BOUNDARY CONSTRUCTIONS OF PETALS
AT THE WOLFF POINT IN THE PARABOLIC CASE
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Abstract. In the same spirit of the classical Leau—Fatou flower theprem
we prove the existence of a petal, with vertex at the Wolfinpdior a holomor-
phic self-mapf of the open unit diseA C C of parabolic type. The result is
obtained in the framework of two interesting dynamical &itons which require
different kinds of regularity off at the Wolff pointr: f of non-automorphism

type andRe(f” (r)) > 0 or f injective of automorphism type;, ¢ C3+<(r) and
Re(f (1)) =0.

1 Introduction

Let f be a holomorphic map from the unit digk = {z € C : |z| < 1} tO
itself without fixed points. For any € A and for anyR > 0, let O(o, R) =
{z € A+ 2 < R} be the horocycle with radiug and centep. The classical
Wolff Lemma (see, e.g., [1]) shows that there is a unique fpoia OA such that
f(O(r,R)) € O(1, R), for all R > 0, i.e., f maps each horocycle of centee 0A
and radiusk > 0 into itself. Such a point is called the Wolff point off.

For anys € 9A and anyM > 1, let K (o, M) = {z € A : 75 < M} be the
Stolz region of amplitud@/ and vertex. We say thab is the non-tangential limit
of f ate, and writeK —lim,_,, f = ¢, if f(z) tends t@) when: tends tar within any
Stolz region of vertex, for all M > 1. As a consequence of Wolff’s Lemmajs
the unique point iMA such thatk’ — lim._., f(z) = 7 andK — lim,_,. | f'(z)| < 1.
Hence, from a dynamical point of view, the Wolff point is arttfacting fixed
point.” If 7 is the WolIff point of f, we say thatf is of parabolic type when
K —lim,_,, f'(z) = 1.

In the classical case of germs of holomorphic maps at 0 whickh& point
0 and have modulus of the first derivative equal tat the fixed point, a fruitful
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approach to explore the dynamics of the iterates is the narigin of petals with
vertex at O (see, e.g., [10], [13], [14], [17], [19], [21]).

In the case of a map € Hol(A, A) without fixed points inA, the complete
study of the local dynamics gfat its Wolff pointr is still an open problem in full
generality whery is parabolic at-. In fact, if f is parabolic at its Wolff point,
the construction of petals cannot be performed by meansec$dime techniques
used in the analogous classical case of an internal fixed.poin

In this paper, we construct petals at the Wolff pointfar Hol(A, A) by mixing
different techniques borrowed from the theory of lineacti@anal models due to
Bourdon and Shapiro, [6], together with dynamical and togial arguments.
Our main results are proved in Sections 3 and 4.

In Section 2, we (define and) investigate the existence @#eting directions”
at the Wolff point for a mapf € Hol(A,A) in the parabolic case. We prove
the existence of attracting directions in several intémgstlynamical situations,
depending on the values of the second and third derivatiyeabits Wolff point.

In Section 3, we consider parabolic non-automorphism tygeshe Hol(A, A)
(see, e.g., [6]) such that the sequeli¢e(z)},cn Of iterates off converges non-
tangentially to the Wolff point- € A (for any z € A). We also require that
f(r) = K —lim,_., f"(z) # 0 (which impliesRef” (1) > 0). For these maps, we
construct an “attracting invariant boundary petal” (seedrem 3.2) with vertex
at the Wolff pointr and consequently describe the local dynamics &ur result
here is inspired by the Leau—Fatou construction [15] ofaating and repulsive
directions and petals.

In Section 4, we consider parabolic automorphism type nfapsHol(A, A)
(see, e.g., [6]). We also require thatbe injective inA, that it have sufficient
boundary regularity at (C3t<(A U {r}) = C3t<(7)), and thatRe(f" ()) = 0;
necessarilyf” (7) # 0. In the spirit of the Bourdon—Shapiro construction of the
linear fractional model [6], we prove that there exists aavériant attracting petal”
for f at its Wolff pointr.

The existence of petals at the Wolff poirfor amapf € Hol(A, A) of parabolic
type remains an open problem whgn(r) = 0 and (in general) if no regularity
is assumed forf at . We plan to study this problem and related issues in a
forthcoming paper.

2 Attracting and repulsive directions at the Wolff point

Let f € Hol(A,A) havel as Wolff point. Suppose thdt —lim,_; f'(z) =1,
i.e., thatl is a parabolic fixed point. The behaviour of the orbits of tlegates
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{f™(2)}men Of f depends orf only, and not on the choice efin A. Specifically
they may

(1) converggangentiallyto 1;
or

(2) convergenon-tangentially to 1.
Suppose that th& -derivative of f of order(n + 1) exists and is different from
zero atl. Suppose as well that for al < j < n, the K-derivative of f of order
(j + 1) is zero atl. By a theorem of Burns and Krantz [7], jf# ida, it follows
thatn < 2, that is,n = 1 orn = 2. In the easy case in whichextends to a germ
of a holomorphic map at, f has at mos® attracting directions and at most
repulsive directions (in the classical sense [15]); in tase, the dynamics in a
neighbourhood of is well-known (see, e.g., [15]). Otherwise fitloes not extend
to a germ of holomorphic map a let S, be the Stolz regio (1, M) of vertex1
and angular opening at1. Suppose that admits ak’-Taylor series expansion at
1, i.e., thatfor alll < o < 7w and for allz € S,,

(2.1) fa(2) = fis.(2) =1+ (2= 1) +a(z - D™ o (2 — 1)

wheren =10rn=2,a= K —lim, ,; f®*V(2)/(n+1)!, ando,(z — 1)"*! is such
thato,(z — 1)"*/(z — 1)1 — 0 whenz — 1 within S,. Settingz — 1 = w, we
obtain

(2.2) flw+1) =1+w+alw)™ ™ + oq(w)" 1,

wherea does not depend amne (0, ).
By adapting the fundamental ideas of Milnor [15] to the caka boundary
point, we now define thattracting directions and therepulsive directions

atl e f(A).
Definition 2.1. A vectorv € {w € C : (w+ 1) € A} defines amattracting
direction at1 if av™ is real and negative.

Definition 2.2. A vectorv € {w € C : (w+ 1) € A} defines arepulsive
direction at1 if av™ is real and positive.

If we ignore the terms of higher order in tli& Taylor series (2.2) we have
(flo+1)=(v+1)) = av"-v.

Hence the attracting directions (resp., the repulsivectioes) are such that the
vector(f(v+1)—(v+1)) = av™ - v IS a real negative (resp., positive) multiplevof

According to the structure of th&-Taylor series expansion ¢f at its Wolff
point1, we obtain the following direct results on the existencear-existence of
attracting directions.
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Lemma 2.3. If n = 2 and a < 0, then there exists exactly one attracting
directionat 1 and { /" (2)},, .y converges non-tangentially to 1.

Proof. To prove that the real axis is an attracting direction it sefito notice
thatar? < 0,if risreal,~1 <r <0(.e.,0<r+1<1). O

Lemma2.4. Ifn=1and Re(a) = 0, then thereis no attracting direction at 1
and {f"(2)},, N convergestangentially to 1.

Proof. If there exists an attracting directiorat 1, thenav would be real and
negative. By hypothesi$te(a) = 0; hence it is not possible farv to be real and
negative foralb € {w e C: w+1 € A} O

Lemma2.5. If n=1and Re(a) > 0, then there exists exactly one attracting
directionat 1 and { /" (2)},, .y converges non-tangentially to 1.

Proof. Takewv such thaurg(v) =7 — arg(a). O

Thanks to the above Lemmas, it is possible to prove the exist®r non-
existence of attracting directions in several interestiyigamical situations. A few
of these situations which appear to be particularly sigaifiare presented here.

Following [6] and [8], suppose thgte Hol(A, A) andl is its Wolff point we
say thatf € C*(1) if the j-th derivativef ") extends continuously ta u {1} for all
j=1,...,k Inthis casef admits a Taylor expansion

F&) = F0) + S ()= 1)+ SOz~ DY 4 1),

wherez € A andI'(z) = o(|z — 1|¥). Moreover, fore > 0, we say thatf € C*+<(1)
if f € C*(1)andl'(z) = O(|z — 1|¥+¢).

Theorem 2.6 ([8]). Let f € Hol(A,A) andlet p: [0, 1[— A be a continuous
curvethat tendsto 1 non-tangentially. If

o flp@®) = p(t) _
@9 R O
for some!l € C, theni € R™. Moreover, f istheidentity map if and only if [ = 0.
Furthermore, if f € C3(1), then f(1) =1, f/(1) =1, (1) = 0, and f"'(1) = 61 if
and only if (2.3) holds.

When the above theorem applies ghid not the identity, Lemma 2.3 states the
existence of exactly one attracting directioniin

Bourdon and Shapiro [6] give the following classificatioratifparabolic maps
by means of their second derivative at the Wolff point.
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Theorem 2.7. Let f be a holomorphic self-map of A of parabolic type with
Wolff point 1 and supposethat f € C?(1).
Then
(@) Re(f”(1)) > 0;
(b) if f”(1) = 0or Re(f”(1)) > 0, then f isof parabolic non-automor phismtype;
(c) if, on the contrary, (1) # 0, Re(f”(1)) = 0 and f € C3+¢(1), then f is of
parabolic automor phism-type.

In case (c), Lemma 2.4 states the non-existence of any tittigadirection at
1. On the other hand, in case (b), Lemma 2.5 proves the exstiexactly one
attracting direction at the boundary fixed point.

3 TheCaseof amap f of parabolic non-automor phism
type

In this section, we present a construction of a boundary pédtieh resembles
the classical one given by Milnor [15] for holomorphic germs
We adapt here the classical definition of petals to the caadofindary point.

Definition 3.1. Supposg € Hol(A, A) has no fixed points, and lebe the Wolff
point of f. A connected open sét ¢ A with 1 € P is anattracting petal for f
at1 if

f(P)cPu{l}

and

) 4(P) = {1}.
k>0
Theorem 3.2. Let f be of parabolic non-automor phism type with Wolff point
1.IFK —lim,_; f’(2) =a#0,i.e,ifn=1inthe K-Taylor series expansion of f
at 1, and if Re(a) > 0 (see [6]) then there exists an attracting petal P at 1.

Proof. Consider the transformatidiiz) = w = —1/a(z—1) = 1/a(1 — z) with
inversek~!(w) = z = 1 — 1/(aw) = (aw — 1) /wa. The conformal transformation
is such that

_ 1 Re(a) —iSm(a)
0= 4= W@ 1 Gm(@)?”
k(1) = oo,
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k(i) = 1 (Re(a) + Sm(a)) + i(Re(a) — Im(a))

a(l —1) 2|al? ’

N I (Re(a) —Sm(a)) —i(Re(a) + Sm(a))

A e 3o ’
k(1) = 5 = W

Hence the unit circle is mapped bynto the linec which passes throuditi), k(—i)
andk(—1), which has a slope equal tan 5 = cot a = Re(a)/Sm(a). The real axis
is sent into the line throughk(0) andk(—1), which has a slope equal totana.
The imaginary axis is mapped into the circle passing through0), k(i) and
k(—i). Therefore A is mapped by: onto the right half plan& determined by the
line c. Any open angular regiod,, in A with vertex1 and amplitude® < o < =
symmetric with respect to the real axis, is mappedkbgnto an open angular
regionk(A,) = B, of vertex0 (in the w—plane) which intersects. Let us
setB, NIl = E,. With the notation established in Section 2, we have for all
a € (0,m), fip, =ko faok H(w) =w+1+o04(1), whereo, (1) tends tod whenw
tends toco within E,.

Leta € (0,7) be suchthat/2 > arga > 0 and sety = (a/2 —arga). Then there
exists (smallk, such thab < sin(e,) < sin(y) andr., such that iflw| > r., and
w € E,, then|f(w) — w — 1| < sin(e,) < sin(y). Hence theslope s of the vector
which joinsw and f(w) satisfies

(3.2) [s] < tan (en) < tan(y), forallw e E,,|w| > r.,.

We now construct an attracting region farinside £, in thew—plane. Set

P, = {w:u+iv:|w| >r6a,w€Ea,u>da—¢},
tan (2¢,)

where the constamnt, is so large thafw| > r._, for all w € P,, and the two lines
u = do — |v|/(tan 2¢,) intersecte in two points belonging tal;. We define the
attracting petal for f as

P=|J k(P

2arg a<a<m
Put
P= |J P
2arg a<a<m
Now

f( U kl(Pa)>c U s ie).

2arga<a<m 2arga<a<m
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if and only if

f( U pa> c U r
2arg a<a<m 2arg a<a<m
The proof of thef-invariance ofP coincides with the proof of thg-invariance
of P. We proceed as follows: if € P, then there exists with 2arga < o < 7
such thatw € P,. On P,, we havef(w) = w + 1 + 0,(1), where|w| > r._, and
u > dy — a—. We have to prove thaf(w) € P,. The inequalityi f(w)| > re,

tan (2¢4

follows from

|f(w) —w —1] < sin(ea),
which implies
lw+1] = |f(w)] < |(w+1) = f(w)] < sin(a))
and hence
|f(w)] > |w+ 1] = sin(eq).

Takinge,, sufficiently small, we see that (3.1) implies tfiénvariance of?. O

4 The case of amap f € C*<(1) of parabolic automor-
phism type

Suppose that
(1) fec®();
(2) fis injective onA;
Q) /(1) =1
@) f"(1) #0.
Under these hypotheses, it follows from Theorem 2.7%két" (1)) > 0; moreover,
Re(f” (1)) = 0 implies thatf is of parabolic automorphism type.
Let® = Co foC~!, whereC is theCayley transfor mation

C:H,y — A

c! A — H,y,

whereH,, = {w € C: Re(w) > 0}. Then, as is proved in [6],

b
[} = ——+7T 1
(w) w+a+w+1+ (w+1)

witha = f”(1) #0,b = f"(1)>=2 f"(1) = —2(Sf)(1), whereS f is the Schwarzian
derivative of f and|I" (w + 1) | = o (1/|w + 1/**¢) whenw — oc. Let us consider
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w-plane
A
V
C
o
af2
Ea
O - ﬁ 2Ea 25()(
o= 24 u
D k(0)
k(-1)
P, r

the linear fractional model fo® in the sense of Bourdon—Shapiro [6], i.e., let
us consider the two magg,v) such thatv o ®(z) = p o v(z) = v(z) + a, Where
0#a= f"(1) < co. From®(oo) = oo it follows thatv(oco) = v(x) + a, and so
alsor (o) = co. The modelp, v) has the following properties:

(1) v(w) = w — 2log(1 + w) + B(w), whereB is a holomorphic, bounded map

onH,.,, continuous ort,,, and where’ : H,, — H,, is injective onH,.,;

(2) o(w) = w + a.
Assume thaj satisfies the conditions stated at the beginning of this@ecthen
we have

Lemma 4.1. Suppose Re(f”(1)) = 0 and let II be an arbitrary halfplane
contained in H,, = {w : Re(w) > 0}. Then v(II) contains a halfplane.
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Proof. Observethdke(f”(1)) = 0implies thatf is of parabolic-automorphism
type and that the sequengg(z0)}, .y converges tangentially to Forr > 0, let
O(1,r) denote the horocycle of centeland radius-. The Cayley transformation
C : A — H,, maps any such horocycle onto a halfplane. Hence to prove leemm
4.1 it suffices to prove that in the linear fractional mogeglo) for f, for all p > 0,
there exists > 0 such thaO(1,¢) C o(O(1, p)). By hypothesisRe(a) = 0, which
implies thath > 0, as is proved in [6], and heneé/a € iR.

Recall that b

v(w) =w — o log(1 + w) + B(w)

and
Re(v(w)) = Re(w) — Im(—b/a)Imlog(l + w)] + Re(B(w)).

Since
log(1 +w) = log(|1 + w) +i - arg(l + w),
we have
Smllog(l + w)] = arg(1 + w),
so that

Re[v(w)] = Re(w) — Sm(=b/a)arg(l + w) + Re(B(w)).

Fix o > 0 and letll,, = {z € C: Re(z) > zo} be the corresponding halfplane. We
want to prove that

sup {Re(v(w))} < +o0.
welly

Now, as is proved in [6] Theorem 4.12 e (B(w)) is bounded. Hence there exists
K > 0 such that for allv € H,,, |[Re(B(w))| < K, i.e.,—K < Re(B(w)) < +K.

If w € 911,,, then wherym (w) tends to+oo, we havery — Sm(—b/a)arg(l+w)
approaches, — Sm(—b/a)w/2 < +oo. In other words, for alk > 0, there exists
M > 0 such that for allw € 911, with Sm(w) > M, the following inequalities
hold:

xo — Sm(=b/a)n/2 — e < kg — Sm(=b/a)arg(l + w) < xog — Sm(—=b/a)m/2 + €
xo — Sm(—=b/a)r/2 —e — K < Re(v(w)) < xg — Sm(—b/a)r/2+ ¢ + K.

In the case in whiclw € 911, andSm(w) tends to—oo, the proof is analogous.
What we have proved up to now is thats. .,)—s,} IS @ curve with bounded
real part. The map is1:1onA and hence sends Jordan domains (in particular
horocycles) into Jordan domains. It also sends a simplyected and connected

region into another region with the same properties. Now

Sm(v(w)) = Sm(w) + Sm(=b/a)log(|]1 + w|) + Sm(B(w)).
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Therefore (see [6]),

v(o0) = 00;
and since
fim X gy g blesAw)  Blw)
w—oo W wW—00 a w w
we have also
V' (0) = 1.
Thereforepc is the Wolff point forv and hence
v(0(1, p)) C O(1, p)
for all p > 0. O

Under the hypotheses of the above lemma, we laye) = 0 and the model
(p,v) for @ is such thatp(w) = w + a with a € iR.

Theorem 4.2. If f, v, ¢, and C are the maps defined in the setting of this
section, if f satisfies hypotheses (1), (2), (3) and (4), and if Re(f”(1)) = 0,
then there exists a constant k, > 0 such that any arbitrary vertical line L, =
{w : Re(w) = k > ko} isan invariant curve for ¢. Therefore, if k is sufficiently
large, v~!(Lx) = Lj is atotally invariant curve for ® and C~! (v~!(L;)) isa
totally invariant curvefor f.

Fork > 0, letus sell} = {w € C: Re(w) > k} andP, = v~ (II]).

Corollary 4.3. If f, v, ¢, and C are the maps defined in the setting of this
section, if f satisfies hypotheses (1), (2), (3) and (4), and if e(f”(1)) = 0, then
there exists a constant k&, > 0 such that for any & > kg, the set P, is a totally
invariant region for f.
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