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Università Degli Studi di Firenze
Viale Morgagni 67/A, I-50134 Firenze, Italy

stoppato@math.unifi.it

Received 18 November 2016
Accepted 22 January 2017

Published 21 March 2017

During the development of the theory of slice regular functions over the real algebra
of quaternions H in the last decade, some natural questions arose about slice regular
functions on the open unit ball B in H. This work establishes several new results in this

context. Along with some useful estimates for slice regular self-maps of B fixing the origin,
it establishes two variants of the quaternionic Schwarz–Pick lemma, specialized to maps
B → B that are not injective. These results allow a full generalization to quaternions of
two theorems proven by Landau for holomorphic self-maps f of the complex unit disk
with f(0) = 0. Landau had computed, in terms of a := |f ′(0)|, a radius ρ such that f is
injective at least in the disk ∆(0, ρ) and such that the inclusion f(∆(0, ρ)) ⊇ ∆(0, ρ2)
holds. The analogous result proven here for slice regular functions B → B allows a new
approach to the study of Bloch–Landau-type properties of slice regular functions B → H.
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1. Introduction

The unit ball in the real algebra of quaternions H, namely

B := {q ∈ H : |q| < 1},
is the subject of intensive investigation within the theory of slice regular quater-
nionic functions introduced in [19, 20]. The theory is based on the next definition,

∗Corresponding author.

1750017-1

In
t. 

J.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
03

/2
4/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0129167X17500173


2nd Reading

March 17, 2017 15:13 WSPC/S0129-167X 133-IJM 1750017

C. Bisi & C. Stoppato

where the notation S := {q ∈ H | q2 = −1} is used for the sphere of quaternionic
imaginary units.

Definition 1.1. Let Ω be a domain (an open connected set) in H and let f : Ω → H.

For all I ∈ S, let us use the notations LI := R + IR, ΩI := Ω ∩ LI and fI := f|ΩI
.

The function f is called (Cullen or) slice regular if, for all I ∈ S, the restriction
fI is holomorphic; that is, if, for all I ∈ S, fI is differentiable and the function
∂If : ΩI → H defined by

∂If(x + yI) :=
1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + Iy)

vanishes identically. If this is the case, then a slice regular function ∂cf : Ω → H

can be defined by setting

∂cf(x + yI) :=
1
2

(
∂

∂x
− I

∂

∂y

)
fI(x + yI)

for I ∈ S, x, y ∈ R (such that x + Iy ∈ Ω). It is called the Cullen derivative of f .

For slice regular functions on the quaternionic unit ball B, the Schwarz lemma
and its boundary version were proven in [20, 22]. Slice regular analogs of the Möbius
transformations of B have been introduced and studied in [8, 23, 31], leading to the
generalization of the Schwarz–Pick lemma in [7]. Other results concerning slice
regular functions on B have been published in [2, 3, 11, 12, 14, 15, 17].

Within this rich panorama, the present work establishes the quaternionic coun-
terparts of the following results due to Landau [27, 28], which we quote in the form
of [26, §2.10].

Theorem 1.1 (Landau). For each a ∈ (0, 1), let Φa denote the set of holomorphic
self-maps f of the complex unit disk ∆(0, 1) such that f(0) = 0, |f ′(0)| = a. Let

ρ := inf
f∈Φa

r(f),

r(f) := sup{r ∈ (0, 1) | f is injective in ∆(0, r)}.
Then ρ = 1−√

1−a2

a . Furthermore, for f ∈ Φa the equality r(f) = ρ holds if, and
only if, there exists η ∈ ∂∆(0, 1) such that f(z) = F (ηz)η−1 where

F (z) := z
a − z

1 − az
.

Theorem 1.2 (Landau). For each a ∈ (0, 1), let

P := inf
f∈Φa

R(f),

R(f) := sup{r | ∃Ωr ⊆ ∆(0, 1) s.t. 0 ∈ Ωr and f : Ωr → ∆(0, r) is bijective}.
Then P = ρ2 with ρ = 1−√

1−a2

a . Furthermore, for f ∈ Φa it holds R(f) = ρ2 if and
only if there exists η ∈ ∂∆(0, 1) such that f(z) = F (ηz)η−1.
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Besides their independent interest, Theorems 1.1 and 1.2 can be used to prove
one of the most celebrated results in complex function theory.

Theorem 1.3 (Bloch–Landau). Let f be a holomorphic function on a region
containing the closure of ∆(0, 1) and suppose f(0) = 0, f ′(0) = 1. Then there is
a disk S ⊆ ∆(0, 1) on which f is injective and such that f(S) contains a disk of
radius b > 1/72.

Reference [10] presents in Ch. XII §1 a proof of the Bloch–Landau theorem based
on reducing to bounded functions and applying to them a variant of Theorem 1.2.
The largest value of b for which Theorem 1.3 holds is known as Bloch’s constant. As
it is well known, determining this constant is still a challenging problem nowadays.

While the situation is considerably different in the case of several complex vari-
ables [4, 9, 13, 25], variants of Theorem 1.3 hold in the theory of slice regular
functions, see [12], and in other hypercomplex generalizations of the theory of one
complex variable: see [30] for the class of T-holomorphic functions over the bicom-
plex numbers; and [29] for square integrable monogenic functions over the reduced
quaternions. As we already mentioned, in the present work, we establish perfect
analogs of Theorems 1.1 and 1.2 for slice regular functions. Other original results
are proven along with them and a new version of [12, Theorem 6] is obtained as an
application. The paper is structured as follows.

In Sec. 2, we recall some preliminary material needed for our study, including
the algebraic structure of slice regular functions: a ring structure with the usual
addition + and a multiplication ∗, as well as the existence of a multiplicative inverse
f−∗ when f �≡ 0. This structure is the basis for the construction of regular Möbius
transformations, namely, Mq0(q)u for q0 ∈ B, u ∈ ∂B, where

Mq0(q) := (1 − qq̄0)−∗ ∗ (q − q0).

We recall some known results on the differential of a slice regular function and
we derive a characterization of functions that are not injective. The quaternionic
Schwarz–Pick lemma is also recalled in detail.

Section 3 establishes two variants of the quaternionic Schwarz–Pick lemma,
specialized to self-maps of the quaternionic unit ball that are not injective. The
first one is the following theorem.

Theorem 1.4. Let f : B → B be a regular function, let q0 ∈ B and set v := f(q0).
If f is not injective in any neighborhood of f−1(v) then there exists p0 ∈ B such
that

|(f(q) − v) ∗ (1 − v̄ ∗ f(q))−∗| ≤ |Mq0(q) ∗Mp0(q)|.
A second variant can be derived from the former.

Theorem 1.5. Let f : B → B be a slice regular function, which, for some r ∈ (0, 1),
is injective in B(0, r) := {q ∈ H : |q| < r} but is not injective in B(0, r′) for
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any r′ > r. Then there exists q0 ∈ ∂B(0, r) such that f is not injective in any
neighborhood of f−1(f(q0)) and

|(f(q) − f(q0)) ∗ (1 − f(q0) ∗ f(q))−∗| ≤ |Mq0(q) ∗Mp0(q)|,
for some p0 ∈ B(0, r). In particular, if f(0) = 0 then |f(q0)| ≤ r2.

We add, in Sec. 4, some useful estimates for slice regular self-maps of the unit
ball fixing the origin.

Theorem 1.6. Let f : B → B be a slice regular function with f(0) = 0. If a :=
|∂cf(0)| belongs to (0, 1) then

|q| a − |q|
1 − a|q| ≤ |f(q)| ≤ |q| |q| + a

1 + a|q| , (1.1)

for all q ∈ B. Furthermore, if there exists q ∈ B such that equality holds on the
left-hand side or on the right-hand side, then f(q) = qM(q) where M is a regular
Möbius transformation of B with |M(0)| = a.

The aforementioned theorems allow us to achieve, in Sec. 5, a full generalization
of Landau’s results.

Theorem 1.7. Let f : B → B be a slice regular function with f(0) = 0. If a :=
|∂cf(0)| belongs to (0, 1) and if we set ρ := 1−√

1−a2

a then the following properties
hold:

(1) The function f is injective at least in the ball B(0, ρ).
(2) For all r ∈ (0, ρ), B(0, r a−r

1−ar ) ⊆ f(B(0, r)) ⊆ B(0, r a+r
1+ar ). As a consequence,

B(0, ρ2) ⊆ f(B(0, ρ)).

(3) The following are equivalent:

(a) B(0, ρ) is the largest ball centered at 0 where f is injective;
(b) there exists a point q0 ∈ ∂B(0, ρ) with f(q0) ∈ ∂B(0, ρ2);
(c) f(q) = qM(q) where M is a regular Möbius transformation of B (nec-

essarily such that M(0) = ∂cf(0), whence |M(0)| = a).

In Sec. 6, as an application, we obtain a quaternionic Bloch–Landau-type result
in the spirit of [12]. Although finding a full-fledged quaternionic generalization of
Theorem 1.3 is still an open problem, the new approach used here opens a new
path towards such a generalization, which will be the subject of future research.

2. Preliminary Material

Let us recall some basic material on slice regular functions, see [18, Chap. 1]. We
will henceforth use the adjective regular, for short, to refer to slice regular functions.
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Proposition 2.1. The regular functions on a Euclidean ball

B(0, R) := {q ∈ H | |q| < R}
are exactly the sums of those power series

∑
n∈N

qnan (with {an}n∈N ⊂ H) which
converge in B(0, R).

Between two regular functions on B(0, R), say

f(q) :=
∑
n∈N

qnan, g(q) :=
∑
n∈N

qnbn,

the regular product is defined as follows:

(f ∗ g)(q) :=
∑
n∈N

qn
n∑

k=0

akbn−k.

The regular conjugate of f is defined as

f c(q) :=
∑
n∈N

qnān.

The next definition presents a larger class of domains that are of interest in the
theory of regular functions.

Definition 2.1. A domain Ω ⊆ H is called a slice domain if ΩI = Ω ∩ LI is an
open connected subset of LI

∼= C for all I ∈ S, and Ω intersects the real axis. A
slice domain Ω is termed symmetric if it is symmetric with respect to the real axis,
i.e., if for all x, y ∈ R, I ∈ S the inclusion x + Iy ∈ ΩI implies x + yS ⊂ Ω.

The definition of the multiplication (f, g) �→ f ∗ g can be extended to the case
of regular functions on a symmetric slice domain Ω, leading to the next result. For
more details, see [18, §1.4].

Proposition 2.2. Let Ω be a symmetric slice domain. The set of regular functions
on Ω is a (noncommutative) ring with respect to + and ∗.

The operation f �→ f c can also be consistently extended to the case of regular
functions on a symmetric slice domain Ω. The additional operation of symmetriza-
tion defined by the formula

fs := f ∗ f c = f c ∗ f

allows to define the regular reciprocal of f as

f−∗(q) := fs(q)−1f c(q)

and to prove the next results, where we use the notation Zh := {q ∈ Ω |h(q) = 0}
for the zero set of a regular h : Ω → H. For details, we refer the reader to [18,
Chap. 5].

Theorem 2.1. Let f be a regular function on a symmetric slice domain Ω and
suppose that f �≡ 0. Then f−∗ is regular in Ω\Zfs , which is a symmetric slice
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domain, and

f ∗ f−∗ = f−∗ ∗ f ≡ 1.

Theorem 2.2. Let f, g be regular functions on a symmetric slice domain Ω. Then

(f ∗ g)(q) =

{
0 if f(q) = 0,

f(q)g(f(q)−1qf(q)) otherwise.

If we set Tf (q) := f c(q)−1qf c(q) for all q ∈ Ω\Zfs , then

(f−∗ ∗ g)(q) = f(Tf (q))−1g(Tf(q)), (2.1)

for all q ∈ Ω\Zfs . For all x, y ∈ R with x + yS ⊂ Ω\Zfs ⊂ Ω\Zfc , the function Tf

maps x + yS to itself (in particular, Tf (x) = x for all x ∈ R). Furthermore, Tf is
a diffeomorphism from Ω\Zfs onto itself, with inverse Tfc .

Let us now recall some material on the zeros of regular quaternionic functions,
see [18, Chap. 3]. We begin with a result that is folklore in the theory of quaternionic
polynomials. For all q0 = x0 + Iy0 with x0, y0 ∈ R, I ∈ S, we will use the notation

Sq0 := x0 + y0S.

Theorem 2.3. Let q0, q1 ∈ H and f(q) = (q− q0) ∗ (q− q1). If q1 �∈ Sq0 then f has
two zeros in H, namely q0 and (q0 − q̄1)q1(q0 − q̄1)−1 ∈ Sq1 . Now suppose, instead,

that q1 ∈ Sq0 . If q1 �= q̄0 then f only vanishes at q0, while if q1 = q̄0 then the zero
set of f is Sq0 .

As in the case of a holomorphic complex function, the zeros of a regular quater-
nionic function can be factored out. The relation between the factorization and
the zero set is, however, subtler than in the complex case because of the previous
theorem.

Theorem 2.4. Let f �≡ 0 be a regular function on a symmetric slice domain Ω and
let x+ yS ⊂ Ω. There exist m ∈ N = {0, 1, 2, . . .} and a regular function g : Ω → H,

not identically zero in x + yS, such that

f(q) = [(q − x)2 + y2]mg(q).

If g has a zero p1 ∈ x + yS, then such a zero is unique and there exist n ∈
N, p1, . . . , pn ∈ x + yS (with pl �= p̄l+1 for all l ∈ {1, . . . , n − 1}) such that

g(q) = (q − p1) ∗ · · · ∗ (q − pn) ∗ h(q)

for some regular function h : Ω → H that does not have zeros in x + yS.

This motivates the next definition.

Definition 2.2. In the situation of Theorem 2.4, f is said to have spherical multi-
plicity 2m at x + yS and isolated multiplicity n at p1. Finally, the total multiplicity
of x + yS for f is defined as the sum 2m + n.
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Let us now recall a definition originally given in [24] and a few results from [16],
which concern the real differential of a regular function.

Definition 2.3. Let f be a regular function on a symmetric slice domain Ω, and
let q0 = x0 + Iy0 ∈ Ω with x0, y0 ∈ R, I ∈ S. If y0 �= 0 then the spherical derivative
of f at q0 is defined by the formula

∂sf(q0) := (q0 − q̄0)−1(f(q0) − f(q̄0)).

Proposition 2.3. Let f be a regular function on a symmetric slice domain Ω, and
let q0 = x0 + Iy0 ∈ Ω with x0, y0 ∈ R, I ∈ S. If y0 = 0 then the real differential of
f at q0 acts by right multiplication by the Cullen derivative ∂cf(q0) on the entire
tangent space Tq0Ω  H. If, on the other hand, y0 �= 0 and if we split such space as
H = LI ⊕L⊥

I then the real differential acts on LI by right multiplication by ∂cf(q0)
and on L⊥

I by right multiplication by the spherical derivative ∂sf(q0).

The next result characterizes the singular set Nf of a regular function f , that
is, the set of points where the real differential of f is not invertible.

Proposition 2.4. Let f be a regular function on a symmetric slice domain Ω, and
let q0 ∈ Ω. The real differential of f at q0 is not invertible if and only if there exist
q̃0 ∈ Sq0 and a regular function g : Ω → H such that

f(q) = f(q0) + (q − q0) ∗ (q − q̃0) ∗ g(q), (2.2)

that is, if and only if f−f(q0) has total multiplicity n ≥ 2 at Sq0 . We can distinguish
the following special cases:

• equality (2.2) holds with q̃0 = q̄0 if and only if the spherical derivative ∂sf(q0)
vanishes;

• equality (2.2) holds with q̃0 = q0 if and only if the Cullen derivative ∂cf(q0)
vanishes.

The following theorem asserts that the total multiplicity n of f − f(q0) at Sq0

is, in some sense, a local constant.

Theorem 2.5. Let Ω be a symmetric slice domain and let f : Ω → H be a non-
constant regular function. Then its singular set Nf has empty interior. Moreover,
for a fixed q0 ∈ Nf , let n > 1 be the total multiplicity of f − f(q0) at Sq0 . Then
there exist a neighborhood U of q0 and a neighborhood T of Sq0 such that, for all
q1 ∈ U, the sum of the total multiplicities of the zeros of f − f(q1) in T equals n;
in particular, for all q1 ∈ U\Nf the preimage of f(q1) includes at least two distinct
points of T .

Corollary 2.1. Let Ω be a symmetric slice domain and let f : Ω → H be a regular
function. If f is injective, then its singular set Nf is empty.

For the purposes of our present work, we add the following remark.
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Proposition 2.5. Let Ω be a symmetric slice domain and let f : Ω → H be a
regular function. For each value v of f, the following are equivalent:

• f is not injective in any neighborhood of f−1(v);
• there exist q0, q1 ∈ Ω and a regular g : Ω → H such that

f(q) = v + (q − q0) ∗ (q − q1) ∗ g(g). (2.3)

Proof. Suppose

f(q) = v + (q − q0) ∗ (q − q1) ∗ g(g),

so that in particular f(q0) = v. If q1 �∈ Sq0 then f − v vanishes at some q̃1 ∈ Sq1 .
As a consequence, f(q̃1) = v = f(q0) and f is not injective on any neighborhood of
f−1(v) ⊇ {q0, q̃1}. If, on the other hand, q1 ∈ Sq0 then q0 ∈ Nf by Proposition 2.4.
In such a case, f is not injective in any neighborhood of f−1(v) � q0 by Theorem 2.5.

Now let us prove the converse implication. If v is the value of f at q0 then there
exists h : Ω → H such that f(q) = v + (q − q0) ∗ h(q). If h does not admit any zero
q1 ∈ Ω then f does not take the value v at any other point of Ω other than q0 and
q0 �∈ Nf . As a consequence, f−1(v) = {q0} and f is a local diffeomorphism near q0.
A fortiori, f is injective in a neighborhood of f−1(v).

We conclude our overview of preliminary material with a few results concerning
the unit ball B := {q ∈ H | |q| < 1}. The work [31] introduced the regular Möbius
transformations, namely the functions q �→ Mq0(q)u with u ∈ ∂B, q0 ∈ B and

Mq0(q) := (q − q0) ∗ (1 − q̄0 ∗ q)−∗

= (q − q0) ∗ (1 − qq̄0)−∗ = (1 − qq̄0)−∗ ∗ (q − q0).

These transformations are the only bijective self-maps of B that are regular. In [7],
the following result has been proven.

Theorem 2.6 (Schwarz–Pick lemma). Let f : B → B be a regular function and
let q0 ∈ B. Then in B :

|(f(q) − f(q0)) ∗ (1 − f(q0) ∗ f(q))−∗| ≤ |Mq0(q)|. (2.4)

Moreover,

|∂cf ∗ (1 − f(q0) ∗ f(q))−∗||q0 ≤ 1
1 − |q0|2 , (2.5)

|∂sf(q0)|
|1 − fs(q0)| ≤

1
|1 − q0

2| . (2.6)

If f is a regular Möbius transformation of B, then equality holds in the previous
formulas. Else, all the aforementioned inequalities are strict (except for the first one
at q0, which reduces to 0 ≤ 0).

The proof was based on the following lemmas, proven in [7, 8], respectively.
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Lemma 2.1. If f : B → B is a regular function then for all q0 ∈ B, the function
f̃(q) := (f(q) − f(q0)) ∗ (1 − f(q0) ∗ f(q))−∗ is a regular function from B to itself
with f̃(q0) = 0.

Lemma 2.2. If f : B → B is a regular function having a zero at q0 ∈ B, then
M−∗

q0
∗ f is a regular function from B to itself.

The proof of Lemma 2.2 used the next result (see [18, §7.1]), which will be
thoroughly used in the present work.

Theorem 2.7 (Maximum modulus principle). Let Ω ⊆ H be a slice domain
and let f : Ω → H be regular. If |f | has a relative maximum at p ∈ Ω, then f is
constant. As a consequence, if Ω is bounded and if, for all q0 ∈ ∂Ω,

lim sup
Ω�q→q0

|f(q)| ≤ M

then |f | ≤ M in Ω and the inequality is strict unless f is constant.

Finally, the following lemma, proven in [7] as a further tool for the proof of
Theorem 2.6, will also be useful later in this paper.

Lemma 2.3. Let f, g, h : B = B(0, R) → H be regular functions. If |f | ≤ |g| then
|h∗ f | ≤ |h∗ g|. Moreover, if |f | < |g| then |h∗ f | < |h∗ g| in B\Zh, where we recall
that Zh := {q ∈ B | h(q) = 0}.

3. A Generalized Schwarz–Pick Lemma

Our first step towards a quaternionic version of Landau’s results is a special variant
of Theorem 2.6, concerned with self-maps of B that are not injective. We will start
with the next theorem and then achieve the result which we will apply later in the
paper.

Theorem 3.1. Let f : B → B be a regular function, let q0 ∈ B and set v := f(q0).
If f is not injective in any neighborhood of f−1(v) then there exists p0 ∈ B such
that

|(f(q) − v) ∗ (1 − v̄ ∗ f(q))−∗| ≤ |Mq0(q) ∗Mp0(q)|.
Namely, if q0, q1 ∈ B are such that f(q) = v+(q−q0)∗ (q−q1)∗g(g) holds for some
regular g : B → H, then the previous inequality holds with p0 := (1 − q1q0)−1q1(1 −
q1q0) ∈ Sq1 .

Proof. If f is not injective in any neighborhood of f−1(v) then Proposition 2.5
applies. Let q0, q1 ∈ B be such that

f(q) = v + (q − q0) ∗ (q − q1) ∗ g(g)

for some regular g : B → H. Now,

f̃(q) := (f(q) − v) ∗ (1 − v̄ ∗ f(q))−∗

= (q − q0) ∗ (q − q1) ∗ g(g) ∗ (1 − v̄ ∗ f(q))−∗

1750017-9
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is a self-map of B with a zero at q0. In particular, by Lemma 2.2, h := M−∗
q0

∗ f̃ is
a regular function from B to itself. Moreover,

h(q) = (1 − qq̄0) ∗ (q − q1) ∗ g(g) ∗ (1 − v̄ ∗ f(q))−∗

vanishes at p0 := (1− q1q0)−1q1(1− q1q0) ∈ Sq1 by Theorem 2.2. By applying again
Lemma 2.2, we find that

M−∗
p0

∗ h = M−∗
p0

∗M−∗
q0

∗ f̃

is again a regular function from B to itself. By Lemma 2.3, we conclude that

|f̃ | ≤ |Mq0 ∗Mp0 |
in B, as desired.

The previous result was already known in the special cases when the violation
of injectivity is caused by the vanishing of the Cullen or the spherical derivative
at q0: see [7, Theorems 5.2 and 5.4]. In such cases, the point p0 appearing in the
statement coincides with q0 or q̄0, respectively.

We now exploit Theorem 3.1 and turn it into a result that will be particularly
useful in the sequel.

Theorem 3.2. Let f : B → B be a regular function, which, for some r ∈ (0, 1), is
injective in B(0, r) but is not injective in B(0, r′) for any r′ > r. Then there exists
q0 ∈ ∂B(0, r) such that f is not injective in any neighborhood of f−1(f(q0)) and

|(f(q) − f(q0)) ∗ (1 − f(q0) ∗ f(q))−∗| ≤ |Mq0(q) ∗Mp0(q)|,
for some p0 ∈ B(0, r). In particular, if f(0) = 0 then |f(q0)| ≤ |q0||p0| ≤ r2.

Proof. For each n ≥ 1, since f is not injective in B(0, r + 1/n), there exist two
distinct points pn, qn in B(0, r + 1/n) where f takes the same value vn. Since we
supposed f to be injective in B(0, r), only one of the two points, say pn, may be
included in B(0, r) while qn must have r ≤ |qn| < r + 1/n. Therefore, |qn| → r as
n → +∞ and, up to refining the sequence, qn → q0 for some q0 ∈ ∂B(0, r). Up to
further refinements, pn → p for some p ∈ B(0, r) and vn → v ∈ B. Clearly, f(q0) =
v = f(p). This immediately proves that f is not injective near f−1(v) ⊃ {q0, p},
unless q0 = p. In this last case, we can still prove that f is not injective in any
neighborhood U of q0, as follows: by construction, U includes two distinct points
pn, qn (for some n ∈ N) where f(pn) = vn = f(qn).

We have thus proven that f is not injective in any neighborhood of f−1(v) ⊇
{q0, p}. If we let q1 be a point of Sp such that (2.3) holds and if we set p0 :=
(1 − q1q0)−1q1(1 − q1q0) ∈ Sp ⊂ B(0, r), then by Theorem 3.1,

|(f(q) − v) ∗ (1 − v̄ ∗ f(q))−∗| ≤ |Mq0 ∗Mp0(q)|.
Under the additional hypothesis that f(0) = 0, we now compute both sides of the
inequality at q = 0. For the left-hand side, we use the fact that f(0) = f c(0) =

1750017-10

In
t. 

J.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
03

/2
4/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

March 17, 2017 15:13 WSPC/S0129-167X 133-IJM 1750017

Landau’s theorem for slice regular functions on the quaternionic unit ball

fs(0) = 0. If we set g(q) = f(q) − v then g(0) = f(0) − v = −v. If h(q) = 1 − v̄ ∗
f(q) then hc(q) = 1 − f c(q)v, so that hc(0) = 1; and hs(q) = (1 − v̄ ∗ f(q)) ∗ (1 −
f c(q)v) = 1 − v̄ ∗ f(q) − f c(q)v + v̄ ∗ fs(q)v, so that hs(0) = 1. Therefore,

h−∗(0) = hs(0)−1hc(0) = 1.

Finally,

g ∗ h−∗(0) = g(0)h−∗(0) = −v.

As for the right-hand side of the inequality,

Mq0 ∗Mp0(0) = Mq0(0)Mp0(0) = q0 p0.

Thus, the inequality implies that

|v| ≤ |q0||p0| ≤ r2,

as desired.

4. Bounds for Regular Self-Maps of the Unit Ball Fixing the
Origin

In the present section, we will establish upper and lower bounds for regular functions
B → B that fix the origin 0. In addition to the regular Möbius transformations

Ma(q)u = (1 − qā)−∗ ∗ (q − a) ∗ u, a ∈ B, u ∈ ∂B,

which we encountered in the previous sections, we will use the classical quaternionic
Möbius transformations ; namely, v−1Ma(q)u with a ∈ B, u, v ∈ ∂B and with

Ma(q) := (1 − qā)−1(q − a).

The latter transformations are studied in the literature and well understood: they
are a special case of the class studied in [1]; see also the more recent [5, 6]. A
comparison between classical and regular Möbius transformations is undertaken in
[8]. The following property, which is well known in the complex case, will be very
useful in the sequel.

Lemma 4.1. Fix b ∈ B. Then, for all q ∈ B,

|b| − |q|
1 − |b||q| ≤ |Mb(q)| ≤ |q| + |b|

1 + |b||q| . (4.1)

Moreover, equality holds in the left-hand side if and only if q = rb for some r ∈ [0, 1];
and it holds in the right-hand side if and only if q = rb for some r ∈ (−∞, 0].

Proof. By direct computation,

1 − |b||q| ≤ |1 − b̄q| ≤ 1 + |b||q|

⇒ 1
(1 + |b||q|)2 ≤ 1

|1 − b̄q|2 ≤ 1
(1 − |b||q|)2

1750017-11
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⇒ 1 + |b|2|q|2 − |b|2 − |q|2
(1 + |b||q|)2 ≤ 1 + |b|2|q|2 − |b|2 − |q|2

|1 − b̄q|2

≤ 1 + |b|2|q|2 − |b|2 − |q|2
(1 − |b||q|)2

⇒ |1 + |b||q||2 − ||q| + |b||2
(1 + |b||q|)2 ≤ |1 − b̄q|2 − |q − b|2

|1 − b̄q|2 ≤ |1 − |b||q||2 − ||q| − |b||2
(1 − |b||q|)2

⇒ 1 − ||q| + |b||2
(1 + |b||q|)2 ≤ 1 − |q − b|2

|1 − b̄q|2 ≤ 1 − ||q| − |b||2
(1 − |b||q|)2

⇒ ||q| − |b||
1 − |b||q| ≤

|q − b|
|1 − b̄q| ≤

||q| + |b||
1 + |b||q|

⇒ |b| − |q|
1 − |b||q| ≤ |Mb(q)| ≤ |q| + |b|

1 + |b||q| .

Moreover, equality |1 − b̄q| = 1 ± |b||q| holds if and only if b̄q = ∓|b||q|.

Remark 4.1. If a ∈ (0, 1) then Ma coincides with the regular transformation Ma.
Such an Ma = Ma and its inverse function M−a = M−a fix −1 and 1 and they
map (−1, 1) bijectively into itself in a monotone increasing fashion.

We now establish the announced upper and lower bounds for regular self-maps
of B that fix the origin.

Theorem 4.1. Let f : B → B be a regular function with f(0) = 0. If a := |∂cf(0)|
belongs to (0, 1) then

|q| a − |q|
1 − a|q| ≤ |f(q)| ≤ |q| |q| + a

1 + a|q| , (4.2)

for all q ∈ B. Furthermore, if there exists q ∈ B such that equality holds on the
left-hand side or on the right-hand side, then f(q) = qM(q) where M is a regular
Möbius transformation of B with |M(0)| = a.

Proof. By hypothesis, f(q) = q ∗ g(q) = qg(q) for some g : B → H with g(0) =
∂cf(0). Up to rotating both f and g, we may suppose that g(0) = a. Moreover,

|g(q)| =
|f(q)|
|q| ≤ 1

|q| .

For any r ∈ (0, 1), we can conclude by the Maximum Modulus Principle 2.7, that
|g(q)| ≤ 1/r for all q ∈ B(0, r). Hence, g(B) ⊆ B. By Lemma 2.1,

g̃(q) := (g(q) − a) ∗ (1 − a ∗ g(q))−∗

is a regular self-map of B with g̃(0) = 0. Moreover, by [8, Proposition 2],

g(q) = (g̃(q) + a) ∗ (1 + a ∗ g̃(q))−∗ = (1 + g̃(q)a)−∗ ∗ (g̃(q) + a).
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By formula (2.1), after setting T (q) := (1 + g̃c(q)a)−1q(1 + g̃c(q)a), we have that

g = M−a ◦ g̃ ◦ T.

If we set h := g̃ ◦ T then

f(q) = qM−a(h(q)),

whence, by inequality (4.1),

|q| a − |h(q)|
1 − a|h(q)| ≤ |f(q)| ≤ |q| |h(q)| + a

1 + a|h(q)| .

Moreover,

|h(q)| = |g̃(T (q))| ≤ |T (q)| = |q|
since (by the Schwarz lemma) |g̃(p)| ≤ |p| for all p ∈ B. For the same reason,
|h(q)| = |q| for some q ∈ B if and only if g̃ is a regular rotation, i.e. g̃(q) = qu for
some u ∈ ∂B. If we take into account that M−a is strictly monotone increasing on
(−1, 1), see Remark 4.1, then

|h(q)| + a

1 + a|h(q)| ≤
|q| + a

1 + a|q|
and equality holds if and only if g̃ is a regular rotation. Similarly, since −Ma is
strictly monotone decreasing on (−1, 1) we conclude that

a − |q|
1 − a|q| ≤

a − |h(q)|
1 − a|h(q)|

and that an equality holds if and only if g̃ is a regular rotation. We have thus proven
inequality (4.2) and shown that any equality in (4.2) implies that f(q) = qM(q)
where M is a regular Möbius transformation of B. In such a case, since a := |∂cf(0)|,
necessarily |M(0)| = a.

5. A Quaternionic Version of Landau’s Results

The announced extension of Landau’s Theorems 1.1 and 1.2 to regular quaternionic
functions is achieved in the present section. We begin by studying a special class of
functions that will play an important role in our main result.

Lemma 5.1. Let F (q) := qM(q) where M is any regular Möbius transformation
of B. Suppose that a := |M(0)| is not zero and set ρ := 1−√

1−a2

a . Then there exists
a point q0 with |q0| = ρ where the Cullen derivative ∂cF vanishes and such that
|F (q0)| = ρ2. In particular, if Φ(q) = −qMa(q) then

(1) ∂cΦ(ρ) = 0;
(2) Φ(ρ) = ρ2 or, equivalently, −Ma(ρ) = ρ;
(3) Φ maps (−1, ρ) to (−1, ρ2) in a monotone increasing fashion and (ρ, 1) to

(−1, ρ2) in a monotone decreasing fashion.
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Proof. Let us fix a ∈ (0, 1). We start with the special case of the function

Φ(q) := q ∗ (1 − qa)−∗ ∗ (a − q) = (1 − qa)−1q(a − q),

for which we make the following remarks.

(1) By direct computation,

∂cΦ(q) = (1 − qa)−2[(1 − qa)(a − q) + qa(a − q) − (1 − qa)q]

= (1 − qa)−2(aq2 − 2q + a),

whose only zero inside B is ρ.
(2) By the definition of Φ, Φ(ρ) = ρ2 if and only if −Ma(ρ) = ρ. This is equivalent

to a−ρ = (1−ρa)ρ, that is, to aρ2−2ρ+a = 0, which is true by the definition
of ρ.

(3) Since Ma fixes −1 and 1, the function Φ maps both points to −1. Moreover,
we have just proven that Φ maps ρ to ρ2. The thesis follows by observing that
Φ must be monotone on either interval (−1, ρ), (ρ, 1) since the Cullen (hence
the real) derivative only vanishes at ρ.

Now, a regular Möbius transformation Mbu (with b ∈ B, u ∈ ∂B) maps 0 to a if
and only if a = Mb(0)u = −bu, that is, b = −aū. If we set

Φu(q) := qM−aū(q)u,

then restricting to the plane LI that includes u we get that, for all z ∈ BI = B∩LI ,

Φu(z) = z
z + aū

1 + zua
u = zuū

zu + a

1 + zua
= −Φ(−zu)ū

and ∂cΦu(z) = ∂cΦ(−zu). As a consequence, for q0 := −ρū, we can compute
|Φu(q0)| = ρ2 and ∂cΦu(q0) = 0.

Finally, let us consider F (q) := qM(q) where M is any regular Möbius trans-
formation of B such that |M(0)| = a. If we set

v :=
M(0)
|M(0)|

then M(0)v = a, and Mv is a regular Möbius transformation of B mapping 0 to a.
Hence, F (q)v = qM(q)v = Φu(q) for some u ∈ B and the thesis follows from what
we have already proven for Φu.

We are now ready for the announced result.

Theorem 5.1. Let f : B → B be a regular function with f(0) = 0. If a := |∂cf(0)|
belongs to (0, 1) and if we set ρ := 1−√

1−a2

a then the following properties hold.

(1) The function f is injective at least in the ball B(0, ρ).
(2) For all r ∈ (0, ρ), B(0, r a−r

1−ar ) ⊆ f(B(0, r)) ⊆ B(0, r a+r
1+ar ). As a consequence,

B(0, ρ2) ⊆ f(B(0, ρ)).
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(3) The following are equivalent:

(a) B(0, ρ) is the largest ball centered at 0 where f is injective;
(b) there exists a point q0 ∈ ∂B(0, ρ) with f(q0) ∈ ∂B(0, ρ2);
(c) f(q) = qM(q) where M is a regular Möbius transformation of B (necessarily

such that M(0) = ∂cf(0), whence |M(0)| = a).

Proof. We prove each of the three properties separately.

(1) Since ∂cf(0) �= 0, by Proposition 2.3, we conclude that f is a local diffeomor-
phism near 0. Hence, there is a well defined

r(f) := sup{r ∈ (0, 1) : f is injective in B(0, r)}
and our thesis is r(f) ≥ ρ.
Now, f is a diffeomorphism from B(0, r(f)) onto its image while f is not injec-
tive in B(0, r) for any r > r(f). By Theorem 3.2, there exists a point q0 with
|q0| = r(f) and |f(q0)| ≤ (r(f))2. On the other hand, according to inequal-
ity (4.2),

|f(q0)| ≥ r(f)
a − r(f)
1 − ar(f)

.

The two inequalities together yield

r(f) ≥ a − r(f)
1 − ar(f)

.

The function r �→ a−r
1−ar from the real segment (−1, 1) to itself is strictly decreas-

ing by Remark 4.1 and it has a fixed point at ρ by Lemma 5.1. Therefore, the
last inequality implies that r(f) ≥ ρ, as desired.

(2) The right-hand inclusion

f(B(0, r)) ⊆ B

(
0, r

a + r

1 + ar

)
is an immediate consequence of inequality (4.2) and of the Maximum Modulus
Principle 2.7.

As for the left-hand inclusion, we reason as follows. If we take r < ρ ≤ r(f)
and consider the preimage

U := f−1

(
B

(
0, r

a − r

1 − ar

))
,

then U ⊆ B(0, r) ∪ (B\B(0, ρ)). Indeed, if q ∈ U had r ≤ |q| ≤ ρ then, by
inequality (4.2) and by Lemma 5.1,

|f(q)| ≥ |q| a − |q|
1 − a|q| ≥ r

a − r

1 − ar
,
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which would contradict the fact that f(q) ∈ f(U) ⊆ B(0, r a−r
1−ar ). Thus, the

connected component U0 of U that includes the origin 0 is such that

U0 ⊆ B(0, r) ⊂⊂ B(0, r(f)).

In particular, f is a diffeomorphism from the nonempty bounded open set U0

onto its image

V0 := f(U0) ⊆ B

(
0, r

a − r

1 − ar

)
.

Moreover, f maps the boundary ∂U0 diffeomorphically to

∂V0 ⊆ B

(
0, r

a − r

1 − ar

)
.

Let us prove, by contradiction, that V0 = B(0, r a−r
1−ar ). If this were not the case

then ∂V0 would include some interior point of the ball B(0, r a−r
1−ar ) and ∂U0

would include some point of U . This is a contradiction. Indeed, by construction,
U0 is open and closed in the open set U , whence U ∩ U0 = U ∩ U0 does not
intersect ∂U0.
Therefore,

B

(
0, r

a − r

1 − ar

)
= V0 ⊆ f(B(0, r)),

which proves the left-hand inclusion in property 2.
Finally, by taking the limit as r → ρ, so that r a−r

1−ar → ρ2, we get

B(0, ρ2) ⊆ f(B(0, ρ)),

as desired.
(3) We prove three separate implications.

(a) ⇒ (b) If B(0, ρ) is the largest ball centered at 0 where f is injective then,
by Theorem 3.2, there exists a point q0 with |q0| = ρ and |f(q0)| ≤ ρ2. On the
other hand, according to inequality (4.2),

|f(q0)| ≥ ρ
a − ρ

1 − aρ
= ρ2.

Therefore, there exists a point q0 ∈ ∂B(0, ρ) with |f(q0)| = ρ2.

(b) ⇒ (c) If there exists a point q0 ∈ ∂B(0, ρ) with f(q0) ∈ ∂B(0, ρ2) then
an equality holds on the right-hand side of (4.2) at q = q0. According to
Theorem 4.1, this implies that f(q) = qM(q) where M is a regular Möbius
transformation of B with |M(0)| = a.

(c) ⇒ (a) If f(q) = qM(q) where M is a regular Möbius transformation of
B and if a := |M(0)| then, by Lemma 5.1, ∂cf has a zero of modulus ρ :=
1−√

1−a2

a . In such a case, by Theorem 2.5, the function f is not injective on any
ball B(0, R) with R > ρ.

We conclude this section drawing from Theorem 5.1 a useful consequence.

1750017-16

In
t. 

J.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
03

/2
4/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

March 17, 2017 15:13 WSPC/S0129-167X 133-IJM 1750017

Landau’s theorem for slice regular functions on the quaternionic unit ball

Corollary 5.1. Let f : B(0, R) → H be a bounded regular function. Set C :=
supq∈B(0,R) |f(q) − f(0)|, suppose that a := R

C |∂cf(0)| belongs to (0, 1) and set

ρ := 1−√
1−a2

a . Then the following properties hold:

(1) The function f is injective at least in the ball B(0, ρR).
(2) For all r ∈ (0, ρ), B(f(0), r a−r

1−ar C) ⊆ f(B(0, rR)) ⊆ B(f(0), r a+r
1+ar C). As a

consequence,

B(f(0), ρ2C) ⊆ f(B(0, ρR)).

(3) The following are equivalent:

(a) B(0, ρR) is the largest ball centered at 0 where f is injective;
(b) there exists a point q0 ∈ ∂B(0, ρR) with |f(q0) − f(0)| = ρ2C;
(c) f(q) = f(0) + C

RqM( q
R ) where M is a regular Möbius transformation of B

(necessarily such that M(0) = R
C ∂cf(0), whence |M(0)| = a).

Proof. It is an immediate consequence of Theorem 5.1, applied to

g(q) :=
1
C

(f(qR) − f(0)),

since g : B → B, g(0) = 0 and |∂cg(0)| = a.

6. A New Approach to the Quaternionic Bloch–Landau Theorem

This section presents an application of Theorem 5.1 to a new version of the quater-
nionic Bloch–Landau-type result proven in [12]. We will first prove a lemma and give
a technical definition. In the statements and proofs, the symbol BI(0, R) denotes
the disk B(0, R) ∩ LI and BI stands for B ∩ LI , as usual.

Lemma 6.1. Let g : B(0, R) → H be a regular function. If, for some I ∈ S,

|∂cg(x+ yI)| is bounded by a constant c > 0 in the disk BI(0, R) then g(B(0, R)) ⊆
B(g(0), 2cR).

Proof. Let h(q) := g(q) − g(0). Our thesis will be proven if we show that
h(B(0, R)) ⊆ B(0, 2cR). For all z ∈ BI(0, R), let us denote by �z the line seg-
ment between 0 and z. Then, as in the holomorphic case,

h(z) =
∫

�z

∂cg(ζ)dζ,

whence |h(z)| ≤ c|z| < cR. By [21, Proposition 6.10], we conclude that |h(q)| < 2cR

as desired.

Definition 6.1. Let f : B → H be a regular function and let p = x + Iy ∈ B. We
define fp as the (unique) regular function on the ball B(0, 1 − |p|) that coincides
with z �→ f(p + z) on the disk BI(0, 1 − |p|).
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Remark 6.1. When p is in the real interval (−1, 1) then fp(q) = f(p + q) for all
q ∈ B(0, 1 − |p|).

We now proceed with the announced new version of [12, Theorem 6].

Theorem 6.1. Let Ω ⊆ H be a symmetric slice domain that contains the closure
of the unit ball B and let f : Ω → H be a regular function with |∂cf(0)| = 1. Then
for all I ∈ S there exist p ∈ BI and a ball B centered at 0 such that both of the
following properties hold:

(1) the function fp is injective in B;
(2) the image fp(B) contains a ball B(f(p), b) of radius b > 1/31.

As a consequence, there is a disk D ⊆ BI centered at p such that

(1) the function f is injective in D;
(2) the distance between f(p) and f(∂D) is at least b > 1/31.

Proof. Let us fix I ∈ S and set

h(r) := (1 − r) max
∂BI (0,r)

|∂cf |.

Then h : [0, 1] → R is a continuous function. Since h(0) = 1 and h(1) = 0, there is
a well defined

r0 := max{r ∈ [0, 1] : h(r) = 1} ∈ [0, 1). (6.1)

By the definition of r0, h(r) < 1 for all r ∈ (r0, 1]. Now, let p ∈ ∂BI(0, r0) be such
that

|∂cf(p)| = max
∂BI(0,r0)

|∂cf | =
1

1 − r0
.

If we set ρ0 := 1−r0
2 and ρ1 := 1+r0

2 then |∂cf(p)| = 1
2ρ0

and we have, for all
z ∈ BI(0, ρ1) ⊃ BI(p, ρ0),

|∂cf(z)| ≤ max
∂BI (0,ρ1)

|∂cf | =
h(ρ1)
1 − ρ1

<
1

1 − ρ1
=

1
ρ0

,

where the first inequality follows from the Maximum Modulus Principle 2.7 and
the second inequality follows from the fact that, by construction, ρ1 > r0.

Let us consider the regular function fp : B(0, R) → H with R := 1 − |p|. It has
fp(0) = f(p). Moreover, for all z ∈ BI(0, ρ0),

∂cfp(z) = ∂cf(p + z),

whence |∂cfp(0)| = |∂cf(p)| = 1
2ρ0

and |∂cfp(z)| ≤ 1
ρ0

for all z ∈ BI(0, ρ0). By
Lemma 6.1, fp(B(0, ρ0)) ⊆ B(f(p), 2).
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By applying Corollary 5.1 to fp : B(0, ρ0) → B(f(p), 2), we conclude that fp is
injective in the ball B(0, ρ0ρ) and that fp(B(0, ρ0ρ)) includes B(f(p), 2ρ2), where,
after setting a := ρ0

2 |∂cfp(0)| = 1
4 ,

ρ =
1 −√

1 − a2

a
=

1 − √
1 − (1/4)2

1/4
= 4 −

√
15

and

2ρ2 = 2(31 − 8
√

15) > 1/31.

The main statement is thus proven with B := B(0, ρ0ρ) and b := 2ρ2.
The final statement follows from the definition of fp after setting D := BI(p, ρ0ρ)

and observing that f(∂D) ⊆ fp(∂B).

In the original result of [12], the role of B(f(p), b) was played by an open set of
a different type. This slight improvement is a result of the new approach used here.
The following problem is still open.

Problem 1. Find sufficient conditions on a regular f : B ⊂ Ω → H to guarantee
that the image of f contains a ball (or another open set of a specific type) of
universal radius.

The present work suggests that it might be possible to address the previous
problem by first solving the following one.

Problem 2. Generalize Theorem 5.1 and Corollary 5.1, studying the behavior at
a point p rather than at the origin.

New work is envisioned to achieve the desired generalization, which will most
likely not mimic the classical complex result but involve new exciting phenomena.
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