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Abstract. In the same spirit of the classical Leau–Fatou flower theorem,
we prove the existence of a petal, with vertex at the Wolff point, for a holomor-
phic self-mapf of the open unit disc∆ ⊂ C of parabolic type. The result is
obtained in the framework of two interesting dynamical situations which require
different kinds of regularity off at the Wolff pointτ : f of non-automorphism
type andℜe(f

′′

(τ)) > 0 or f injective of automorphism type,f ∈ C3+ǫ(τ) and
ℜe(f

′′

(τ)) = 0.

1 Introduction

Let f be a holomorphic map from the unit disk∆ = {z ∈ C : |z| < 1} to
itself without fixed points. For anyσ ∈ ∂∆ and for anyR > 0, let O(σ,R) =

{z ∈ ∆ : |σ−z|2

1−|z|2 < R} be the horocycle with radiusR and centerσ. The classical
Wolff Lemma (see, e.g., [1]) shows that there is a unique point τ ∈ ∂∆ such that
f(O(τ, R)) ⊆ O(τ, R), for all R > 0, i.e.,f maps each horocycle of centerτ ∈ ∂∆

and radiusR > 0 into itself. Such a pointτ is called the Wolff point off .
For anyσ ∈ ∂∆ and anyM > 1, let K(σ,M) = {z ∈ ∆ : |σ−z|

1−|z| < M} be the
Stolz region of amplitudeM and vertexσ. We say thatδ is the non-tangential limit
of f atσ, and writeK− limz→σ f = δ, if f(z) tends toδ whenz tends toσ within any
Stolz region of vertexσ, for all M > 1. As a consequence of Wolff’s Lemma,τ is
the unique point in∂∆ such thatK − limz→τ f(z) = τ andK − limz→τ |f

′(z)| ≤ 1.

Hence, from a dynamical point of view, the Wolff point is an “attracting fixed
point.” If τ is the Wolff point of f , we say thatf is of parabolic type when
K − limz→τ f

′(z) = 1.
In the classical case of germs of holomorphic maps at 0 which fix the point

0 and have modulus of the first derivative equal to1 at the fixed point, a fruitful
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approach to explore the dynamics of the iterates is the construction of petals with
vertex at 0 (see, e.g., [10], [13], [14], [17], [19], [21]).

In the case of a mapf ∈ Hol(∆,∆) without fixed points in∆, the complete
study of the local dynamics off at its Wolff pointτ is still an open problem in full
generality whenf is parabolic atτ . In fact, if f is parabolic at its Wolff pointτ ,
the construction of petals cannot be performed by means of the same techniques
used in the analogous classical case of an internal fixed point.

In this paper, we construct petals at the Wolff point forf ∈ Hol(∆,∆) by mixing
different techniques borrowed from the theory of linear fractional models due to
Bourdon and Shapiro, [6], together with dynamical and topological arguments.
Our main results are proved in Sections 3 and 4.

In Section 2, we (define and) investigate the existence of “attracting directions”
at the Wolff point for a mapf ∈ Hol(∆,∆) in the parabolic case. We prove
the existence of attracting directions in several interesting dynamical situations,
depending on the values of the second and third derivative off at its Wolff point.

In Section 3, we consider parabolic non-automorphism type mapsf ∈ Hol(∆,∆)

(see, e.g., [6]) such that the sequence{fn(z)}n∈N of iterates off converges non-
tangentially to the Wolff pointτ ∈ ∂∆ (for any z ∈ ∆). We also require that
f

′′

(τ) = K − limz→τ f
′′(z) 6= 0 (which impliesℜef

′′

(τ) > 0). For these maps, we
construct an “attracting invariant boundary petal” (see Theorem 3.2) with vertex
at the Wolff pointτ and consequently describe the local dynamics atτ . Our result
here is inspired by the Leau–Fatou construction [15] of attracting and repulsive
directions and petals.

In Section 4, we consider parabolic automorphism type mapsf ∈ Hol(∆,∆)

(see, e.g., [6]). We also require thatf be injective in∆, that it have sufficient
boundary regularity atτ (C3+ǫ(∆ ∪ {τ}) = C3+ǫ(τ)), and thatℜe(f

′′

(τ)) = 0;
necessarily,f

′′

(τ) 6= 0. In the spirit of the Bourdon–Shapiro construction of the
linear fractional model [6], we prove that there exists an “invariant attracting petal”
for f at its Wolff pointτ.

The existence of petals at the Wolff pointτ for a mapf ∈ Hol(∆,∆) of parabolic
type remains an open problem whenf

′′

(τ) = 0 and (in general) if no regularity
is assumed forf at τ . We plan to study this problem and related issues in a
forthcoming paper.

2 Attracting and repulsive directions at the Wolff point

Let f ∈ Hol(∆,∆) have1 as Wolff point. Suppose thatK − limz→1 f
′(z) = 1,

i.e., that1 is a parabolic fixed point. The behaviour of the orbits of the iterates



BOUNDARY PETALS AT THE WOLFF POINT 3

{fm(z)}m∈N of f depends onf only, and not on the choice ofz in ∆. Specifically
they may

(1) convergetangentially to 1;
or

(2) convergenon-tangentially to 1.
Suppose that theK-derivative off of order (n + 1) exists and is different from
zero at1. Suppose as well that for all0 ≤ j < n, theK-derivative off of order
(j + 1) is zero at1. By a theorem of Burns and Krantz [7], iff 6= id∆, it follows
thatn ≤ 2, that is,n = 1 or n = 2. In the easy case in whichf extends to a germ
of a holomorphic map at1, f has at most2 attracting directions and at most2

repulsive directions (in the classical sense [15]); in thiscase, the dynamics in a
neighbourhood of1 is well-known (see, e.g., [15]). Otherwise, iff does not extend
to a germ of holomorphic map at1, let Sα be the Stolz regionK(1,M) of vertex1

and angular openingα at1. Suppose thatf admits aK-Taylor series expansion at
1, i.e., that for all0 < α < π and for allz ∈ Sα,

(2.1) fα(z) = f|Sα
(z) = 1 + (z − 1) + a(z − 1)n+1 + oα(z − 1)n+1,

wheren = 1 or n = 2, a = K − limz→1 f
(n+1)(z)/(n+ 1)!, andoα(z − 1)n+1 is such

that oα(z − 1)n+1/(z − 1)n+1 → 0 whenz → 1 within Sα. Settingz − 1 = w, we
obtain

(2.2) f(w + 1) = 1 + w + a(w)n+1 + oα(w)n+1,

wherea does not depend onα ∈ (0, π).

By adapting the fundamental ideas of Milnor [15] to the case of a boundary
point, we now define theattracting directions and therepulsive directions
at1 ∈ f(∆).

Definition 2.1. A vector v ∈ {w ∈ C : (w + 1) ∈ ∆} defines anattracting
direction at1 if avn is real and negative.

Definition 2.2. A vector v ∈ {w ∈ C : (w + 1) ∈ ∆} defines arepulsive
direction at1 if avn is real and positive.

If we ignore the terms of higher order in theK-Taylor series (2.2) we have

(f(v + 1) − (v + 1)) ≈ avn · v.

Hence the attracting directions (resp., the repulsive directions) are such that the
vector(f(v+1)− (v+1)) ≈ avn · v is a real negative (resp., positive) multiple ofv.

According to the structure of theK-Taylor series expansion off at its Wolff
point1, we obtain the following direct results on the existence or non-existence of
attracting directions.



4 C. BISI AND G. GENTILI

Lemma 2.3. If n = 2 and a < 0, then there exists exactly one attracting

direction at 1 and {fn(z)}
n∈N converges non-tangentially to 1.

Proof. To prove that the real axis is an attracting direction it suffices to notice
thatar2 < 0, if r is real,−1 ≤ r < 0 (i.e.,0 ≤ r + 1 < 1). �

Lemma 2.4. If n = 1 and ℜe(a) = 0, then there is no attracting direction at 1
and {fn(z)}

n∈N converges tangentially to 1.

Proof. If there exists an attracting directionv at 1, thenav would be real and
negative. By hypothesis,ℜe(a) = 0; hence it is not possible forav to be real and
negative for allv ∈ {w ∈ C : w + 1 ∈ ∆}. �

Lemma 2.5. If n = 1 and ℜe(a) > 0, then there exists exactly one attracting
direction at 1 and {fn(z)}

n∈N converges non-tangentially to 1.

Proof. Takev such thatarg(v) = π − arg(a). �

Thanks to the above Lemmas, it is possible to prove the existence or non-
existence of attracting directions in several interestingdynamical situations. A few
of these situations which appear to be particularly significant are presented here.

Following [6] and [8], suppose thatf ∈ Hol(∆,∆) and1 is its Wolff point we
say thatf ∈ Ck(1) if the j-th derivativef (j) extends continuously to∆∪{1} for all
j = 1, . . . , k. In this case,f admits a Taylor expansion

f(z) = f(1) + f ′(1)(z − 1) + · · · +
1

k!
f (k)(1)(z − 1)k + Γ(z),

wherez ∈ ∆ andΓ(z) = o(|z − 1|k). Moreover, forǫ > 0, we say thatf ∈ Ck+ǫ(1)

if f ∈ Ck(1) andΓ(z) = O(|z − 1|k+ǫ).

Theorem 2.6 ([8]). Let f ∈ Hol(∆,∆) and let ρ : [0, 1[→ ∆ be a continuous
curve that tends to 1 non-tangentially. If

(2.3) lim
t→1−

f(ρ(t)) − ρ(t)

(ρ(t) − 1)3
= l

for some l ∈ C, then l ∈ R
−. Moreover, f is the identity map if and only if l = 0.

Furthermore, if f ∈ C3(1), then f(1) = 1, f ′(1) = 1, f ′′(1) = 0, and f ′′′(1) = 6l if

and only if (2.3)holds.

When the above theorem applies andf is not the identity, Lemma 2.3 states the
existence of exactly one attracting direction in1.

Bourdon and Shapiro [6] give the following classification ofall parabolic maps
by means of their second derivative at the Wolff point.
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Theorem 2.7. Let f be a holomorphic self-map of ∆ of parabolic type with

Wolff point 1 and suppose that f ∈ C2(1).

Then

(a) ℜe(f ′′(1)) ≥ 0;

(b) if f ′′(1) = 0 or ℜe(f ′′(1)) > 0, then f is of parabolic non-automorphism type;
(c) if, on the contrary, f ′′(1) 6= 0, ℜe(f ′′(1)) = 0 and f ∈ C3+ǫ(1), then f is of

parabolic automorphism-type.

In case (c), Lemma 2.4 states the non-existence of any attracting direction at
1. On the other hand, in case (b), Lemma 2.5 proves the existence of exactly one
attracting direction at the boundary fixed point.

3 The Case of a map f of parabolic non-automorphism
type

In this section, we present a construction of a boundary petal which resembles
the classical one given by Milnor [15] for holomorphic germs.

We adapt here the classical definition of petals to the case ofa boundary point.

Definition 3.1. Supposef ∈ Hol(∆,∆) has no fixed points, and let1 be the Wolff
point of f . A connected open setP ⊂ ∆ with 1 ∈ P is anattracting petal for f
at1 if

f(P ) ⊂ P ∪ {1}

and ⋂

k≥0

fk(P ) = {1}.

Theorem 3.2. Let f be of parabolic non-automorphism type with Wolff point

1. If K − limz→1 f
′′(z) = a 6= 0, i.e., if n = 1 in the K-Taylor series expansion of f

at 1, and if ℜe(a) > 0 (see [6]), then there exists an attracting petal P at 1.

Proof. Consider the transformationk(z) = w = −1/a(z−1) = 1/a(1−z) with
inversek−1(w) = z = 1 − 1/(aw) = (aw − 1)/wa. The conformal transformationk
is such that

k(0) =
1

a
=

ℜe(a) − iℑm(a)

(ℜe(a))2 + (ℑm(a))2
,

k(1) = ∞,

k(∞) = 0,
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k(i) =
1

a(1 − i)
=

(ℜe(a) + ℑm(a)) + i(ℜe(a) −ℑm(a))

2|a|2
,

k(−i) =
1

a(1 + i)
=

(ℜe(a) −ℑm(a)) − i(ℜe(a) + ℑm(a))

2|a|2
,

k(−1) =
1

2a
=

ℜe(a) − iℑm(a)

2|a|2
.

Hence the unit circle is mapped byk into the linecwhich passes throughk(i), k(−i)
andk(−1), which has a slope equal totanβ = cota = ℜe(a)/ℑm(a). The real axis
is sent into the liner throughk(0) andk(−1), which has a slope equal to− tana.
The imaginary axis is mapped into the circle passing through0, k(0), k(i) and
k(−i). Therefore,∆ is mapped byk onto the right half planeΠ+

c determined by the
line c. Any open angular regionAα in ∆ with vertex1 and amplitude0 < α < π

symmetric with respect to the real axis, is mapped byk onto an open angular
region k(Aα) = Bα of vertex 0 (in the w−plane) which intersectsΠ+

c . Let us
setBα ∩ Π+

c = Eα. With the notation established in Section 2, we have for all
α ∈ (0, π), f̃|Eα

= k ◦ fα ◦ k−1(w) = w + 1 + oα(1), whereoα(1) tends to0 whenw
tends to∞ within Eα.

Letα ∈ (0, π) be such thatα/2 > arg a > 0 and setγ = (α/2−arg a). Then there
exists (small)ǫα such that0 < sin(ǫα) < sin(γ) andrǫα

such that if|w| > rǫα
and

w ∈ Eα, then|f̃(w) − w − 1| ≤ sin(ǫα) < sin(γ). Hence theslope s of the vector
which joinsw andf̃(w) satisfies

(3.1) |s| < tan (ǫα) < tan (γ), for all w ∈ Eα, |w| > rǫα
.

We now construct an attracting region for∞ insideEα in thew−plane. Set

Pα =
{
w = u+ iv : |w| > rǫα

, w ∈ Eα, u > dα −
|v|

tan (2ǫα)

}
,

where the constantdα is so large that|w| > rǫα
, for all w ∈ Pα, and the two lines

u = dα − |v|/(tan 2ǫα) intersectc in two points belonging toΠ+
c . We define the

attracting petal for f as

P =
⋃

2 arg a<α<π

k−1(Pα).

Put
P̃ =

⋃

2 arg a<α<π

Pα.

Now

f

( ⋃

2 arg a<α<π

k−1(Pα)

)
⊂

⋃

2 arg a<α<π

k−1(Pα).
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if and only if

f̃

( ⋃

2 arg a<α<π

Pα

)
⊂

⋃

2 arg a<α<π

Pα.

The proof of thef -invariance ofP coincides with the proof of thẽf -invariance
of P̃ . We proceed as follows: ifw ∈ P̃ , then there existsα with 2 arg a < α < π

such thatw ∈ Pα. OnPα, we havef̃(w) = w + 1 + oα(1), where|w| > rǫα
, and

u > dα − |v|
tan (2ǫα) . We have to prove that̃f(w) ∈ Pα. The inequality|f̃(w)| > rǫα

follows from
|f̃(w) − w − 1| < sin(ǫα),

which implies

|w + 1| − |f̃(w)| < |(w + 1) − f̃(w)| < sin(ǫ(α))

and hence
|f̃(w)| > |w + 1| − sin(ǫα).

Takingǫα sufficiently small, we see that (3.1) implies thef̃-invariance ofP̃ . �

4 The case of a map f ∈ C3+ǫ(1) of parabolic automor-
phism type

Suppose that
(1) f ∈ C3+ǫ(1);
(2) f is injective on∆;

(3) f ′(1) = 1;
(4) f

′′

(1) 6= 0.
Under these hypotheses, it follows from Theorem 2.7 thatℜe(f ′′(1)) ≥ 0; moreover,
ℜe(f

′′

(1)) = 0 implies thatf is of parabolic automorphism type.
Let Φ = C ◦ f ◦ C−1, whereC is theCayley transformation

C : Hrg → ∆

C−1 : ∆ → Hrg

whereHrg = {w ∈ C : ℜe(w) > 0}. Then, as is proved in [6],

Φ(w) = w + a+
b

w + 1
+ Γ (w + 1)

with a = f ′′(1) 6= 0, b = f ′′(1)2− 2
3f

′′′(1) = − 2
3 (Sf)(1), whereSf is the Schwarzian

derivative off and|Γ (w + 1) | = o
(
1/|w + 1|1+ǫ

)
whenw → ∞. Let us consider
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w-plane

0 γ
α

k(-i)

-a
β

k(-1) k(0)

εα
r

2εα 2εα

2εα
u

rPα

c

V

α

α/2
r

the linear fractional model forΦ in the sense of Bourdon–Shapiro [6], i.e., let
us consider the two maps(ϕ, ν) such thatν ◦ Φ(z) = ϕ ◦ ν(z) = ν(z) + a, where
0 6= a = f ′′(1) < ∞. FromΦ(∞) = ∞ it follows that ν(∞) = ν(∞) + a, and so
alsoν(∞) = ∞. The model(ϕ, ν) has the following properties:

(1) ν(w) = w − b
a

log(1 + w) + B(w), whereB is a holomorphic, bounded map
on Hrg, continuous onHrg, and whereν : Hrg → Hrg is injective onHrg;

(2) ϕ(w) = w + a.

Assume thatf satisfies the conditions stated at the beginning of this section. Then
we have

Lemma 4.1. Suppose ℜe(f ′′(1)) = 0 and let Π be an arbitrary halfplane
contained in Hrg = {w : ℜe(w) > 0}. Then ν(Π) contains a halfplane.
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Proof. Observe thatℜe(f ′′(1)) = 0 implies thatf is of parabolic-automorphism
type and that the sequence{fn(z0)}n∈N converges tangentially to1. Forr > 0, let
O(1, r) denote the horocycle of center1 and radiusr. The Cayley transformation
C : ∆ → Hrg maps any such horocycle onto a halfplane. Hence to prove Lemma
4.1 it suffices to prove that in the linear fractional model(ψ, σ) for f , for all ρ > 0,

there existsǫ > 0 such thatO(1, ǫ) ⊂ σ(O(1, ρ)). By hypothesis,ℜe(a) = 0, which
implies thatb ≥ 0, as is proved in [6], and hence−b/a ∈ iR.

Recall that
ν(w) = w −

b

a
log(1 + w) +B(w)

and
ℜe(ν(w)) = ℜe(w) −ℑm(−b/a)ℑm[log(1 + w)] + ℜe(B(w)).

Since
log(1 + w) = log(|1 + w|) + i · arg(1 + w),

we have
ℑm[log(1 + w)] = arg(1 + w),

so that
ℜe[ν(w)] = ℜe(w) −ℑm(−b/a)arg(1 + w) + ℜe(B(w)).

Fix x0 > 0 and letΠx0
= {z ∈ C : ℜe(z) > x0} be the corresponding halfplane. We

want to prove that
sup

w∈∂Πx0

{ℜe(ν(w))} < +∞.

Now, as is proved in [6] Theorem 4.12 b),ℜe(B(w)) is bounded. Hence there exists
K > 0 such that for allw ∈ Hrg, |ℜe(B(w))| < K, i.e.,−K < ℜe(B(w)) < +K.

If w ∈ ∂Πx0
, then whenℑm(w) tends to+∞, we havex0−ℑm(−b/a)arg(1+w)

approachesx0 − ℑm(−b/a)π/2 < +∞. In other words, for allǫ > 0, there exists
M > 0 such that for allw ∈ ∂Πx0

with ℑm(w) > M , the following inequalities
hold:

x0 −ℑm(−b/a)π/2− ǫ < x0 −ℑm(−b/a)arg(1 + w) < x0 −ℑm(−b/a)π/2 + ǫ

x0 −ℑm(−b/a)π/2 − ǫ−K < ℜe(ν(w)) < x0 −ℑm(−b/a)π/2 + ǫ+K.

In the case in whichw ∈ ∂Πx0
andℑm(w) tends to−∞, the proof is analogous.

What we have proved up to now is thatν|{ℜe(w)=x0} is a curve with bounded
real part. The mapν is 1 : 1 on ∆ and hence sends Jordan domains (in particular
horocycles) into Jordan domains. It also sends a simply connected and connected
region into another region with the same properties. Now

ℑm(ν(w)) = ℑm(w) + ℑm(−b/a) log(|1 + w|) + ℑm(B(w)).
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Therefore (see [6]),
ν(∞) = ∞;

and since
lim

w→∞

ν(w)

w
= lim

w→∞
1 −

b

a

log(1 + w)

w
+
B(w)

w
= 1,

we have also
ν′(∞) = 1.

Therefore,∞ is the Wolff point forν and hence

ν(O(1, ρ)) ⊂ O(1, ρ)

for all ρ > 0. �

Under the hypotheses of the above lemma, we haveℜe(a) = 0 and the model
(ϕ, ν) for Φ is such thatϕ(w) = w + a with a ∈ iR.

Theorem 4.2. If f, ν, φ, and C are the maps defined in the setting of this
section, if f satisfies hypotheses (1), (2), (3) and (4), and if ℜe(f ′′(1)) = 0,

then there exists a constant k0 > 0 such that any arbitrary vertical line Lk =

{w : ℜe(w) = k > k0} is an invariant curve for ϕ. Therefore, if k is sufficiently

large, ν−1(Lk) = L′
k is a totally invariant curve for Φ and C−1

(
ν−1(Lk)

)
is a

totally invariant curve for f.

Fork > 0, let us setΠ+
k = {w ∈ C : ℜe(w) > k} andPk = ν−1(Π+

k ).

Corollary 4.3. If f, ν, φ, and C are the maps defined in the setting of this
section, if f satisfies hypotheses (1), (2), (3) and (4), and if ℜe(f ′′(1)) = 0, then

there exists a constant k0 > 0 such that for any k > k0, the set Pk is a totally

invariant region for f .
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[12] J. Ecalle,Les Fonctions Résurgentes. Tome III in Publications Mathématiques d’Orsay,
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UNIVERSITÀ DI FIRENZE

VIALE MORGAGNI 67/A
50134 FIRENZE, ITALIA

email: gentili@math.unifi.it

(Received June 6, 2006)


