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Abstract Two proper polynomial maps f1, f2: C2 −→ C
2 are said to be equivalent

if there exist �1, �2 ∈ Aut(C2) such that f2 = �2 ◦ f1 ◦ �1. We investigate proper
polynomial maps of topological degree d ≥ 2 up to equivalence. Under the further
assumption that the maps are Galois coverings, we also provide the complete de-
scription of equivalence classes. This widely extends previous results obtained by
Lamy in the case d = 2.
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1 Introduction

Let f : C2 −→ C
2 be a dominant polynomial map. We say that f is proper if it is

closed and for every point y ∈ C
2 the set f −1(y) is compact. The topological degree

d of f is defined as the number of preimages of a general point.
The semi-group of proper polynomial maps from C

2 to C
2 is not completely un-

derstood yet. It is known that these maps cannot provide any counterexample to the
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Jacobian Conjecture, see [1, Theorem 2.1]. Nevertheless, it is worthwhile to study
them from other points of view, for instance analyzing their dynamical behaviour;
this investigation was recently started in [5, 6, 8] and [9]. In the present paper we do
not consider any dynamical question but we try to generalize to arbitrary d ≥ 3 the
following theorem, proved in [15].

Theorem 1.1 (Lamy) Let f : C2 −→ C
2 be a proper polynomial map of topological

degree 2. Then there exist �1,�2 ∈ Aut(C2) such that

f = �2 ◦ f̃ ◦ �1,

where f̃ (x, y) = (x, y2).

We say that two proper polynomial maps f1, f2: C2 −→ C
2 are equivalent if there

exist �1,�2 ∈ Aut(C2) such that

f2 = �2 ◦ f1 ◦ �1.

One immediately check that equivalent maps have the same topological degree.
Therefore Theorem 1.1 says that when d = 2 there is just one equivalence class,
namely that of f̃ .

The aim of our work is to answer some questions that naturally arise from Lamy’s
result. The first one, already stated in [15], is the following:

Question 1.2 Is every proper polynomial map f : C2 −→ C
2 equivalent to some map

of type (x, y) −→ (x,P (y))?

The answer is negative, and a counterexample is provided already in degree 3 by
the proper map f : C2 −→ C

2 given by

f (x, y) = (x, y3 + xy).

This map was first considered by Whitney; clearly it is not equivalent to any map of
the form (x, y) −→ (x,P (y)), since its branch locus is the cuspidal cubic of equation
4x3 + 27y2 = 0 (see Remark 2.7). The particular form of this counterexample led us
to the following very natural question:

Question 1.3 Is every polynomial map f : C2 −→ C
2 equivalent to some map of

type (x, y) −→ (x,Q(x, y))?

And, more generally:

Question 1.4 How many equivalence classes of proper polynomial maps of fixed
topological degree d ≥ 3 are there?

Answers to Questions 1.3 and 1.4 are the relevant results of Sect. 3, referred as
Theorems A and B.
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Theorem A For every d ≥ 3 there exists at least one proper polynomial map
f : C2 −→ C

2 such that f is not equivalent to a map of type (x, y) −→ (x,Q(x, y)).

Theorem B For all positive integers d,n, with d ≥ 3 and n ≥ 2, consider the poly-
nomial map fd,n: C2 −→ C

2 given by

fd,n(x, y) := (x, yd − dxny).

Then fd,n and fd,m are equivalent if and only if m = n. It follows that there exist
infinitely many different equivalence classes of proper polynomial maps f : C2 −→
C

2 of fixed topological degree d .

Comparing Theorem 1.1 with Theorems A and B, one sees that the behaviour of
proper polynomial maps C

2 −→ C
2 up to equivalence is completely different for

d = 2 and for d ≥ 3. It seems that a satisfactory description of all equivalence classes
in the case d ≥ 3 is at the moment out of reach; nevertheless, one could hope at least
to classify those proper maps enjoying some additional property. For this reason, in
Sect. 4 we restrict our attention to polynomial maps f : C2 −→ C

2 which are Galois
coverings with finite Galois group G. All these maps are proper and their topological
degree equals |G|; moreover G ⊂ Aut(C2) and f can be identified with the quotient
map C

2 −→ C
2/G. Since G is a finite group, we may assume that G ⊂ GL(2,C) by

a polynomial change of coordinates, see [13], and since C
2/G ∼= C

2 it follows that
G is a finite complex reflection group. These groups and their conjugacy classes in
GL(2,C) were completely classified in [21] and [3]. Therefore we may exploit this
classification in order to prove the main result of Sect. 4.

Theorem C (See Theorem 4.8) Let f : C2 −→ C
2 be a polynomial map which is a

Galois covering with finite Galois group G. Then, up to equivalence, we are in one of
the cases in Table 4 of Sect. 4.

Referring to Table 4, we observe that the case d = 2 corresponds to the map f2

(and to the Galois group Z2); therefore our Theorem C widely extends Theorem 1.1.
We finally remark that the equivalence relation studied in the present paper is

weaker than the conjugacy relation, in which we require �2 = �−1
1 . For instance, the

two maps

f1(x, y) = (x, y2) and f2(x, y) = (x, y2 + x)

are equivalent in our sense but they are not conjugate by any automorphism of C
2,

since their sets of fixed points are not biholomorphic. The study of conjugacy classes
of proper maps of given topological degree is certainly an interesting problem, but
we will not consider it here: some good references are [8] and [9].

Some of our computations were carried out by using the Computer Algebra Sys-
tems GAP4 and Singular, see [11] and [20]. For the reader’s convenience, we
included the scripts in Appendix A.



On Proper Polynomial Maps of C
2 75

2 Preliminaries

2.1 Proper Polynomial Maps

We recall the following

Definition 2.1 Let f : Cn −→ C
n be a dominant polynomial map. We say that f is

proper if it is closed and for every point p ∈ C
n the set f −1(p) is compact. Equiv-

alently, f is proper if and only if for every compact set K ⊂ C
n the set f −1(K) is

compact.

Notice that in the first part of the definition, the hypothesis f closed is necessary.
For example, if one considers the map f (x, y) = (x + x2y, y) on C

2, f −1(p) is
compact because it always consists of one or two points. However:

– f is not closed, since the image of the curve xy +1 = 0 is the set of points {(0, y) |
y ∈ C

∗};
– f is not proper, since for any compact neighborhood K of (0,0) the set f −1(K)

is never compact, see [15].

The map also provides an example of a surjective map which is not necessarily proper.
On the other hand, every proper map must be surjective.

There is a purely algebraic condition for a polynomial map to be proper, see
[12, Proposition 3]:

Proposition 2.2 A dominant polynomial map f : Cn −→ C
n is proper if and

only if the push-forward map f∗: C[s1, . . . , sn] −→ C[x1, . . . , xn] is finite, i.e.,
f∗C[s1, . . . , sn] ⊂ C[x1, . . . , xn] is an integral extension of rings.

In the sequel we will focus on proper polynomial maps f : C2 −→ C
2. We write

f (x, y) = (f1(x, y), f2(x, y))

with f1, f2 ∈ C[x, y]. Then the push-forward map will be given by

f∗: C[s, t] −→ C[x, y]
s −→ f1(x, y)

t −→ f2(x, y).

Given such a map f , its Jacobian Jf is the polynomial

Jf (x, y) =
∣
∣
∣
∣

∂f1/∂x ∂f1/∂y

∂f2/∂x ∂f2/∂y

∣
∣
∣
∣
.

The critical locus Crit(f ) of f is the affine variety V (Jf ) ⊂ C
2. The branch locus

B(f ) of f is the image of the critical locus, that is B(f ) = f (Crit(f )). Since f is
proper, the restriction

f : C2 \ f −1(B(f )) −→ C
2 \ B(f )
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is an unramified covering of finite degree d ; we will call d the topological degree
of f .

Definition 2.3 We say that two proper polynomial maps f1, f2: C2 −→ C2 are
equivalent if there exist �1, �2 ∈ Aut(C2) such that

f2 = �2 ◦ f1 ◦ �1. (1)

Remark 2.4 This equivalence relation in the semi-group of proper polynomial maps
is weaker than the conjugacy relation, in which we require �2 = �−1

1 . For instance,
the two maps f1(x, y) = (x, y2) and f2(x, y) = (x, y2 + x) are equivalent in our
sense but they are not conjugate by any automorphism of C

2, since their sets of fixed
points are not biholomorphic. The study of conjugacy classes of proper polynomial
maps of given topological degree is an interesting problem, but we will not consider
it in this paper.

Proposition 2.5 If f1 and f2 are equivalent then they have the same topological
degree. Moreover Crit(f1) is biholomorphic to Crit(f2) and B(f1) is biholomorphic
to B(f2).

Proof Assume that (1) holds. Since �1 and �2 have topological degree 1, it follows
that f1 and f2 have the same topological degree. By the chain rule we have

Jf2 = J�2 · Jf1 · J�1,

so we obtain

Crit(f2) = �−1
1 (Crit(f1)), B(f2) = �2(B(f1))

and this completes the proof. �

Definition 2.6 We say that a polynomial map f : C2 −→ C
2 is semi-separate if it is

of the form

f (x, y) = (x,Q(x, y)),

where Q(x,y) ∈ C[x, y]. In particular we say that it is separate if it is of the form

f (x, y) = (x,P (y)),

where P(y) ∈ C[y].
Recall that a polynomial Q(x,y) ∈ C[x, y] is called monic with respect to y if

Q(x,y) = ayn + terms of lower degree in y, a ∈ C
∗.

By Proposition 2.2 it follows that a semi-separate polynomial map f is proper if and
only if Q(x, y) is monic with respect to y; in this case, up to a dilation we may
assume that f has the form

f (x, y) = (x, yd + qd−1(x)yd−1 + · · · + q0(x)), (2)
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where d is the topological degree. Notice that the Jacobian of (2) is

Jf (x, y) = dyd−1 + (d − 1)qd−1(x)yd−2 + · · · + q1(x). (3)

For example, let us consider the case of a general semi-separate map f : C2 −→ C
2

of topological degree 3. By using a linear transformation we can get rid of the term
in y2; therefore, up to equivalence, f has the form

f (x, y) = (x, y3 + p(x)y + q(x)).

Then Crit(f ) has equation

3y2 + p(x) = 0,

whereas B(f ) has equation

y2 − 2q(x)y + �(x)

27
= 0,

where �(x) := 27q(x)2 + 4p(x)3 is the discriminant of y3 + p(x)y + q(x). In par-
ticular, taking p(x) = x and q(x) = 0, we obtain the Whitney map

f (x, y) = (x, y3 + xy),

whose branch locus is the cuspidal cubic curve of equation 4x3 + 27y2 = 0.

Remark 2.7 By (3) it follows that the branch locus of a separate map is a disjoint
union of lines. Therefore the previous computations together with Proposition 2.5
show that the Whitney map is not equivalent to a separate one.

The following lemma will be used in the proof of Theorem A, see Sect. 3.

Lemma 2.8 Let f : C2 −→ C
2 be a semi-separate map as in (2), with d ≥ 3. If there

exist two polynomials H1(x, y), H2(x, y) such that

Jf (x, y) = H1(x, y)d−2H2(x, y),

then both affine curves V (H1) and V (H2) are biholomorphic to C.

Proof By using (3) we can write

dyd−1 + (d − 1)qd−1(x)yd−2 + · · · + q1(x) = H1(x, y)d−2H2(x, y). (4)

The left-hand side of (4) is monic with respect to y, so it cannot be divided by a poly-
nomial in x. It follows that both H1 and H2 contain y. Therefore, by comparing the
degrees, it follows that both H1 and H2 are monic of degree 1 in y, that is we may
assume

H1(x, y) = y + h1(x), H2(x, y) = dy + h2(x),

for some h1(x), h2(x) ∈ C[x]. This completes the proof. �
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2.2 Milnor Number of a Plane Curve Singularity

In this subsection we summarize without proofs the definition and the properties of
the Milnor number of a plane curve singularity. For further details we refer the reader
to [16, Chap. 1] and [7, Chap. 3] and [4].

Let C{x, y} be the ring of convergent power series in two variables; it is a local
ring whose maximal ideal m consists of series with zero constant term, that is of
series vanishing at the point o = (0,0).

Definition 2.9 A plane curve singularity X is a germ of an analytic space (V (F ), o),
where F ∈ m ⊂ C{x, y}.
Definition 2.10 Let X = (V (F ), o) be a plane curve singularity. We define the Mil-
nor number μ(X, o) by

μ(X,o) := dimC

C{x, y}
(

∂F
∂x

, ∂F
∂y

) .

Theorem 2.11 The Milnor number is well defined and it is an invariant of the singu-
larity. Moreover μ(X,o) < +∞ if and only if X is a germ of an isolated plane curve
singularity.

Example 2.12 Set Fd,n(x, y) = yd − xn with d,n ≥ 2. The point o = (0,0) is the
only singularity of the affine curve Cd,n = V (Fd,n), and the corresponding Milnor
number is given by

μd,n := μ(Cd,n, o) = dimC

C{x, y}
(xn−1, yd−1)

= (d − 1)(n − 1).

3 Proofs of Theorems A and B

We start by proving Theorem A.

Theorem A For every d ≥ 3 there exists at least one proper polynomial map
f : C2 −→ C

2 such that f is not equivalent to a map of type (x, y) −→ (x,Q(x, y)).

Proof Consider the polynomial map fd : C2 −→ C
2 defined as follows:

fd(x, y) := (x + y + xy, xd−1y).

Claim 3.1 The map fd is proper and has topological degree d for all d ≥ 2.

Indeed, look at the push-forward map

fd∗: C[s, t] −→ C[x, y]
s −→ x + y + xy

t −→ xd−1y.
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The element x ∈ C[x, y] satisfies the monic equation of degree d

Xd − sXd−1 + tX + t = 0.

Analogously, the element y satisfies the monic equation

Y(s − Y)d−1 − t (1 + Y)d−1 = 0.

This shows that fd∗C[s, t] ⊂ C[x, y] is a integral extension of rings of degree d ,
hence Proposition 2.2 implies that fd is a proper map of degree d . This proves our
claim.

Now we want to show that fd is not equivalent to any semi-separate map for all
d ≥ 3.

The Jacobian Jfd
(x, y) splits as

Jfd
(x, y) = H1(x, y)d−2H2(x, y), (5)

where

H1(x, y) = x, H2(x, y) = (2 − d)xy + x − (d − 1)y.

For all d ≥ 3, the conic V (H2) is biholomorphic to C∗. Since C and C∗ are obviously
not biholomorphic, it follows by Proposition 2.5 and Lemma 2.8 that there exists
no semi-separate map equivalent to fd , for all d ≥ 3. This concludes the proof of
Theorem A. �

Remark 3.2 For d = 2 the map fd is equivalent to a semi-separate one. Indeed, con-
sider �1,�2 ∈ Aut(C2) defined by

�1(x, y) =
(

x + y

2
,
x − y

2

)

, �2(x, y) = (x2 + 2x − y, x2 − y).

Then we have

f2(x, y) = �2 ◦ f̃ ◦ �1(x, y),

where f̃ (x, y) = (x, y2), in accordance with Theorem 1.1.
Now let us prove Theorem B.

Theorem B For all positive integers d,n, with d ≥ 3 and n ≥ 2, consider the poly-
nomial map fd,n: C2 −→ C

2 given by

fd,n(x, y) := (x, yd − dxny).

Then fd,n and fd,m are equivalent if and only if m = n. It follows that there exist
infinitely many different equivalence classes of proper polynomial maps f : C2 −→
C

2 of fixed topological degree d .
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Proof The critical locus of the map fd,n is the affine curve Cd−1,n of equation yd−1 −
xn = 0, whose unique singularity is o = (0,0). The Milnor number of Cd−1,n in o is
given by

μd−1,n = μ(Cd−1,n, o) = (d − 2)(n − 1),

see Example 2.12. Hence μd−1,n = μd−1,m if and only if m = n. It follows by Theo-
rem 2.11 that the curves Cd−1,n and Cd−1,m are not biholomorphic if m 
= n, therefore
Proposition 2.5 implies that fd,n and fd,m are not equivalent if m 
= n.

This concludes the proof of Theorem B. �

4 The Case of Galois Coverings

Let f : C2 −→ C
2 be a polynomial map which is a Galois covering with finite Galois

group G. By Proposition 2.2, f is proper and its topological degree equals |G|; more-
over G ⊂ Aut(C2), and f can be identified with the quotient map C

2 −→ C
2/G.

Since G is a finite group, we may assume G ⊂ GL(2,C) by a polynomial change of
coordinates [13, Corollary 4.4] and, since C

2/G ∼= C
2, it follows that G is a finite

complex reflection group. Let us denote by C[x, y]G the subalgebra of G-invariant
polynomials; then the following two conditions are equivalent, see [3, p. 380]:

(i) there are two algebraically independent homogeneous polynomials φ1, φ2 ∈
C[x, y]G which satisfy |G| = deg(φ1) · deg(φ2);

(ii) there are two algebraically independent homogeneous polynomials φ1, φ2 ∈
C[x, y]G such that 1, φ1, φ2 generate C[x, y]G as an algebra over C.

We say that φ1, φ2 are a basic set of invariants for G. Furthermore, putting d1 :=
deg(φ1), d2 := deg(φ2), the set {d1, d2} is independent of the particular choice of
φ1, φ2. We call d1, d2 the degrees of G.

Proposition 4.1 Let φ1, φ2 and ψ1,ψ2 be two basic sets of invariants for G. Then
the two polynomial maps φ,ψ : C2 −→ C

2 defined by

φ(x, y) = (φ1(x, y),φ2(x, y)),

ψ(x, y) = (ψ1(x, y),ψ2(x, y))

are equivalent.

Proof Set

d1 = deg(φ1) = deg(ψ1), d2 = deg(φ2) = deg(ψ2),

with d1 ≤ d2. Since both {1, φ1, φ2} and {1,ψ1,ψ2} generate C[x, y]G, we may ex-
press both φ1 and φ2 as polynomials in ψ1,ψ2. Looking at the degrees, one sees that
there are three cases.
• If d1 � d2, then there exist a, b ∈ C

∗ such that

φ1 = aψ1, φ2 = bψ2.
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Set �(x, y) = (ax, by).
• If d1|d2 and d1 
= d2, set s = d2/d1. Then there exist a, c, d ∈ C, ad 
= 0, such that

φ1 = aψ1, φ2 = cψs
1 + dψ2.

Set �(x,y) = (ax, cxs + dy).
• If d1 = d2, then there exist a, b, c, d ∈ C, (ad − bc) 
= 0, such that

φ1 = aψ1 + bψ2, φ2 = cψ1 + dψ2.

Set �(x,y) = (ax + by, cx + dy).
In all cases � ∈ Aut(C2), see [10], and φ = � ◦ ψ . This completes the proof. �

Corollary 4.2 Let f : C2 −→ C
2 be a Galois covering with finite Galois group G.

Then f is equivalent to the map φ(x, y) = (φ1(x, y),φ2(x, y)), where φ1, φ2 is any
basic set of invariants for G.

It is well known that there exists a unitary inner product on C
2 invariant under G,

hence we may assume that G is a subgroup of the unitary group U(2), see [3, p. 382].
There are two cases, according whether the representation G ⊂ U(2) is reducible or
not.

4.1 The Reducible Case

Assume that there exists a 1-dimensional linear subspace V ⊂ C
2 which is invariant

under G; then its orthogonal complement V ⊥ is also invariant [19, Chap. 1], and up to
a linear change of coordinates we may assume V = 〈e1〉, V ⊥ = 〈e2〉, where {e1, e2}
is the canonical basis of C

2. This means that G is generated by

g1(x, y) = (θmx, y), g2(x, y) = (x, θny),

where θm is a primitive m-th root of unity and θn is a primitive n-th root of unity,
respectively. Therefore we obtain the following

Proposition 4.3 Let G ⊂ U(2) be a reducible finite complex reflection group acting
on C

2. Then, up to a change of coordinates, we are in one of the following cases:

(1) G = Zm, generated by

g =
(

1 0
0 exp(2πi/m)

)

;

(2) G = Zm × Zn, generated by

g1 =
(

exp(2πi/m) 0
0 1

)

and g2 =
(

1 0
0 exp(2πi/n)

)

.



82 C. Bisi, F. Polizzi

4.2 The Irreducible Case

The finite irreducible complex reflection groups were classified by Shephard and
Todd in [21]. They found an infinite family G(m,p,2), depending on two positive
integer parameters m, p, with p|m, and 19 exceptional cases, that they numbered
from 4 to 22. We start by describing the groups belonging to the infinite family. One
has

G(m,p,2) = Z2 � A(m,p,2),

where A(m,p,2) is the Abelian group of order m2/p whose elements are the ma-
trices

(
θα1 0

0 θα2

)

, with θ = exp(2πi/m) and α1 + α2 ≡ 0 (mod p), whereas Z2 is

generated by
( 0 1

1 0

)

. In particular, G(m,m,2) is the dihedral group of order 2m.

Proposition 4.4 (1) G(m,p,2) acts irreducibly on C
2, except in the case G(2,2,2).

In particular, G(m,p,2) is non-Abelian provided that (m,p) 
= (2,2).
(2) The only groups in the family G(m,p,2) which are isomorphic as abstract

groups are G(2,1,2) and G(4,4,2).

Proof (1) Suppose that G = G(m,p,2) leaves invariant a nontrivial proper linear
subspace V ⊂ C

2. In particular, V must be invariant under the linear transformation
(x, y) −→ (y, x), hence we may assume, up to an interchanging of V and V ⊥, that
V is the line x − y = 0. As A(m,p,2) stabilizes V , all diagonal coefficients of an
element of A(m,p,2) must be equal. From this, one easily deduces that m = p = 2.
On the other hand, it is obvious that G(2,2,2) ∼= Z2 × Z2 acts reducibly on C

2.
(2) Assume that G(m,p,2) and G(m′,p′,2) are isomorphic as abstract groups.

In particular |G(m,p,2)| = |G(m′,p′,2)| and |Z(G(m,p,2))| = |Z(G(m′,p′,2))|.
Setting q = m/p, q ′ = m′/p′, by [3, p. 387] we obtain

mq = m′q ′, q · gcd(p,2) = q ′ · gcd(p′,2).

If gcd(p,2) = gcd(p′,2) we have q = q ′, hence m = m′ and p = p′. Therefore,
we may suppose that p is odd and p′ is even. Hence q = 2q ′, that is m′ = 2m and
p′ = 4p. Since p′|m′, it follows that m must be even. Summing up, we are left to
understand when G(m,p,2) and G(2m,4p,2), m even, p odd are isomorphic as
abstract groups. If m is even and p is odd, there are exactly m + 3 elements of order
2 in G(m,p,2), namely

(

θm/2 0
0 1

)

,

(

1 0
0 θm/2

)

,

(

θm/2 0
0 θm/2

)

and

(

0 θα1

θα2 0

)

,

where α1 + α2 = m. On the other hand, the two matrices
(

θm 0
0 1

)

,

(

1 0
0 θm

)

belong to G(2m,4p,2) if and only if 4|m. So G(2m,4p,2) contains 2m + 3 ele-
ments of order 2 if 4|m, and 2m + 1 elements of order 2 if 4 � m. Consequently, if
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G(m,p,2) and G(2m,4p,2), m even, p odd are isomorphic as abstract groups the
only possibility is 4 � m and m + 3 = 2m + 1, that is m = 2, p = 1. Finally, it is not
difficult to check that G(2,1,2) and G(4,4,2) are conjugate in U(2), hence they are
isomorphic not only as abstract groups, but actually as complex reflection groups, see
[3, p. 388]. �

Now let us consider the exceptional groups in the Shephard-Todd’s list. We closely
follow the treatment given in [21]. For p = 3,4,5, the abstract group

〈s, t | s2 = t3 = (st)p = 1〉
is isomorphic to A4, S4 and A5, respectively. These are the well-known groups of
symmetries of regular polyhedra: A4 is the symmetry group of the tetrahedron, S4
is the symmetry group of the cube (and of the octahedron) and A5 is the symmetry
group of the dodecahedron (and of the icosahedron). We take Klein’s representation
of these groups by complex matrices [14], and we call S1, T1 the matrices correspond-
ing to the generators s and t , respectively. Therefore the exceptional finite complex
reflection groups are generated by matrices

S = λS1, T = μT1, Z = exp(2πi/k)I,

where λ, μ are suitably chosen roots of unity and k is a suitable integer. The corre-
sponding abstract presentations are of the form

〈

S,T ,Z | S2 = Zk1, T 3 = Zk2 , (ST )p = Zk3 , [S,Z] = 1, [T ,Z] = 1,Zk = 1
〉

(6)

where p = 1,2,3 and k1, k2, k3, k are suitably chosen integers. We shall arrange the
possible values of λ, μ, k1, k2, k3, k in tabular form, according to Shephard-Todd’s
list [21, p. 280–286].
Exceptional groups derived from A4. Set ω = exp(2πi/3), ε = exp(2πi/8). We have

S1 =
(

i 0
0 −i

)

, T1 = 1√
2

(

ε ε3

ε ε7

)

.

The four corresponding groups are shown in Table 1. Here IdSmallGroup(G)

denotes the label of G in the GAP4 database of small groups, which includes all
groups of order less than 2000, with the exception of 1024 [11]. For instance, one has
[24,3]= SL2(F3) and this means that SL2(F3) is the third in the list of groups of
order 24 (see the GAP4 script 1 in Appendix A).
Exceptional groups derived from S4. We have

S1 = 1√
2

(

i 1
−1 −i

)

, T1 = 1√
2

(

ε ε

ε3 ε7

)

.

The eight corresponding groups are shown in Table 2.
Exceptional groups derived from A5. Set η = exp(2πi/5). We have

S1 = 1√
5

(

η4 − η η2 − η3

η2 − η3 η − η4

)

, T1 = 1√
5

(

η2 − η4 η4 − 1
1 − η η3 − η

)

.
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Table 1 Exceptional groups derived from A4

No. IdSmall λ μ k1 k2 k3 k Degrees

Group(G)

4 [24,3] −1 −ω 1 2 2 2 4, 6

5 [72,25] −ω −ω 1 6 6 6 6, 12

6 [48,33] i −ω 4 4 1 4 4, 12

7 [144,157] iω −ω 8 12 3 12 12, 12

Table 2 Exceptional groups derived from S4

No. IdSmall λ μ k1 k2 k3 k Degrees

Group(G)

8 [96,67] ε3 1 1 2 4 4 8, 12

9 [192,963] i ε 8 7 8 8 8, 24

10 [288,400] ε7ω2 −ω 7 12 12 12 12, 24

11 [576,5472] i εω 24 21 8 24 24, 24

12 [48,29] i 1 2 1 1 2 6, 8

13 [96,192] i i 4 1 2 4 8, 12

14 [144,122] i −ω 6 6 5 6 6, 24

15 [288,903] i iω 12 3 10 12 12, 24

Table 3 Exceptional groups derived from A5

No. IdSmall λ μ k1 k2 k3 k Degrees

Group(G)

16 [600,54] −η3 1 7 10 10 10 20, 30

17 [1200,483] i iη3 20 11 20 20 20, 60

18 [1800,328] −ωη3 ω2 11 30 30 30 30, 60

19 [3600, ] iω iη3 40 33 40 60 60, 60

20 [360,51] 1 ω2 3 6 5 6 12, 30

21 [720,420] i ω2 12 12 1 12 12, 60

22 [240, 93] i 1 4 4 3 4 12, 20

The seven corresponding groups are shown in Table 3.

Proposition 4.5 None of the groups in Tables 1, 2, 3 is isomorphic as an abstract
group to some G(m,p,2).

Proof Let G be one of the groups in the tables. Looking at the presentation (6), one
easily sees that the center of G is 〈Z〉 ∼= Zk and that this is the maximal normal
Abelian subgroup of G. Since in every case 2k < |G|, this implies that G contains no
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normal Abelian subgroups of index 2, hence it cannot be isomorphic to G(m,p,2) =
Z2 � A(m,p,2). �

Definition 4.6 A finite group G of unitary automorphisms of C
2 is called imprimitive

if C
2 = V1 ⊕ V2, where V1 and V2 are nontrivial proper linear subspaces such that

the set {V1,V2} is invariant under G. If such a direct splitting of C
2 does not exist, G

is called primitive.

Notice that every group G(m,p,2) is imprimitive, since we can take V1 = 〈e1〉,
V2 = 〈e2〉. By Proposition 4.4 and [3, p. 386 and p. 394] one obtains

Proposition 4.7 Let G be an irreducible finite complex reflection group acting on C
2.

(1) If G is imprimitive, then G is conjugate in U(2) to G(m,p,2) for some m,p ∈ N,
p|m, (m,p) 
= (2,2). The pair (m,p) is uniquely determined, with the exception
of G(2,1,2) which is conjugate to G(4,4,2).

(2) If G is primitive, then G is conjugate in U(2) to exactly one of the groups
4, . . . ,22 in Tables 1, 2, 3.

4.3 The Classification

Now we can give the classification, up to equivalence, of finite Galois coverings
f : C2 −→ C

2. Set

a4(x, y) = x4 + (4ξ − 2)x2y2 + y4, ξ = exp(2πi/6),

b6(x, y) = x5y − xy5,

c8(x, y) = x8 + 14x4y4 + y8,

d12(x, y) = x12 − 33x8y4 − 33x4y8 + y12,

e12(x, y) = x11y + 11x6y6 − xy11,

f20(x, y) = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20,

g30(x, y) = x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30.

Then we have

Theorem 4.8 Let f : C2 −→ C
2 be a polynomial map which is a Galois covering

with finite Galois group G. Then, up to equivalence, we are in one of the cases in
Table 4 below. Furthermore, these maps are pairwise non-equivalent, with the only
exception of f2,1,2 and f4,4,2.

Proof By Propositions 4.3 and 4.7, G is conjugate in U(2) to one of the groups in Ta-
ble 4. Moreover by Propositions 4.4 and 4.5 these groups are pairwise not isomorphic,
with the unique exception of G(2,1,2) and G(4,4,2). Therefore, by Corollary 4.2 it
is sufficient to show that in every case φ1, φ2 form a basic set of invariants for G. This
is obvious in the first three cases. For the remaining groups we can do a case-by-case
analysis, using the description of G given in Subsects. 4.1 and 4.2. A shorter proof
can be obtained by noticing that:



86 C. Bisi, F. Polizzi

– a4 is G4-invariant and, up to a multiplicative constant,

b6 = Jacobian(a4,Hessian(a4));
– b6 is G12-invariant and, up to multiplicative constants,

c8 = Hessian(b6) and d12 = Jacobian(b6, c8);
– e12 is G20-invariant and, up to multiplicative constants,

f20 = Hessian(e12) and g30 = Jacobian(e12, f20).

Then φ1, φ2 form a basic sets of invariants for G4, . . . ,G22 by [21, p. 285–286],
[2, 14].

Finally, the computation of the branch locus in each case is a straightforward ap-
plication of elimination theory and can be carried out with the help of the Computer
Algebra System Singular [20]. Look at the Singular script 3 in Appendix A to
see how this applies to an explicit example, namely the map f̃4. �

Table 4 Galois coverings with Galois group G

Map φ1, φ2 G Branch locus

fm x,ym
Zm y = 0

fm,n xm,yn
Zm × Zn xy = 0

fm,p,2 xm/pym/p, xm + ym G(m,p,2) x(y2 − 4xp) = 0 if p 
= m

y2 − 4xp = 0 if p = m

f̃4 a4,b6 G4 =[24, 3] x3 + (−24ξ + 12)y2 = 0

f̃5 b6, (a4)3 G5 =[72, 25] y(x2 + ( 1
18ξ

− 1
36 )y) = 0

f̃6 a4, (b6)2 G6 =[48, 33] y(x3 + (−24ξ + 12)y2) = 0

f̃7 (b6)2, (a4)3 G7 = [144, 157] xy(x + ( 1
18ξ

− 1
36 )y) = 0

f̃8 c8,d12 G8 =[96, 67] y2 − x3 = 0

f̃9 c8, (d12)2 G9 = [192, 963] y(y − x3) = 0

f̃10 d12, (c8)3 G10 =[288, 400] y(y − x2)=0

f̃11 (d12)2, (c8)3 G11 =[576, 5472] xy(x − y) = 0

f̃12 b6, c8 G12 =[48, 29] y3 − 108x4 = 0

f̃13 c8, (b6)2 G13 =[96, 192] y(x3 − 108y2)=0

f̃14 b6, (d12)2 G14 =[144, 122] y(y + 108x4)=0

f̃15 (b6)2, (d12)2 G15 = [288, 903] xy(y + 108x2) = 0

f̃16 f20,g30 G16 =[600, 54] y2 − x3 = 0

f̃17 f20, (g30)2 G17 =[1200, 483] y(y − x3) = 0

f̃18 g30, (f20)3 G18 =[1800, 328] y(y − x2) = 0

f̃19 (g30)2, (f20)3 G19 = [3600, ] xy(x − y) = 0

f̃20 e12,g30 G20 = [360, 51] y2 − 1728x5 = 0

f̃21 e12, (g30)2 G21 =[720, 420] y(y − 1728x5) = 0

f̃22 e12, f20 G22 =[240, 93] y3 + 1728x5 = 0
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The following corollary generalizes Theorem 1.1 to the case of Galois coverings
of arbitrary degree.

Corollary 4.9 For all d ≥ 2, there exist only finitely many equivalence classes of
Galois coverings f : C2 −→ C

2 of topological degree d .

Proof For all d ≥ 2, there are only finitely many integers m, n, p such that any of the
equalities

|Zm| = d, |Zm × Zn| = d, |G(m,p,2)| = d

holds. �

Remark 4.10 The computation of the invariant polynomials a4, . . . ,g30 goes back
to Klein, see [14]. Nowadays, it can be easily carried out by using the Singular
script 2 in Appendix A.

Remark 4.11 Some of the coverings in Table 4 already appeared in the literature. For
instance, those with groups G(m,m,2), G4, G8, G16, G20 were studied (by different
methods) in [18], whereas those with groups G(m,1,2), G5, G6, G9, G10, G14, G17,
G18, G21 were studied in [17].

Remark 4.12 The critical locus of every map in Table 4 is a finite union of lines
through the origin, since the two components φ1, φ2 are always homogeneous poly-
nomials. Therefore in each case the origin is a total ramification point and this in turn
implies that all these examples are “polynomial-like” self-maps of C

2, see [6, Ex-
ample 2.1.1]. In particular, their dynamical behaviour has been largely investigated,
see [5].

Acknowledgements The first author wishes to thank Domenico Fiorenza for some fruitful conversations
on the subject.

Appendix A

In this appendix we include for the reader’s convenience some of the GAP4 and
Singular scripts that we have used in our computations; all the others are simi-
lar and can be easily obtained modifying the ones below.

The GAP4 script 1 finds the label [24, 3] of the group G4 in Table 4 and shows
that it is isomorphic to SL2(F3). The Singular script 2 computes the basic set
of invariants a4, b6 for G4, whereas the Singular script 3 shows that the branch
locus of the map f̃4(x, y) = (a4(x, y),b6(x, y)) is the curve x3 + (−24 exp(2πi/6)+
12)y2 = 0.

gap> ####### GAP4 SCRIPT 1:
Identifying the groups #######

gap> F:=FreeGroup("s", "t", "z");; gap> s:=F.1;;
t:=F.2;; z:=F.3;;
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gap> #insert the presentation of G
gap> G:=F/[s^2*z^-1, t^3*z^-2, (s*t)^3*z^-2,
> z*s*z^-1*s^-1, z*t*z^-1*t^-1, z^2];;
gap> # compute the label of G
gap> IdSmallGroup(G);
[24, 3]
gap> # check that G is isomorphic to SL(2,3)
gap> G1:=SL(2,3);; IdSmallGroup(G1);
[24, 3]

> ; // ------- SINGULAR SCRIPT 2:
Finding the invariants -------

> LIB("finvar.lib");
> ring R =(0,a), (x, y), dp;
> ; // minimal polynomial of a=exp(2 pi i/24)
> minpoly = a^8-a^4+1;
> number e=a^3;
> number w=a^8;
> number i=e^2;
> number r2=e-e^3; // r2=sqrt(2)
> ; // define the matrices S1 and T1
> matrix S1[2][2]= i, 0, 0, -i;
> matrix T1[2][2]= e*r2^-1, e^3*r2^-1,

e*r2^-1, e^7*r2^-1;
> ; // define the matrices S and T
> matrix S = -S1;
> matrix T = -w * T1;
> ; // compute a basic set of invariants
> ; // for the group generated by S and T
> invariant_ring(S, T);
_[1,1]=x4+(4a4-2)*x2y2+y4
_[1,2]=x5y-xy5 _[1,1]=1 _[1,1]=0

> ; // ------- SINGULAR SCRIPT 3:
Computing the branch locus -------

> ring R = (0, a), (s, t, x, y), dp;
> ; // minimal polynomial of a=exp(2 pi i/6)
> minpoly = a^2-a+1;
> ; // define the map f(s,t)=(X(s,t), Y(s,t))
> poly X = s4+(4a-2)*s2t2+t4;
> poly Y = s5t-st5;
> ; // compute the Jacobian of f
> poly j = diff(X,s)*diff(Y,t)-diff(X,t)*diff(Y,s);
> ideal I = j, x-X, y-Y;
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> ; // compute the equation of the branch curve B(f)
> ; // by eliminating the variables s, t
> ideal J = eliminate(I, st);
> J;
J[1]=x3+(-24a+12)*y2
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