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Abstract We characterize the polynomial automorphisms of C
3, which commute with a

regular automorphism. We use their meromorphic extension to P
3 and consider their dyna-

mics on the hyperplane at infinity. We conjecture the additional hypothesis under which the
same characterization is true in all dimensions. We give a partial answer to a question of S.
Smale that in our context can be formulated as follows: can any polynomial automorphism of
C

k be the uniform limit on compact sets of polynomial automorphisms with trivial centralizer
(i.e. C( f ) � Z)?
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1 Introduction

Complex affine k-space, C
k, is one of the basic objects in complex analysis and geometry. It

seems quite hard to give an algebraic description of the group of (polynomial) automorphisms
of C

k, when k ≥ 3. The group of polynomial automorphisms of C
k, Aut (Ck), consists of

bijective maps:

f : (z1, · · · , zk) ∈ C
k → ( f1(z1, · · · , zk), · · · , fk(z1, · · · , zk)) ∈ C

k
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876 C. Bisi

where f1, · · · , fk ∈ C[z1, · · · , zk]. When f is polynomial and bijective, then the inverse
f −1 is a polynomial mapping.

In dimension 2, the algebraic structure of the group of polynomial automorphisms is well
known. The result is due to Jung [10]; it was reproved in several different ways [17] and
recently also in [14]. Jung’s theorem asserts that the group Aut (C2) is the amalgamated
product of its subgroups E and A with respect to their intersection AT , where the group E
of elementary maps is:

E = {(z, w) → (αz + p(w), βw + γ ) : α, β, γ ∈ C, αβ �= 0, p ∈ C[w]}
the group A of affine maps is:

A = {(z, w) → (a1z + b1w + c1, a2z + b2w + c2) : ai , bi , ci ∈ C, a1b2 − a2b1 �= 0}
and where AT denote the intersection A ∩ E, i.e. the group of the automorphisms affine and
triangular:

AT = {(z, w) → (a1z + b1w + c1, b2w + c2) : a1, bi , ci ∈ C, a1b2 �= 0}.
By this structure theorem, each automorphism ϕ ∈ (

Aut (C2) \ AT
)

can be written as a
composition of elementary and affine automorphisms. In 1989 Friedland and Milnor [8]
proved that any polynomial automorphism of C

2 is conjugated either to an elementary map
or to a finite composition of Hénon maps h j defined as follows

h j (z, w) = (p j (z) − a jw, z), a j ∈ C,

where deg(p j ) ≥ 2. We denote by H the semigroup generated by Hénon maps.
On the other hand, the algebraic structure of Aut (Ck), k ≥ 3, is poorly understood even if

the Nagata Conjecture has been recently proved [22,23]. Recently Shestakov and Umirbaev
[22,23] have proved that tame and wild polynomial automorphisms of C

3 are algorithmically
recognizable. The following Nagata automorphism in Aut (C[x, y, z]),

σ (x) = x + (x2 − yz)z,

σ (y) = y + 2(x2 − yz)x + (x2 − yz)2z,

σ (z) = z

provides a candidate of such wild automorphisms.
We recall now some general facts. Let z = (z1, · · · , zk) be affine coordinates in C

k and
let [z : t] = [z1 : · · · : zk : t] be corresponding homogeneous coordinates in P

k, then the
hyperplane at infinity �∞ has equation {t = 0}.

Each polynomial automorphism f of C
k can be considered as a birational map f of P

k .

We will denote, respectively, I +
f and I −

f the indeterminacy subsets of f and of f −1. These

are two analytic and algebraic subsets of complex codimension at least 2 in P
k, contained in

�∞. In the sequel we are going to write f instead of f . In a point p ∈ I +
f it is possible to

define the blow-up of f in p which is the set

B f
p =

⋂

ε>0

f (B(p, ε) \ I +
f )

In other words it is the fiber over p in the closure of the graph of f and it is an analy-
tic subset of �∞ of dimension h with 1 ≤ h ≤ (k − 1). We will say, [20], that f is
an algebraically stable polynomial automorphism if and only if f n({[z : 0]} \ I +

f n ) is not

123



On commuting polynomial automorphisms of C
k , k ≥ 3 877

contained in I +
f for any n > 0; it follows deg( f n) = (deg f )n . Elements in H are alge-

braically stable. When f is algebraically stable, one can associate to f a Green function

G+
f (z) = lim

n→+∞
1

dn
log+ | f n(z)|. If we define T +

f = ddcG+
f , one can show that T +

f is a

non-zero, positive, closed, (1,1)-current, the so called Green current, [20].

Definition 1.1 [20] A polynomial automorphism is regular if I +
f ∩ I −

f = ∅.

Elements in H are regular. Observe that the notion of regular automorphism depends on the
choice of coordinates because the coordinate changes allowed are all polynomial automor-
phisms of C

k and if we conjugate a regular automorphism by a polynomial automorphism,
the action on the hyperplane at infinity is not under control, so the new automorphism is not
necessarily regular.

A regular automorphism is in particular algebraically stable. When f is an algebraically
stable polynomial automorphism of C

k we define inductively the following analytic sets X j
f :

X1
f = f ({[z : 0]} \ I +

f ), . . . , X j+1
f = f (X j

f \ I +
f ) . . .

This sequence is decreasing and X j
f is non-empty because f is algebraically stable. Hence

it is stationary. Let X+
f be the corresponding limit set. Replacing f by an appropriate iterate,

we can always assume that X+
f = f ({[z : 0]} \ I +

f ). Analogously we construct X−
f when

f −1 is algebraically stable. Observe that X+
f and X−

f are always contained in the hyperplane
at infinity, �∞. We recall also another weaker notion of regularity, [9], that will be useful in
the sequel.

Definition 1.2 A polynomial automorphism f of C
k is called weakly regular when X+

f ∩
I +

f = ∅.

It follows from the definition, that a weakly regular automorphism is algebraically stable.
Moreover X+

f is an attracting set for f , i.e. there exists an open neighborhood V of X+
f in

P
k, such that f (V ) ⊂⊂ V and ∩+∞

j=1 f j (V ) = X+
f .

We study, in this paper, the equation f ◦ g = g ◦ f for polynomial automorphisms of
C

k, k ≥ 3, when f is regular. We have studied the case k = 2 in [1]. The previous paper [1]
and the present one discuss in particular a question of Smale (see [21]). More precisely we
will prove that each automorphism of C

2 and C
3 in an appropriate irreducible component of

the space of polynomial automorphisms of degree d, is the limit with respect to the uniform
convergence on compact sets, of a sequence of regular automorphisms with trivial centralizer.

In our setting f is a regular polynomial automorphism of C
3 and we can always suppose

that dim I +
f = 1 and dim I −

f = 0, which implies that I +
f = X−

f is an irreducible curve and

I −
f = X+

f is one point, [20].
The Main Lemma that we are going to prove is the following:

Main Lemma 1.3 Let f be a regular polynomial automorphism of C
3. Let g be a polynomial

automorphism of C
3, not affine and let g be commuting with f, then, up to changing g with

g−1 or with ( f ◦ g−1) or with ( f ◦ g), g is weakly regular with I +
g = I +

f .

Following [9], we recall that all the positive iterates of a weakly regular automorphism are
still weakly regular automorphisms.

The main result of the paper is:
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Theorem 1.4 Let f, g be two polynomial automorphisms of C
3, respectively of degree d1

and d2. Suppose that f is regular, that g is weakly regular with I +
f = I +

g , X+
g = I −

f and
that f ◦ g = g ◦ f. Then

there exist m0, n0 ∈ N s.t. dm0
1 = dn0

2 (1.1)

and there exists an affine automorphism h s.t. f m0 = gn0 ◦ h with hq = I d, for a certain
q ∈ N.

Corollary 1.5 In the hypothesis of the Theorem 1.4, there exist n, m ∈ N s.t. f n = gm .

We want to point out that if, in Main Lemma 1.3 we have substitute g with g−1, or ( f ◦ g−1)

or ( f ◦g), we still have this final Corollary 1.5, even if with different exponents; in any of the
three substitutions of g suggested by the Main Lemma 1.3, we arrive to the same conclusion
of Corollary 1.5, with g the starting one.

Main Theorem 1.1 Let f be a regular polynomial automorphism of C
3 and let g be com-

muting with f. Then there exist n, m ∈ Z s.t. f n = gm .

This means that C( f ) � Z� Zq , for a certain q ∈ N; more specifically, the affine centralizer
of f, CA( f ), is identified with Zq and f n with Z, via f n → n ∈ Z.

2 Study of the blow-up of f

In this preliminary paragraph we are going to list some properties of the blow-up of a regular
polynomial automorphism f and to show how the blows-up of f change under g, assuming
f ◦ g = g ◦ f. We have seen that if f is a regular polynomial automorphism of C

3, we can
assume that I −

f is a point and I +
f is a curve. We then have:

Proposition 2.1 1. B f −1

I −
f

= �∞;

2. for each α ∈ I +
f , B f

α = {q �= I −
f | f −1(q) = α} � I −

f ;
3.

⋃

α∈I +
f

B f
α = �∞. (2.1)

Proof 1. Let {qn}n∈N be an arbitrary sequence of points in C
3 s.t. qn → q∞ ∈ (�∞ \ I +

f )

where q∞ is an arbitrary point in (�∞ \ I +
f ). Then { f (qn)}n∈N is a well defined sequence

of points pn s.t. pn → I −
f , because f (q∞) = I −

f . Moreover

f −1(pn) = qn → q∞
pn → I −

f
(2.2)

hence q∞ ∈ f −1(I −
f ) in the sense of blow-up.

These two facts imply that ∀q∞ ∈ (�∞ \ I +
f ), q∞ ∈ B f −1

I −
f

= ⋂
ε>0 f −1(B(I −

f , ε) \ I −
f ).

2. We start proving that the inverse image under f −1 of α is contained in B f
α . Let q be s.t.

f −1(q) = α. Let ζn ∈ C
3 s.t. ζn → q, then ζn = f ( f −1(ζn)) hence there exists a sequence

εn = f −1(ζn) → α s.t. f (εn) → q hence q ∈ B f
α .
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Conversely if q ∈ B f
α \ I −

f , there exists a sequence ζn → α s.t. f (ζn) → q. Hence

f −1( f (ζn)) = ζn → f −1(q) and therefore f −1(q) = α.

3. Let ζn → q �= I −
f and s.t. f −1(ζn) → α ∈ I +

f . Hence ζn = f ( f −1(ζn)) → q. Therefore

there exists a sequence ξn → α s.t. f (ξn) → q and so q ∈ B f
α . Hence

⋃
α∈I +

f
B f

α ⊃
(�∞ \ I −

f ) and taking the closure we have that
⋃

α∈I +
f

B f
α = �∞. ��

An example of how a map g, which commutes with f regular, acts on the blows-up of f,
is the following proposition:

Proposition 2.2 Suppose that f, g are two commuting polynomial automorphisms of C
3.

Let f be a regular automorphism and suppose g not affine. Then for each α ∈ I +
f \ I +

g we

have that g(B f
α \ I +

g ) ⊆ B f
g(α).

Proof We start recalling that g(I +
f \ I +

g ) ⊂ I +
f because I +

f is a f −1−invariant set and g

commutes with f −1. For each q ∈ B f
α there exists a sequence ξn → α s.t. f (ξn) → q

and g( f (ξn)) = f ◦ g(ξn). Then for n → +∞, if q ∈ B f
α \ I +

g , g(q) = f ◦ g(α). Hence

g(B f
α \ I +

g ) ⊆ B f
g(α). ��

3 Characterization of commuting polynomial automorphisms of C
k, k ≥ 3

Lemma 3.1 Suppose that f, g are two commuting polynomial automorphisms of C
3. Let f

be a regular automorphism and suppose g not affine. Then:

1. I +
g cannot contain both I +

f and I −
f ;

2. if I −
g doesn’t contain I −

f , then I +
f ◦g−1 ⊂ I +

f ;

3. if I +
g ⊇ I +

f , then g(�∞ \ I +
g ) = I −

f .

Proof

1. We have that f (�∞ \ I +
f ) = I −

f = X+
f and f −1(�∞ \ I −

f ) = X−
f = I +

f and by

hypothesis I −
f ∩ I +

f = ∅. Consider now X1
g = g(�∞ \ I +

g ) : it is a connected and
irreducible set (because it is the image via a holomorphic map of an analytic, connected
and irreducible set). Hence g(�∞ \ I +

g ) cannot be contained in both I +
f and I −

f because

it is connected and irreducible and I +
f , I −

f are disjoint.

If X1
g �⊂ I +

f then deg( f ◦ g) = deg( f ) × deg(g), by Proposition 1.4.3. of [20];
f ◦ g = g ◦ f and therefore deg(g ◦ f ) = deg(g) × deg( f ) which implies that
I −

f �⊂ I +
g .

If X1
g ⊂ I +

f then by the previous observation X1
g �⊂ I −

f and hence deg( f −1 ◦ g) =
deg( f −1)×deg(g) and by f −1 ◦ g = g ◦ f −1 it follows that deg(g ◦ f −1) = deg(g)×
deg( f −1), which means that I +

f �⊂ I +
g .

Therefore either I −
f �⊂ I +

g or I +
f �⊂ I +

g . In any case I +
g cannot contain both I +

f and I −
f .

2. If I −
g doesn’t contain I −

f , (which is a point) then the indeterminacy set of ( f ◦ g−1) is

contained in I +
f . Indeed if p �∈ I +

f , let {xn}n∈N be a sequence of points tending to p
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when n → +∞; then lim
n→+∞ f ◦ g−1(xn) = lim

n→+∞ g−1 ◦ f (xn) = g−1(I −
f ). In view

of the fact that g−1(I −
f ) is a well defined point, we have that p �∈ I +

f ◦g−1 . Hence up to

changing g with f ◦ g−1, which still commutes with f, and that for this reason we can
continue to call g, we have proved that I +

g ⊂ I +
f .

3. If I +
g ⊇ I +

f , then deg(g ◦ f −1) < deg(g) × deg( f −1).

Hence also deg( f −1 ◦ g) < deg( f −1) × deg(g).

Therefore g(�∞ \ I +
g ) ⊂ I −

f , but I −
f is a point so g(�∞ \ I +

g ) = I −
f .

��
Lemma 3.2 Suppose that f, g are two commuting polynomial automorphisms of C

3. Assume
f be a regular automorphism and g not affine. Then either

1. deg( f ◦ g) < deg( f ) × deg(g), (i.e. I −
f ∈ I +

g and X1
g ⊂ I +

f ),

or

2. deg( f ◦ g) = deg( f ) × deg(g) (i.e. I −
f ∈ X1

g).

Proof Consider f ◦g = g◦ f and recall that I −
f is a point. Then take g◦ f (�∞ \(I +

f ∪ I +
g )).

We recall that f (�∞ \ (I +
f ∪ I +

g )) = I −
f ; indeed f −1 ◦ f = td · I d, where deg( f ) =

d and this implies that f −1 ◦ f ({t = 0} \ (I +
f ∪ I +

g )) = (0 : · · · : 0) ∈ C
4, that is

f (�∞ \ (I +
f ∪ I +

g )) = I −
f , [20]. Then

g ◦ f (�∞ \ (I +
f ∪ I +

g )) = g(I −
f )

↗ (i) ei ther I −
f ∈ I +

g

↘ (i i) or g ◦ f (�∞ \ (I +
f ∪ I +

g )) ⊂ X1
g ⊂ I −

g .

Now consider f ◦ g(�∞ \ (I +
f ∪ I +

g )).

f ◦ g(�∞ \ (I +
f ∪ I +

g ))
↗ (i i i) ei ther g(�∞ \ (I +

f ∪ I +
g )) ⊂ I +

f
↘ (iv) or f ◦ g(�∞ \ (I +

f ∪ I +
g )) = I −

f .

We observe that (i) ⇔ (i i i) and it corresponds to case 1., i.e. deg( f ◦g) < deg( f )×deg(g),

i.e. to I −
f ∈ I +

g and X1
g ⊂ I +

f . On the other hand (i i) ⇔ (iv) : it corresponds to Case 2., i.e.

deg( f ◦g) = deg( f )×deg(g), i.e. it corresponds to I −
f ∈ X1

g ⊂ I −
g . Indeed f ◦g = g◦ f and

if and only if at one side of the equality the first map has image contained in the indeterminacy
set of the second one, the same has to happen at the other side of the equality. In this case
deg( f ◦ g) < deg( f )×deg(g) because there are cancellations in the projective coordinates
of f ◦ g(z), as proved in [7].

In particular, it cannot happen that I −
f ⊂ (X1

g ∩ I +
g ), because in this case we would have

I +
f ⊇ X1

g � I −
f and this is impossible because f is regular.

The same proof applied with g−1 instead of g, gives that either

1. I −
f ∈ X1

g−1

or

2. I −
f ∈ I −

g and X1
g−1 ⊂ I +

f .

��
Lemma 3.3 Assume f is a regular automorphism of C

3.Let g be a polynomial automorphism
of degree greater or equal than 2, such that f ◦ g = g ◦ f. Then either
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1. I +
f ⊆ I +

g ,

or

2. I +
f ⊆ I −

g .

Proof By Lemma 3.2 applied first to f and g, and then to f and g−1, we can suppose that
I −

f ∈ (I +
g \ X1

g) ∩ (X1
g−1 \ I −

g ) (hence automatically I +
g doesn’t contain I +

f , by Lemma 3.1,

point 1). In view of the fact that f (�∞ \ (I +
f ∪ I +

g )) = I −
f , that I −

f is a point and by

f ◦ g = g ◦ f , we have that f ◦ g(�∞ \ (I +
f ∪ I +

g )) ≡ Bg
I −

f
; indeed

f ◦ g(�∞ \ (I +
f ∪ I +

g )) = g ◦ f (�∞ \ (I +
f ∪ I +

g )). (3.1)

and f (�∞ \ (I +
f ∪ I +

g )) = I −
f . Then either

(1) Bg
I −

f
= �∞ and in this case, in view of equation (3.1) and (2.1), we have that g(�∞ \

(I +
f ∪ I +

g )) = I +
f . Since g commutes with f −1 and I +

f is ( f −1)−invariant, we have that

g(I +
f \ I +

g ) ⊂ I +
f and hence g(�∞ \ I +

g ) = I +
f ; therefore I +

f ⊂ I −
g ; or

(2) Bg
I −

f
is a curve. In this case g(�∞ \ (I +

f ∪ I +
g )) = β, where β is a point in I +

f . Then we

have two possibilities for g(�∞\ I +
g ) : either it is equal to all I +

f (and in this case we are done

as at the previous point) or it is a point of I +
f . In this last case the image point has to be the same

point β because g(�∞ \ I +
g ) is connected. Moreover Bg−1

β = �∞ = f −1 ◦ g−1(�∞ \ I −
f )

because f −1 ◦ g−1(�∞ \ I −
f ) = g−1 ◦ f −1(�∞ \ I −

f ) = g−1(I +
f ) ⊇ g−1(β). This implies

that g−1(�∞\(I −
f ) = I −

f , i.e. that I −
f = X1

g−1 and this is a contradiction because X1
g−1 � I −

f

but they are different. If they were equal we would have Bg
I −

f
= �∞.

In conclusion, in the case I −
f ∈ (I +

g \ X1
g) ∩ (X1

g−1 \ I −
g ) we have I +

f ⊂ I −
g . ��

These three first Lemmas are necessary in order to prove that if g commutes with a regular
f, up to changing g with another element of the centralizer of f , g is weakly regular with
I +
g = I +

f .

Main Lemma 3.4 Let f be a regular automorphism of C
3. Let g be a polynomial automor-

phism of C
3, not affine and let g be commuting with f, then, up to changing g with g−1 or

with ( f ◦ g−1) or with ( f ◦ g), g is weakly regular with I +
g = I +

f .

Proof We want to show that one of the four among g, g−1, ( f ◦ g−1) and ( f ◦ g) is
weakly regular. We have already seen that in the case I −

f ∈ (I +
g \ X1

g) ∩ (X1
g−1 \ I −

g ), then

I +
f ⊂ I −

g .

If I −
g = I +

f , then g−1 is weakly regular because X−
g = I −

f , by Lemma 3.1 point 3.

Analogously in the case I −
f ∈ (I −

g \ X1
g−1) ∩ (X1

g \ I +
g ), we have I +

f ⊂ I +
g .

If I +
g = I +

f , then g is weakly regular because X+
g = I −

f by Lemma 3.1 point 3.

On the other hand, if neither I −
g �⊆ I +

f nor I +
g �⊆ I +

f , we can consider either ( f ◦ g−1) or

( f ◦ g) instead of g−1 or g, depending on the position of I −
f . Indeed by Lemma 3.3 and by

Lemma 3.1 point 1, we can suppose that either I −
f �∈ I −

g or I −
f �∈ I +

g .

Suppose for example that I −
f �∈ I −

g , then I +
f ◦g−1 ⊆ I +

f by Lemma 3.1 point 2, and

X+
f ◦g−1 = I −

f since f ◦ g−1 = g−1 ◦ f and f (�∞ \ I +
f ) = I −

f �∈ I −
g . Hence ( f ◦ g−1) is

weakly regular.
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Analogously if I −
f �∈ I +

g , we have ( f ◦ g) is weakly regular. Therefore if either g or g−1

is not weakly regular, then either ( f ◦ g−1) or ( f ◦ g) is weakly regular, depending on the
position of I −

f , because I +
f and I −

f are disjoint. ��

Theorem 3.5 Let f, g ∈ Aut (C3), s.t. f ◦ g = g ◦ f. Suppose d1 = deg( f ), and d2 =
deg(g) ≥ 2. Let f be a regular automorphism and g a weakly regular automorphism with
I +
g = I +

f and X+
g = I −

f . Then the Green functions of f and g coincide.

Proof In view of the fact that U+
g is f and f −1−invariant and U+

f is g and g−1-invariant, it

holds U+
g = U+

f .

Indeed we can choose a neighborhood B of I −
f = X+

g s.t. B ⊂ U+
f ∩ U+

g , g(B) ⊂ B and

also f (B) ⊂ B, since the point X+
g = I −

f is an attracting point for both f and g. Consider

x ∈ U+
f , then for n sufficiently large f n(x) ∈ B and g ◦ f n(x) ∈ B, for the g-invariance of

B. Hence f n ◦ g(x) ∈ B ⊆ U+
f and applying f −n to both sides we obtain that g(x) ∈ U+

f .

Therefore U+
f is g-invariant.

In the same way, we can prove that f −1(U+
g ) ⊆ U+

g , because U+
g = ⋃

n∈N

g−n( f −1(B)) =
⋃

n∈N

g−n(B). Now B ⊆ U+
g , hence, for what we have already proved, f −n(B) ⊆ U+

g but
⋃

n∈N

f −n(B) = U+
f , therefore U+

f ⊆ U+
g . Analogously we prove that U+

g ⊆ U+
f .

Consider now the sequence of maps:

Hn = G+
f ◦ gn

dn
2

≥ 0

for all n ∈ N. We have that each Hn ≤ G+
f because Hn and G+

f satisfy the same functional
equation:

Hn ◦ f = d1 · Hn

and G+
f is the largest solution [20] of this equation among the p.s.h. functions bounded by

log+ |z| + O(1) at infinity. Then, in a neighborhood of X+
f = I −

f , outside K +
f , it holds:

log+ |z| + c2 ≤ G+
f (z) ≤ log+ |z| + c1, (3.2)

because f is regular.
By hypothesis and by Lemma 3.1 point 3, X+

g = I −
f and U+

f = U+
g , therefore, composing

with gn(z), we have:

log+ |gn(z1, z2, z3)| + c2

dn
2

≤ G+
f ◦ gn

dn
2

≤ log+ |gn(z1, z2, z3)| + c1

dn
2

. (3.3)

Then we have that the first and the last term of the sequence of inequalities in (3.3) tend to
G+

g (z1, z2, z3).

Therefore lim
n→+∞

G+
f ◦ gn

dn
2

= G+
g on U+

f = U+
g .

On all C
3, we have

0 ≤ Hn ≤ G+
f . (3.4)
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Hence on U+
f , lim

n→+∞ Hn = G+
g ≤ G+

f .

On the other hand, on K +
f , G+

f = 0 hence also lim
n→+∞ Hn exists and it is equal to zero by

(3.4).
In conclusion:

1. G+
g ≤ G+

f on U+
f = U+

g ;

2. G+
g = G+

f = 0 on K +
f = K+

g , where K+
g = (U+

g )c.

Changing f regular with g weakly regular, the inequalities (3.2) still hold (see [9]), and we
obtain G+

f ≤ G+
g on U+

f = U+
g . Finally G+

f = G+
g on all C

3. ��
We need to describe the group of affine automorphisms commuting with f.

Proposition 3.6 Let CA( f ) be the group of affine automorphisms of C
3 which commute with

f. If f is regular, then CA( f ) is a finite cyclic subgroup of A.

Proof Recall, [20] p. 132, that a regular biholomorphism f has infinitely many distinct
periodic orbits (this follows from Bézout theorem), and that no subvariety of dimension
greater than or equal to 1 is periodic.

First we want to prove that all the periodic points of f cannot lie on the same complex
linear subspace. Suppose on the contrary that there exists a complex linear subspace L of
dimension 1 or 2, s.t.

⋃
n∈Z

Fix( f n) ⊂ L (indeed a periodic point for f is a periodic point
also for f −1 of the same period). Of course L �⊆ �∞ and L is at the same time f -invariant and
f −1-invariant. Let V = L ∩�∞, then V has to be contained into I −

f , because f (I −
f ) = I −

f ,

and it has also to be contained into I +
f because f −1(I +

f ) = I +
f . Since I +

f ∩ I −
f = ∅, this is

a contradiction.
If h is affine and f ◦ h = h ◦ f, then, for all N ∈ N, h induces a permutation on

Fix( f N ) = {periodic points of order less or equal to N for f}. So we have a group homo-
morphism ϕ from CA( f ) into the group 
N of the permutations of the points of Fix( f N ) :

ϕ : CA( f ) → 
N

If N is large enough, the points of Fix( f N ) do not lie on the same subspace and hence ϕ is
injective. Hence CA( f ) is a finite group of a suitable order q.

To prove the cyclicity of CA( f ), we prove that:

(1) CA( f ) is abelian;
(2) the eigenvalues of the linear part of each affine automorphism h ∈ CA( f ) are roots of

unity of the same order;
(3) for all h1, h2 ∈ CA( f ) of the same order q, there exist n0, m0 ∈ N s.t. hn0

1 = h2 and
hm0

2 = h1.

In order to prove (1), we recall that if h ◦ f = f ◦ h, then h(I −
f ) = I −

f and h(I +
f ) = I +

f .

Then, up to conjugation, we can assume that I −
f = [0 : 0 : z3 : 0]. In these coordinates:

h([x1 : x2 : x3 : t]) = [a1x1 + b1x2 + d1t : a2x1 + b2x2 + d2t : a3x1 + b3x2

+c3x3 + d3t : t].

A1 =
⎛

⎝
a1 b1 0
a2 b2 0
a3 b3 c3

⎞

⎠
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has to be diagonalizable (with eigenvalues which are roots of unity) because it satisfies An
1 =

I d. Hence up to conjugation with an affine map which preserves I +
f and I −

f , we can suppose
that A1 is diagonal. Consider now the commutator [h1, h2] of two maps h1, h2 ∈ CA( f ),

then its linear part in C
3 is the identity 3×3 matrix, because the linear part of each of them is

diagonal. But [h1, h2] cannot be a translation of C
3 because CA( f ) is a finite group. Hence

the only possibility is [h1, h2] = I d.

Since CA( f ) is abelian, it follows that all the elements in CA( f ) have a common fixed
point, hence, up to conjugation, we can suppose that they are all rotations fixing the origin,
therefore they are of type (αx1, βx2, γ x3).

In order to prove (2), we recall that, since the order of the group CA( f ) is q, then
for all h ∈ CA( f ) there exists k ∈ N which divides q s.t. hk = I d. This means that
αk = βk = γ k = 1, and the eigenvalues of h are k-roots of unity. But suppose that they
have different orders, then there exists a n ∈ N which divides k s.t. hn is the identity in
one component but not in the other one. Suppose that αn = 1 and βn, γ n �= 1. This means
that all the points (x1, 0, 0) are fixed by hn . Since for all m ∈ Z, f m commutes with hn,

the line {x2 = x3 = 0} is invariant for all f m, with m ∈ Z. For the invariance of the line
{x2 = x3 = 0} by f and by f −1, it follows that V = {x2 = x3 = 0} ∩ L∞ has to be
contained into I +

f and at the same time into I −
f , but this contradicts the regularity of f.

The assertion in (3) follows directly from (1) and (2) : since the order q of the rotation
is exactly the common order of its eigenvalues, there exist a n0 ∈ N s.t. hn0

1 ◦ h−1
2 has

an eigenvalue equal to 1. But hn0
1 ◦ h−1

2 is still an element in CA( f ) and hence its three
eigenvalues have the same order; this implies also that the second and the third eigenvalue
have to be equal to 1 and hn0

1 = h2.

The cyclicity of the group CA( f ) follows from (1),(2),(3). If h0 is one of the elements of
CA( f ) of maximal order s ≤ q, then 〈h0〉 = CA( f ). Indeed for each h ∈ CA( f ), the order
of h has to be a divisor of the maximal order s; hence there exists an element in 〈h0〉, hr

0,

which has the same order of h, but, by (3), h is a power of hr
0 and so h ∈ 〈h0〉. In conclusion

CA( f ) is isomorphic to Zq . ��
The proof of the Theorem 3.7 below uses the same technique that the author has used in

dimension 2, in the proof of Theorem 1.5., see [1].

Theorem 3.7 Let f, g be two automorphisms of C
3, respectively of degree d1 and d2.Suppose

that f is regular, that g is weakly regular with I +
f = I +

g , X+
g = I −

f and that f ◦ g = g ◦ f.
Then

there exist m0, n0 ∈ N s.t. dm0
1 = dn0

2 (3.5)

and there exists an affine automorphism h s.t. f m0 = gn0 ◦ h with hq = I d, for a certain
q ∈ N.

Proof (a) First of all, we want to prove that, for all m, n ∈ N one and only one of the four
following cases can occur:

(i) dn
2 divides dm

1 ;
(ii) dm

1 divides dn
2 ;

(iii) dn
2 divides dm+1

1 ;
(iv) dm−1

1 divides dn
2 .

(b) Then we will prove that in all the four cases (i), (i i), (i i i) and (iv) there exist
n0, m0 ∈ N s.t. dm0

1 = dn0
2 .
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(a) Given n, m ∈ N, consider h = g−n ◦ f m which is a polynomial automorphism of C
3

which commutes with a regular one, i.e. f ; hence by Lemma 1.3, h is affine or h is weakly
regular or h−1 or ( f ◦ h−1) or ( f ◦ h) is weakly regular with the same I + of f.

Suppose h affine. Then deg(h) = 1 and there is no hypersurface mapped by h into I +
gn .

Hence, from f m = gn ◦ h, it follows that deg( f m) = deg(gn ◦ h) = deg(gn) × deg(h);
then deg( f m) = deg(gn) and dm

1 = dn
2 .

Suppose h is weakly regular of degree δ. Let H be the Green function of h, i.e. H =
lim

n→+∞
1

δn
log+(|hn(z1, z2, z3)|). Then H(h) = δ · H.

On the other hand, by hypothesis and by Theorem 3.5, G+
f = G+

g = G+ hence

G+( f m ◦ g−n) = dm
1 × G+(g−n) = dm

1

dn
2

G+ (3.6)

But h commutes with f which is regular, therefore they have the same Green function by
Theorem 3.5.

Hence H = G+ and δ =
(

dm
1

dn
2

)
.

But δ ∈ N because δ = deg(h), hence
dm

1

dn
2

∈ N and dn
2 divides dm

1 and we have proved (i).

Suppose h−1 weakly regular, then repeating the same argument with h := gn ◦ f −m, we
have that dm

1 divides dn
2 , and we have proved (ii).

Analogously if f ◦ h is weakly regular, then we have (iii) and if ( f ◦ h−1) is weakly
regular then we have (iv).

(b) Now we want to prove the second main point, we mean that there exist n0, m0 s.t.
dm0

1 = dn0
2 .

Suppose on the contrary that for all n, m ∈ N, dm
1 �= dn

2 . Then
dm

1

dn
2

�= 1, and log(
dm

1

dn
2

) �= 0,

then α = log(d2)

log(d1)
is irrational.

So, for every ε > 0, there is n, m ∈ N s.t.
∣∣∣α − m

n

∣∣∣ <
ε

n
.

Multiplying both the sides of the inequality by
n

m
, we obtain:

∣∣∣∣
log(dn

2 )

log(dm
1 )

− 1

∣∣∣∣ <
ε

m
,

which is equivalent to:

| log(dn
2 ) − log(dm

1 )| =
∣∣∣∣log

(
dn

2

dm
1

)∣∣∣∣ <
ε

m
· m · log(d1) = ε log(d1).

If dm
1 divides dn

2 , i.e. (ii), and they are different, then
dn

2

dm
1

is an integer greater or equal to 2,

hence:

log(2) ≤
∣∣∣∣log

(
dn

2

dm
1

)∣∣∣∣ < ε × log(d1),

a contradiction, if ε is sufficiently small.
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If dn
2 divides dm

1 , i.e. (i), and they are different, then
dm

1

dn
2

is an integer greater or equal to

2, hence:

log(2) ≤
∣
∣
∣
∣log

(
dm

1

dn
2

)∣
∣
∣
∣ < ε × log(d1),

a contradiction, if ε is sufficiently small.

If dn
2 divides dm+1

1 , i.e. (iii), and they are different, then
dm+1

1

dn
2

is an integer greater or

equal to 2, hence:

log(
2

d1
) ≤

∣
∣
∣
∣
∣
log

(
dm+1

1

dn
2

× 1

d1

)∣
∣
∣
∣
∣
< ε × log(d1),

a contradiction, if ε is sufficiently small.

If dm−1
1 divides dn

2 , i.e. (iv), and they are different, then
dn

2

dm−1
1

is an integer greater or

equal to 2, hence:

log(
2

d1
) ≤

∣∣∣∣∣
log

(
dn

2

dm−1
1

× 1

d1

)∣∣∣∣∣
< ε × log(d1),

a contradiction, if ε is sufficiently small.

Consider now:
h := f m0 ◦ g−n0 , then h is affine or weakly regular with I +

h = I +
f , up to changing h with

its inverse or with ( f ◦ h−1) or with ( f ◦ h). If h were not affine and it were weakly regular,
then by f m0 = h ◦ gn0 = gn0 ◦ h we would obtain deg( f m0) = deg(h)× deg(gn0) because
I +
h = I +

f which is disjoint from X+
g by hypothesis. This means that dm0

1 = deg(h) × dn0
2 =

deg(h) × dm0
1 which implies deg(h) = 1 contradicting the assumption.

If h−1 were weakly regular then h−1 = gn0 ◦ f −m0 , then h−1 ◦ f m0 = gn0 but I −
f �∈

I −
h = I +

f hence deg(h−1) × dm0
1 = dn0

2 , which implies that deg(h−1) = 1, which is a
contradiction.

If f ◦ h were weakly regular then f ◦ h = g−n0 ◦ f m0+1, i.e. f ◦ h ◦ gn0 = f m0+1 but
I −

f = X+
g �∈ I +

f ◦h = I +
f hence deg( f ◦h)·dn0

2 = dm0+1
1 , which implies that deg( f ◦h) = d1,

but it is also equal to deg(h) × deg( f ) by I +
f ◦h = I +

f and this contradicts h not affine.

If f ◦ h−1 were weakly regular then f ◦ h−1 = gn0 ◦ f −m0+1, i.e. f ◦ h−1 ◦ f m0−1 =
gn0 but I −

f �∈ I +
f ◦h−1 = I +

f , hence deg( f ◦ h−1) × dm0−1
1 = dn0

2 , which implies that

deg( f ◦ h−1) = d1, but it is also equal to deg( f ) × deg(h−1) by I +
f ◦h−1 = I +

f and this

contradicts that h−1 is not affine. ��
Corollary 3.8 In the hypothesis of the Theorem 1.4, there exist n, m ∈ N s.t. f n = gm .

As a consequence of Corollary 3.8, we have that even if we substitute g with g−1 or ( f ◦ g)

or ( f ◦ g−1), in order to have a weakly regular map, the starting g is also weakly regular, a
posteriori, because a certain positive iterate of it is regular.

Proposition 3.9 If there exists q ∈ N s.t. f q is a regular automorphism, then f is a weakly
regular automorphism.
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Proof f q regular implies that I +
f q ∩I −

f q = ∅. We show that it is not possible that I +
f ∩X+

f �= ∅,

because I +
f ⊂ I +

f q ⊆
q−1⋃

l=0
f −l(I +

f ) and X+
f ⊂ X+

f q = I −
f q . Hence, if it were (X+

f ∩ I +
f ) not

empty, then (I +
f q ∩ I −

f q ) would be not empty, which is a contradiction. ��
This final Theorem 3.7 implies also that, among the non-affine automorphisms, only

weakly regular automorphisms with a weakly regular inverse can commute with a regular
automorphism in C

3. Indeed the fact that gm = f n, forces also that g−m = f −n which means
that g−m is regular and g−1 is weakly regular by Proposition 3.9. This is a quite restrictive
condition on the centralizer of a regular f, because not all weakly regular automorphisms k
have a weakly regular inverse: in this case indeed it holds d+ = d2− where d− = deg(k−1)

and d+ = deg(k).

If in the Theorem 3.7 we were obliged to do one of the three substitutions of g suggested
by Main Lemma 3.4, we would still have the relation (3.5) between the degrees of f and
of the starting g since, if we substitute g with g−1, the degree of g−1 is a square root of
deg(g); if we substitute g with ( f ◦ g), then deg( f ◦ g) = deg( f ) × deg(g) and finally
if we substitute g with ( f ◦ g−1) we have deg( f ◦ g−1) = deg( f ) × deg(g−1); these two
final assertions both follows by Main Lemma 3.4.

In [21], S. Smale asks the following question: let M be a compact manifold, is each
diffeomorphism of M approximated by diffeomorphisms which commute only with their
iterates?

We are now ready to answer to a variant of the question, in a positive way, for polyno-
mial automorphisms of C

2 and partially for polynomial automorphisms of C
3 in appropriate

irreducible components, i.e. in the irreducible components with al least one regular auto-
morphism, of the affine algebraic variety of polynomial automorphisms of degree at least d,

Ad . Indeed if f is a polynomial automorphism of degree d, in [20] has been proved that
deg( f −1) ≤ dk−1, which means that, from ( f ◦ f −1) = I d, Ad is an analytic and algebraic
set, see [20,8].

Each polynomial automorphism of degree d of C
k, k ≥ 2, which is in a connected

component with regular maps, is the uniform limit on compact sets of regular automorphisms
of C

k of the same degree d. Indeed, if we fix the degree, the regular automorphisms are a
Zariski open set in Ad because I + ∩ I − = ∅ is an open condition; hence they are dense in
the irreducible components which contains one.

The C
2−setting was well understood by Friedland and Milnor, [8], because they proved

that Aut (C2) = A∪ G[2]∪ G[3]∪ G[2, 2]∪ G[4]∪ G[5]∪ . . . ; that is Aut (C2) is a disjoint
union of smooth Zariski open subsets of algebraic varieties, where G[d1, d2, · · · , dm] consists
of all automorphisms g of C

2 such that some representative of the double coset A◦g◦ A can be
written as a reduced word of the form em ◦am−1◦em−1◦· · ·◦a2◦e2◦a1◦e1 with deg(ei ) = di .

The sequence (d1, · · · , dm) is called the polydegree of g; if g ∈ G[d1, d2, · · · , dm] then
deg(g) = d1 · d2 · · · · dm . If two polynomial automorphisms are conjugated, then they have
the same polydegree (d1, d2, · · · , dm). We recall that it is possible to construct the following
fibration (see [8]):

π : G[d1, · · · , dm] → P
1 × P

1

a′ ◦ f ◦ a �→ (a−1AT , a′AT )

where a, a′ are arbitrary affine maps, where P
1 will be identified with the coset space

A
AT

and where the fiber F[d1, · · · dm] is parametrized by an open subset of P
d1+d2+···dm+4.
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Proposition 3.10 In each G[d1, · · · , dm] there is a dense set of regular automorphisms with
trivial centralizer, i.e. the regular automorphisms of G[d1, · · · , dm] are not the empty set.

Proof In each G[d1, · · · , dm]we eliminate, for all q > 1, the set Gq [d1, · · · dm] = { f regular
CA( f ) � Zq , with q >1}. Gq [d1, · · · , dm] is a Zariski closed set because Gq [d1, · · · , dm] =
� ◦ −1(1) where  : G[d1, · · · , dm] × A f f → G[d1, · · · , dm] is the algebraic map
(g, a) → g ◦a ◦ g−1 ◦a−1, and � is the projection on the first factor which is still algebraic.
Hence getting away

⋃

q>1
Gq [d1, · · · , dm] we have eliminated a countable union of Zariski

closed sets. In the complement there is at least one regular automorphism of type hε(z, w) =
(zd1·····dm + εzn − w, z) with n coprime with d1 × d2 · · · · dm (if d1 × d2 · · · · dm ≥ 3) and
CA(hε) = I d; it is an easy computation because the affine maps have to be diagonal. In
case d = 2 for C

2, the regular polynomial automorphism f (z, w) = (w,w2 − az + c) is an
example in G[2] of an automorphism with CA( f ) = I d. ��
The C

3-setting is not so clear but we can consider the Fornaess–Wu’s classification for
polynomial automorphisms of degree 2, up to affine conjugation, [5]:

Aut (C3)2 = H1 ∪ H2 · · · H5 ∪ (A ∪ E) where

H1(x, y, z) = (P(x, z) + ay, Q(z) + x, cz + d)

H2(x, y, z) = (P(y, z) + ax, Q(y) + bz, y)

H3(x, y, z) = (P(x, z) + ay, Q(x) + z, x)

H4(x, y, z) = (P(x, y) + az, Q(y) + x, y)

H5(x, y, z) = (P(x, y) + az, Q(x) + by, x)

Only in H4 and H5 there are regular automorphisms; H4 and H5 are two disjoint open sets of
an appropriate C

N and they are invariant under affine conjugation by PGL(4, C). A simple
calculation proves that the affine centralizer of the normal forms H4 and H5 is trivial: an
affine map which commute with H4 or H5 has to be diagonal and equal to the identity.

4 Examples

1. The example that we are going to describe prove in a very simple situation that if f is not
regular then the centralizer of f can be non trivial and also not countable. Choose h a Hénon
map of C

2. Consider the following polynomial automorphism of C
3 :

H(z1, z2, z3) = (p(z1) − az2, z1, z3) = (h(z1, z2), z3)

Then we are going to characterize the group of all polynomial automorphisms F of C
3 which

commute with H : C(H) = {F ∈ Aut (C3) | F ◦ H = H ◦ F}.
Observe that H is not regular on C

3; indeed it is weakly regular as its inverse and X+
H ∩

X−
H = ∅.

In view of the fact that F ◦ H = H ◦ F, we want to prove that F3(z1, z2, z3) = F3(z3),

i.e. that the third component of F depends only on the third variable. By the commutation
property and since H3(z1, z2, z3) = z3, by the equation Hn ◦ F = F ◦ Hn, which holds
∀n ∈ N, we have:

F3(z1, z2, z3) = F3(h
n(z1, z2), z3)

Therefore F3 is constant on each orbit of H, which means that F3 is constant on the ∂K +
h ⊂

C
2. Hence ∂K +

h ⊂ {F3 = constant}, then F3 is constant on all C
2 because ∂K +

h cannot be
contained in an algebraic hypersurface.
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Hence F(z1, z2, z3) = (F1(z1, z2, z3), F2(z1, z2, z3), F3(z3)).

Now we fix z3 and then the following 2 cases appear, see [1]:
(A) case (F1, F2) affine, which means (F1, F2) = (α(z3)z1 + γ (z3), β(z3)z2 + δ(z3)).

Then it is easy to see that in order to have an automorphism it is necessary that α and β

do not depend on z3 and that F3(z3) = az3 + b, with a, b arbitrary complex number, a �= 0.

(B) case (F1, F2) regular, which means that, by [1], (F1, F2)
n(z3) = hm ◦ a where a is

an affine map of C
2. When we fix z3, (F1, F2) becomes a regular automorphism of C

2,

therefore it cannot be part of a 1-parameter group of automorphisms of C
2, following [3].

Hence n(z3) is independent of z3. In this case we have that F = (h(z1, z2), F3(z3)) where
F3(z3) = γ z3 + δ, because F has to be an automorphism of C

3, and with γ, δ any complex
number and γ �= 0.

In conclusion we find that, even if the dynamic of H is essentially of Hénon type, C(H)

is no more countable because H3 is the projection on z3 and this implies that every affine
map in z3 commutes with it.

2. Now we present an example of a regular automorphism f of C
4 and of an automorphism

g which commutes with f but s.t. neither I +
g nor I −

g are equal to I +
f , and there is no iterate

of g equal to an iterate of f. Let

f = (h1(z1, z2), h2(z3, z4))

where h1, h2 are two Hénon maps of C
2 of the same degree d and CA(h1) is non trivial. Let

g = (A(z1, z2), h2
2(z3, z4))

s.t. A is an affine automorphism of C
2, different from the identity s. t. A ◦ h1 = h1 ◦ A.

This proves that the characterization C( f ) = Z � Zq for a regular automorphism of C
4

doesn’t work, because ∀n, m ∈ Z, f n �= gm . Analogously we can prove that it fails in all
dimensions strictly greater than 4.

3. An example in which Lemma 3.3 fails in C
5 is the following:

f (x1, x2, x3, x4, x5) = (x3, x2
2 + ax1, x2

3 + ax2, x2
4 + x5, x4)

The map f is regular and it commutes with

g(x1, x2, x3, x4, x5) = (x3, x2
2 + ax1, x2

3 + ax2, bx4, cx5)

but neither I +
g = I +

f nor I −
g = I +

f . Indeed I +
f = [x1 : 0 : 0 : 0 : x5 : 0] and I −

f =
[0 : x2 : x3 : x4 : 0 : 0]. On the other hand I +

g = [x1 : 0 : 0 : x4 : x5 : 0] and
I −
g = [0 : x2 : x3 : x4 : x5 : 0] and no iterate of g is equal to an iterate of f.

The first three components of f are the second iterates of the following shift-like map of
C

3 :
h(x1, x2, x3) = (x2, x3, x2

2 + ax1).

The automorphism h2(x1, x2, x3) is indeed regular. The last two components of f are a
Hénon map of C

2.

In view of these last two examples we formulate the following Conjecture.
Conjecture: If f is a regular automorphism of C

k with k ≥ 2 such that π ◦ f is not an
automorphism of C

j with j < k for any π projection on any combination of j variables of
C

k, then C( f ) is isomorphic to Z � Zq , for some integer q. On the contrary if f is the direct
product of regular automorphisms fi j , for j = 1, · · · , s of some C

i j with i j < k then C( f )

is isomorphic to the product of s copies of Z � Zq .
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4. In C
4 :

f (x1, x2, x3, x4) = (h1(x1, x2), x3, x4)

where h1 is a Hénon map of C
2 and

g = (x1, x2, h2(x3, x4))

where h2 in another Hénon map of C
2. They commute but none of them is an iterate of the

other. None of them is regular but both are weakly regular.
5. Consider the real flow of the following nilpotent derivation, [13,18]:

D(x) = −2y,

D(y) = z,

D(z) = 0.

It is the following 1-parameter group:

σλ(x, y, z) = (x + λ(x2 − yz)z, y + 2λ(x2 − yz)x + λ2(x2 − yz)2z, z)

For λ = 1 we obtain the Nagata automorphism σ1 of C
3. In view of the fact that the

Nagata automorphism is the 1-time map of a 1-parameter group, we have (σ1)
−1 = σ−1 and

σλ+µ = σµ+λ = σλ ◦ σµ. Hence for each λ ∈ R \ Z, σλ commutes with σ1 and it is not
an iterate of σ1 or of its inverse. Hence {σλ}λ∈R is contained in the centralizer of the Nagata
automorphism and this is an example of a non-trivial centralizer. This doesn’t contradict our
Theorem 1.4 because, for each λ ∈ R, neither σλ nor (σλ)

−1 is conjugate to weakly regular
and in particular none of them is conjugate to regular. An other way of saying this is:

Proposition 4.1 Regular automorphisms on C
3 are never contained in a 1-parameter family

of automorphisms.

It has already been proved in dimension 2 by Buzzard, [3].
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