K ( A 

′ ) . 
(v) If A ∈ MINP (I) , then K(A ) = A . 

(vi) If A ⊆ Att , then A ≈ K ( M ( A )) . 

(vii) If A ⊆ Att , then M(A ) = M(K(M(A ))) . 

Proof. 

(i): Let a ∈ K(A I ) . By definition of K ( A ) there exists B ∈ [ A ] ≈ such that 

B \ { a } �≈ A. (41)

Since B ≈ A , by (41) we have that a ∈ B . Let C := M ( B �{ a }). We first show that a �∈ C . In fact, let us assume by absurd

that a ∈ C . In this case B ⊆ C because B \ { a } ⊆ M(B \ { a } ) = C. Therefore A = M(B ) ⊆ M(C) = C because A, C ∈ MAXP (I)

and B ∈ [ A ] ≈, and this implies that 

π(C) � π(A ) . (42)

On the other hand, we also have 

π(A ) = π(B ) � π(B \ { a } ) = π(C) . (43)

Then, by (42) and (43) we deduce π(A ) = π(C) , that is A ≈ C , and this implies (by definition of C ) A ≈ B �{ a }, that is

in contrast with (41) . Hence a �∈ C . Let us observe now that 

C = M(B \ { a } ) ⊆ M (B ) = M (A ) = A, (44)

because A ∈ MAXP (I) . By (44) we have then C ∈ MAXP ( A ). Finally, since B �{ a } ⊆ C , we have B ⊆ C ∪ { a } ⊆ A , so that 

π(A ) � π(C ∪ { a } ) � π(B ) , 

and this implies π(C ∪ { a } ) = π(A ) because π(A ) = π(B ) . Hence M(C ∪ { a } ) = M(A ) = A because A ∈ MAXP (I) . This

proves the first implication. 

For the other implication, we assume that there exists C ∈ MAXP ( A ) such that a �∈ C and M(C ∪ { a } ) = A . Then a ∈ A

and we set B := C ∪ { a }. Therefore B ∈ [ A ] ≈ and B \ { a } = C. Let us note that C �∈ [ A ] ≈. In fact, if C ≈ A then C = A

because C ∈ MAXP ( A ) and A ∈ MAXP (I) , that is in contrast with the conditions a ∈ A and a �∈ C . Hence we obtain an

attribute subset B ∈ [ A ] ≈ such that B �{ a } �∈ [ A ] ≈ and a ∈ A , that is a ∈ K ( A ). 

(ii): Let a ∈ 

⋂ { B : B ∈ [ A | M (I) ↑ ] } and suppose by contradiction that a ∈ K ( A ). By ( i ), there exists B ∈ MAXP ( A ) such that

a �∈ B and M(B ∪ { a } ) = A . We clearly have that B / ∈ [ A | M (I) ↑ ] . Therefore, there exists C ∈ MAXP ( A ) such that B � C � A .

Hence 

π(A ) � π(C) . (45)

We claim that a �∈ C . In fact, if a ∈ C , we would have B ∪ { a } ⊆ C , hence 

π(C) � π(B ∪ { a } ) = π(A ) . (46)

Thus, by (45) and (46) , π(A ) = π(C) and, so, C = A, contradicting our assumption on C . Proceeding in this way, we

will find an attribute subset D ∈ [ A | M (I) ↑ ] not containing a , absurd. Thus a ∈ K 

c ( A ). 

Conversely, let a ∈ K 

c ( A ). Suppose by contradiction that there exists B ∈ [ A | M (I) ↑ ] such that a �∈ B . Hence C := B ∪ { a }

≈ A , so we have found an element C ∈ [ A ] ≈ such that C \ { a } �≈ A, i.e. a ∈ K ( A ), absurd. 

(iii): Let a ∈ CORE ( A ). Hence π ( A ) � = π ( A �{ a }), i.e. a ∈ K ( A ). 

(iv): Let a ∈ K ( A ). Hence, for any B ≈ A , it results that B �{ a } ≈ A . Therefore, a ∈ K ( A 

′ ). 
(v): Since A ∈ MINP (I) , we have that π ( A ) � = π ( A �{ a }) for any a ∈ A , hence K(A ) = A . 

(vi): Set A 

′ = K(M(A ))) . We have that A 

′ ⊆ M ( A ). Let B ∈ min ([ A ] ≈), then B ⊆ M ( A ), hence, by part (i v ) , we have that

K ( B ) ⊆ A 

′ . Since B ∈ MINP (I) , by part (v ) K(B ) = B, so B ⊆ A 

′ . We conclude that 

B ⊆ A 

′ ⊆ M(A ) . 

Therefore, we have 

π(M(A )) = π(A ) � π(A 

′ ) � π(B ) = π(A ) , 

so π(A ) = π(A 

′ ) and A ≈ A 

′ = K(M(A )) . 

(vii): It follows directly by part (v i ) . �

Example 4.10. Again with reference to the information table T given in Example 2.17 , let A = Att = { R, M, C, B } . We have

that: 

K(A ) = { M, C, B } . 
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Let us note that CORE(A ) = { B } � K(A ) . Furthermore 

K 

c (A ) = { R } = { R, M, C} ∩ { R, B } . 
In other terms, the deletion of R preserves the information provided by any attribute subset in the indistinguishability class

[ A ] ≈. On the other hand, since M , C and B are attributes belonging to the minimal subsets of [ A ] ≈, their deletion involves a

loss of information. 

5. New indiscernibility hypergraphic structures of I

In the previous two sections we provided the two possible standpoints (micro and macro) to interpret the information

given by any table. In this section, we focus our attention to the interrelation between these two perspectives. To be more

specific, as we said in the introductory section, we will prove the property of global-local regularity thanks to which we

can transfer the partial order from the macro-granular structure to the micro-granular one. Furthermore, we show that the

hypergraph MINP (I) is an abstract simplicial complex (see Theorem 5.6 ). Finally, we characterize MINP (I) by means of the

relative reducts (see Theorem 5.9 ) and this will be the starting point for the investigation of some matroidal properties

through a max-min function. 

5.1. The minimal partitioners of an information table 

In Definition 2.16 we called the hypergraphs D (I) , R (I) and E (I) indiscernibility hypergraphic structures of I because

their construction depends on the indiscernibility relation. Since indistinguishability relation ≈ on the power set P(At t )

allows us to define the maximum partitioner hypergraph M (I) , we now use M (I) as a basic structure to build several other

induced indiscernibility hypergraphs. The introduction of these new structures and the investigation of the interrelations

between them is the basic topic of the remaining part of this paper. 

In what follows, let MAXP (I) = { C i : i ∈ I} . 
By (40) we have 

MINP (I) := 

⋃ 

i ∈ I 
min ([ C i ] ≈) = 

⋃ 

i ∈ I 
RED (C i ) . (47) 

Moreover we also set 

MINP c (I) := P(At t ) \ MINP (I) , (48) 

M X M N(I) := max (MINP (I)) (49) 

and 

M NM N 

c (I) := min (MINP c (I)) . (50) 

Definition 5.1. We call: 

• the hypergraph M (I) := (At t , MAXP (I)) maximum partitioner hypergraph of I
• the map M : A ∈ P(At t ) �→ M(A ) ∈ P(At t ) maximum partitioner operator of I
• any member of MINP (I) minimal partitioner of I; 

• the hypergraph m (I) := (At t , MINP (I)) minimal partitioner hypergraph of I; 

• any member of MINP c (I) co-minimal partitioner of I; 

• the hypergraph m 

c (I) := (At t , MINP c (I)) co-minimal partitioner hypergraph of I; 

• any member of M XM N(I) max-minimal partitioner of I; 

• the hypergraph max (m (I)) := (At t , M XM N(I)) max-minimal hypergraph of I; 

• any member of M NM N 

c (I) min-co-minimal partitioner of I; 

• the hypergraph min (m 

c (I)) := (At t , M NM N 

c (I)) min-co-minimal hypergraph of I . 

Hence a minimal partitioner of I is the relative reduct of some maximum partitioner of I . 

Example 5.2. Again in reference to the information table J introduced in Example 4.8 , it results that (we write the members

of MINP (J ) and MINP c (J ) as strings): 

MINP (J ) = {∅ , 1 , 2 , 4 , 5 , 12 , 14 , 15 , 24 , 25 , 124 , 125 } , (51)

MINP c (J ) = { 3 , 13 , 23 , 34 , 35 , 45 , 123 , 134 , 135 , 234 , 245 , 345 , 1234 , 1235 , 1245 , 2345 , 12345 } , (52)

so that 

M X M N(J ) = { 124 , 125 } (53) 
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and 

M NM N 

c (J ) = { 3 } . (54)

Let us note that for the information table J we also have that 

RED (J ) = { 124 , 125 } . 
In the next result, we prove the property of global-local regularity discussed in the introductory section. 

Proposition 5.3. Let C i � C j . Then, if X ∈ [ C i ] ≈ and Y ∈ [ C j ] ≈ we have Y �X. 

Proof. Since C i and C j are two distinct maximum partitioners such that C i � C j , we have π ( C j ) ≺π ( C i ). Now, by absurd, let X

∈ [ C i ] ≈ and Y ∈ [ C j ] ≈ such that Y ⊆ X . Then π(C i ) = π(X ) � π(Y ) = π(C j ) , that is a contradiction. �

In the following result we establish a more deep link between minimal partitioners and reducts. 

Theorem 5.4. The following conditions hold: 

(i) Let A ⊆ Att and B ∈ RED ( A ) and C ⊆ B. Then π ( C �{ x }) � = π ( C ) for any x ∈ C. 

(ii) We have that 

MINP (I) ⊇
⋃ 

B ∈ RED (A ) 

P(B ) , ∀ A ⊆ At t . (55)

Proof. 

(i): Let us suppose by absurd that there exists an element x ∈ C such that π(C \ { x } ) = π(C) . Then, since C �{ x } ⊆ B �{ x },

we have 

π(B \ { x } ) � π(C \ { x } ) = π(C) . (56)

Therefore, if u , u ′ ∈ U by (56) it follows that 

u ≡B \{ x } u 

′ ⇒ u ≡C u 

′ ⇒ F (u, x ) = F (u 

′ , x ) ⇒ u ≡B u 

′ , 

therefore 

π(B \ { x } ) � π(B ) . (57)

On the other hand, since we also have π ( B ) �π ( B �{ x }), by (57) we deduce that π(B \ { x } ) = π(B ) , that is in contrast

with the hypothesis that B ∈ RED ( A ). This concludes the proof of part ( i ). 

(ii): Let C ∈ 

⋃ 

B ∈ RED (A ) P(B ) . Then there is some reduct B ∈ RED ( A ) such that C ⊆ B . Let j ∈ I such that C ∈ [ C j ] ≈. Let us

assume, by absurd, that C �∈ min ([ C j ] ≈). Then there exists some C ′ ∈ [ C j ] ≈ such that C ′ � C . Let x ∈ C �C ′ . Then 

C ′ ⊆ C \ { x } ⊆ C, 

and therefore 

π(C) � π(C \ { x } ) � π(C ′ ) . (58)

Since C , C ′ ∈ [ C j ] ≈, we have π(C) = π(C ′ ) , therefore, by (58) we deduce that 

π(C) = π(C \ { x } ) . (59)

But the identity in (59) is in contrast with part ( i ), because C ⊆ B and B ∈ RED ( A ). Hence C ∈ min ([ C j ] ≈) ⊆ MINP (I) .

This concludes the proof of part ( ii ) �. 

Corollary 5.5. We have that 

MINP (I) ⊇
⋃ 

A ∈ RED (I) 

P(A ) = { X ∈ P(�) : X ⊆ A, A ∈ RED (I) } . (60)

Proof. The right member of (60) is a particular case of the right member of (55) when A = At t . �

In next fundamental result, we will show that MINP (I) is an abstract simplicial complex. 

Theorem 5.6. If C ∈ MINP (I) and K ⊆ C , then K ∈ MINP (I) . 

Proof. Let C ∈ MINP (I) . Then there exists B ∈ MAXP (I) such that C ∈ min ([ B ] ≈). Let K � C , then there exists B ′ ∈ MAXP (I)

such that K ∈ [ B ′ ] ≈. Suppose by contradiction that K �∈ min ([ B ′ ] ≈), then there exists K 

′ � K such that K 

′ ∈ min ([ B ′ ] ≈). Hence,

there is x ∈ K �K 

′ . We deduce that 

K 

′ ⊆ K \ { x } ⊆ K 
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i.e. 

π(K) � π(K \ { x } ) � π(K 

′ ) . 

But since π(K) = π(K 

′ ) = π(B ) , we conclude that π(K) = π(K \ { x } ) , contradicting Theorem 5.4 . Hence K ∈ MINP (I) . �

Clearly, the notion of minimal partitioner can be relativized to any A ⊆ Att . As a matter of fact, we set 

MINP (A ) := { X : X ⊆ A, X ∈ MINP (I) } . (61)

and 

M X M N(A ) := max (MINP (A )) . (62) 

In particular we have MINP (At t ) = MINP (I) and MXMN(At t ) = MXMN(I) . 

In the next proposition we establish the basic links between the reducts of A and its minimal partitioners. 

Proposition 5.7. Let A ⊆ Att. Then: 

RED (A ) ⊆ M X M N(A ) . (63) 

Proof. Let X ∈ RED ( A ), then X ⊆ A and X ∈ min ([ A ] ≈) ⊆ MINP (I) by Proposition 3.13 . This proves that X ∈ MINP ( A ). Suppose

by contradiction that there exists Y ∈ MINP ( A ) such that X � Y . Then π(Y ) � π(X ) = π(A ) . Furthermore, we have that Y ∈
MINP (I) , hence there exists B ∈ MAXP (I) such that Y ∈ min ([ B ] ≈). Thus π(Y ) = π(B ) and, since Y ⊆ A , it results that π(A ) �
π(Y ) = π(B ) . Hence π(A ) = π(B ) , i.e. A = B . Therefore, Y ∈ min ([ A ] ≈) and, by (25) , we conclude that Y ∈ RED ( A ), absurd

since it contains X . So X ∈ MXMN ( A ). �

Eq. (63) cannot be reversed, as we see in next example. 

Example 5.8. In reference to Example 2.17 , let A = { R, C, B } . By Fig. 8 , we observe that RED (A ) = {{ C, B }} , while M XM N(A ) =
{{ C, B } , { R, C} , { R, B }} . Let us observe that if we consider { C , B } and exchange C with R , we lose some information. By classical

results of matroid theory (see Lemma 3.1 of [47] ), it is easy to verify that MINP ( A ) is a matroid. Nevertheless, the exchange

property does not ensure that we swap reducts each other. Thus, we conclude that the exchange property preserves maxi-

mality for the minimal partitioner of A , but not necessarily the condition of being a reduct. 

By means of Proposition 5.7 , we obtain the following characterization of MINP (I) . 

Theorem 5.9. We have that 

MINP (I) = { A ⊆ Att : RED (A ) = { A }} . (64)

Proof. Let A ∈ MINP (I) , then A ∈ min ([ A ] ≈). Moreover, the unique subset satisfying both conditions of Definition 2.9 is

exactly A , that is RED (A ) = { A } . 
Vice versa, suppose that RED (A ) = { A } . Then, by (63) we have that A ∈ MXMN ( A ), so by (61) we have that A ∈

MINP (I) . �

5.2. The max-min function for information tables 

We introduce now a non-negative integer value function on P(At t ) , which is useful in order to provide new results

concerning the indiscernibility hypergraphic structures. 

For any attribute subset A ⊆ Att we set 

ψ(A ) := max {| X | : X ∈ MINP (A ) } . (65)

So that we obtain the function 

ψ : A ∈ P(At t ) �→ ψ(A ) ∈ N ∪ { 0 } . 
Definition 5.10. We call ψ the max-min function of I . 

We now provide an example of max-min function. 

Example 5.11. In reference to the information table J of the Example 4.8 , we have that (we write the attribute subsets as

strings): ψ(3) = ψ(∅ ) = 0 , ψ(13) = ψ(1) = 1 , ψ(23) = ψ(2) = 1 , ψ(345) = ψ(34) = ψ(35) = ψ(45) = ψ(4) = ψ(5) = 1 ,

ψ(345) = ψ(34) = ψ(35) = ψ(45) = ψ(4) = ψ(5) = 1 , ψ(123) = ψ(12) = 2 , ψ(1345) = ψ(134) = ψ(135) = ψ(145) =
ψ(14) = ψ(15) = 2 , ψ(2345) = ψ(234) = ψ(235) = ψ(245) = ψ(24) = ψ(25) = 2 , ψ(12345) = ψ(1234) = ψ(1235) =
ψ(1245) = ψ(124) = ψ(125) = 3 . 

Proposition 5.12. The function ψ satisfies the following properties: 

(i) ψ(∅ ) = 0 ; 

(ii) If A ⊆ B , then ψ ( A ) ≤ ψ ( B ) ; 
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(iii) 0 ≤ ψ( A ) ≤ | A | for any A ⊆ Att; 

(iv) ψ(A ) ≤ ψ(A ∪ { x } ) ≤ ψ(A ) + 1 . 

Proof. All these properties are direct consequences of (65) . �

Definition 5.13. Let C ⊆ Att . We say that C is a ψ- incremental subset if 

ψ(C ∪ { x } ) := ψ(C) + 1 , 

for all x ∈ Att �C . 

We denote by INCR ( ψ) the family of all ψ-incremental subsets. Moreover, if A ⊆ Att , we denote by INCR ( A | ψ) the family

of all ψ-incremental subsets that contain the attribute subset A . 

Example 5.14. In reference to the information table T of the Example 2.17 , we have that: ψ(∅ ) = 0 , ψ(R ) = 1 , ψ(B ) =
1 , ψ(MC) = ψ(M) = ψ(C) = 1 , ψ(RB ) = 2 , ψ(RMC) = ψ(RM) = ψ(RC) = 2 , ψ(RMCB ) = ψ(RCB ) = ψ(MCB ) = ψ(RMB ) =
ψ(CB ) = ψ(MB ) = 2 . Moreover, it is easy to see that 

INCR (ψ) = {∅ , { R } , { B }} . 
Let us consider { R }. To say that { R } ∈ INCR ( ψ) means that, whenever we add some other attribute to { R }, we improve the

distinction between the various models of mobile. 

In the next result we give three new different characterizations for the minimum partitioner family of I . 

Theorem 5.15. The following conditions hold: 

(i) MINP (I) = { A ⊆ Att : C �⊆ A ∀ C ∈ M NM N 

c (I) } ; 
(ii) MINP (I) = { A ⊆ Att : ψ(A ) = | A |} ; 

(iii) MINP (I) = { A ⊆ Att : a / ∈ M(A \ { a } ) ∀ a ∈ A } . 
Proof. ( i ): Let A ∈ MINP (I) . Then, by Theorem 5.6 any subset of A belongs to MINP (I) hence A cannot contain any element

of M NM N 

c (I) . So M INP (I) ⊆ { A ⊆ Att : C �⊆ A ∀ C ∈ M NM N 

c (I) } . On the other hand let A ⊆ Att such that C �⊆ A for any C ∈
M NM N 

c (I) . Suppose by contradiction that A ∈ MINP c (I) . Then we have that A ∈ min (MINP c (I)) or it contains an attribute

subset C ∈ min (MINP c (I)) . In both cases, we are contradicting our assumption on A , hence A ∈ MINP (I) and ( i ) has been

shown. 

( ii ): Let A ∈ MINP (I) . Since ψ(A ) = {| X| : X ⊆ A, X ∈ MINP (I) } , it’s clear that ψ(A ) = | A | , thus MINP (I) ⊆ { A ⊆ Att :

ψ(A ) = | A |} . Conversely, let A ⊆ Att such that ψ(A ) = | A | and suppose by contradiction that there exists B � A such that

π(B ) = π(A ) and B ∈ MINP (I) . Hence, we should have | B | ≤ ψ( A ) < | A |, contradicting our assumption. So ( ii ) has been

shown. 

( iii ): Let A ∈ MINP (I) and a ∈ A . Then A �{ a } �∈ [ A ] ≈, so M ( A �{ a }) �∈ [ A ] ≈. Since A �{ a } � A , we have π ( A ) �π ( A �{ a }). Moreover,

suppose by contradiction that a ∈ M ( A �{ a }). Then A ⊆ M ( A �{ a }) and, by (22) , M ( A ) ⊆ M ( A �{ a }). By ( ii ) of Proposition 3.5 , we

have π ( A �{ a }) �π ( A ), so π(A \ { a } ) = π(A ) and A �{ a } ∈ [ A ] ≈, absurd. So a �∈ M ( A �{ a }) and MINP (I) ⊆ { A ⊆ Att : a / ∈ M(A \
{ a } ) ∀ a ∈ A } . On the other hand, let A ⊆ Att such that a �∈ M ( A �{ a }) for any a ∈ A . Suppose by contradiction that there exists

B � A such that π(A ) = π(B ) . Then there exists a ∈ A such that B ⊆ A �{ a } ⊆ A . This implies that π ( A ) �π ( A �{ a }) �π ( B ), i.e.

π(A \ { a } ) = π(A ) . In other terms, we have M(A \ { a } ) = M(A ) ⊇ A, contradiction. So ( iii ) follows. �

We introduce now an operator ˆ ψ : P(At t ) → P(At t ) as follows. 

If A ⊆ Att and c ∈ Att we set 

c � ψ 

A : ⇐⇒ ψ(A ∪ { c} ) = ψ(A ) , (66)

and 

ˆ ψ (A ) := { x ∈ Att : x � ψ 

A } . (67)

Example 5.16. In reference to the information table J of the Example 4.8 , it is easy to verify that we have ˆ ψ (A ) = M(A ) for

any attribute subset A . 

However the identity ˆ ψ (A ) = M(A ) does not hold in general, as we can see in the next example. 

Example 5.17. Let I be the following information table: 

1 2 3 4 5 

u 1 0 0 1 2 1 

u 2 1 0 2 2 0 

u 3 2 1 0 1 1 

u 4 1 1 2 0 2 

u 5 1 0 0 0 2 

u 6 0 1 2 2 0 
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Fig. 9. Diagram of I (I) . 

 
Let A = { 1 , 2 } . It is immediate to see that ψ({ 1 , 2 } ) = ψ({ 1 , 2 , 5 } ) = 2 and that 5 / ∈ M({ 1 , 2 } ) = { 1 , 2 } . Hence M(A ) � =
ˆ ψ (A ) . 

The previous example enables us to introduce a new class of attribute subsets. 

Definition 5.18. Let A ∈ P(At t ) . We say that 

• A is reduct uniform if RED ( A ) has uniform cardinality. 
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• A is maxp-reduct uniform if RED ( M ( A )) has uniform cardinality. 

Example 5.19. Let A = { 1 , 2 , 3 , 4 } . We observe that RED (A ) = {{ 1 , 2 , 3 } , { 1 , 2 , 4 } , { 1 , 3 , 4 }} , hence A is reduct uniform. Never-

theless, as we can observe in Fig. 9 , M(A ) = At t but RED (I) = RED (At t ) has not uniform cardinality, hence A is not maxp-

reduct uniform. 

However the particular cases described in Example 5.16 and in Example 5.19 induce us to investigate in more detail the

link between the dependency operator and the maximum partitioner operator. In the next definition we introduce a first

class of information tables for which the identity ˆ ψ (A ) = M(A ) holds for any A ⊆ Att . 

Definition 5.20. We say that an information table I is maxp-reduct uniform if the following two conditions are satisfied: 

(i) any A ∈ P(At t ) is maxp-reduct uniform; 

ii) if A, B ∈ P(At t ) , A � B and A �≈ B, then || RED ( M ( A ))|| < || RED ( M ( B ))||. 

Example 5.21. It is easy to verify that the information table J of the Example 4.8 is maxp-reduct uniform. 

In the next result we will show that for any maxp-reduct uniform information table the operators M and 

ˆ ψ coincide. 

Theorem 5.22. Let I be a maxp-reduct uniform information table. Then: 

(i) ˆ ψ (A ) = M(A ) for any A ∈ P(At t ) ; 

ii) MAXP (I) = INCR (ψ) . 

Proof. 

i): Let A ⊆ Att and a ∈ 

ˆ ψ (A ) . Then ψ(A ) = ψ(A ∪ { a } ) . Suppose by contradiction that a �∈ M ( A ), then A ∪ { a } �∈ [ A ] ≈. By ( ii ) of

Definition 5.20 , we have that || RED ( A )|| < || RED ( A ∪ { a })||, so ψ( A ∪ { a }) > ψ( A ), absurd. On the other hand, let a ∈ M ( A ).

Then, by ( ii ) of Proposition 5.12 , we have that 

ψ(A ) ≤ ψ(A ∪ { a } ) ≤ ψ(M(A )) . 

But since || RED (A ) || = || RED (M(A )) || and A ∪ { a } ∈ [ A ] ≈, we have that ψ(A ) = ψ(A ∪ { a } ) , so a ∈ 

ˆ ψ (A ) . 

i): Let A ∈ MAXP (I) , hence by ( ii ) of Definition 5.20 , for any a ∈ Att �A , we have that ψ(A ∪ { a } ) = ψ(A ) + 1 , so A ∈ INCR ( ψ).

Conversely, let A ∈ INCR ( ψ ). Then ψ (A ∪ { a } = ψ(A ) + 1 for any a ∈ Att �A , hence a / ∈ 

ˆ ψ (A ) = M(A ) . Thus A ∈ MAXP (I)

and the thesis follows. �

6. Conclusions 

In this paper we have continued the study started in [16] , where the maximum partitioner family MAXP (I) of any knowl-

edge representation system I has been introduced. To be more precise, in this work we established new formal properties

of the hypergraph (At t , MAXP (I)) . Furthermore, the family MAXP (I) enables us to define several new attribute subset fam-

ilies, that we called indiscernibility hypergraphic structures of I . Our basic aim was to strengthen a granular interpretation in

the investigation of any knowledge representation system. In fact, we showed as the indiscernibility hypergraphs of I lead

towards the construction and the interaction of macro-granular and micro-granular structures, that are both strongly related

to many classical notions of GrC-IT. We also discussed the basic properties of the above structures on two concrete cases, in

order to provide a basis for better interpreting the role of these hypergraphs. We close this concluding section noticing that

a knowledge representation system I is an ubiquitous structure, both in information science and mathematics. Surprisingly,

the original Pawlak practical necessity have helped us to develop interesting and complex micro-macro granular structures

whose mathematical richness and interpretative potentiality arise from the absolute simplicity of a data table. Thus, GrC-IT

could play a major role both in all applications based on data and in the development of new mathematical theories. 
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