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Let r,d ≤ n be nonnegative integers. In this paper we study the basic properties of a discrete dynamical model of signed integer
partitions that we denote by 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. A generic element of this model is a signed integer partition with exactly 𝑑𝑑 all distinct
nonzero parts, whose maximum positive summand is not exceeding 𝑟𝑟 and whose minimum negative summand is not less than
−(𝑛𝑛𝑛𝑛𝑛𝑛  . In particular, we determine the covering relations, the rank function, and the parallel convergence time from the bottom
to the top of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 by using an abstract Sand Piles Model with three evolution rules. e lattice 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 was introduced by the
�rst two authors in order to study some combinatorial extremal sum problems.

1. Introduction

Discrete dynamical models whose con�gurations are integer
partitions are also called Sand Piles Models and they have
been deeply investigated. In these models an integer partition
is treated as a sequence of piles of grains of sand and each
singular grain as a single integer unit. An evolution rule in
these models is a rule which describes how to move some
particular grains of a con�guration in order to obtain another
con�guration.e famous Brylawski paper [1] can be consid-
ered the �rst implicit study of an integer partitions lattice by
means of two evolution dynamical rules which determine the
covering relations of this lattice. In [1] Brylawski proposed
a dynamical approach to study the lattice 𝐿𝐿𝐵𝐵(𝑛𝑛𝑛 of all the
partitions of a �xed positive integer 𝑛𝑛 with the dominance
order.

However, the explicit identi�cation of a speci�c set of
integer partitions with a Sand Piles Model begins in [2, 3].

In the Sand Piles Model introduced by Goles and Kiwi
in [3], denoted by SPM(𝑛𝑛𝑛, a sand pile is represented by
an ordered partition of an integer 𝑛𝑛, that is, a decreasing

sequence 𝑎𝑎 𝑎 𝑎𝑎𝑎1,… , 𝑎𝑎𝑛𝑛) having sum 𝑛𝑛, and the movement
of a sand grain respects the following rule.

Rule 1 (vertical rule). One grain can move from a column to
the next one if the difference of height of these two columns
is greater than or equal to 2.

In the model 𝐿𝐿𝐵𝐵(𝑛𝑛𝑛 (introduced by Brylawski, 1973 [1]),
the movement of a sand grain respects Rule 1 and Rule 2,
which is described as follows.

Rule 2 (horizontal rule). If a column containing 𝑝𝑝 𝑝 𝑝 grains,
is followed by a sequence of columns containing 𝑝𝑝 grains and
then one column containing 𝑝𝑝𝑝𝑝 grains, one grain of the �rst
column can slip to the last one.

e Sand PilesModel SPM(𝑛𝑛𝑛 is a special case of themore
general Chip Firing Game (CFG), which was introduced by
Spencer in [4] to study some “balancing game”. ere are
a lot of specializations and extensions of this model which
have been introduced and studied under different names,
different aspects and different approaches. e SPM(𝑛𝑛𝑛 can
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be also related to the Self-Organized Criticality (SOC) system
introduced by Bak et al. in [5]. e study of such systems
have been developed in an algebraic context ([6]), in a
combinatorial games theory setting ([3, 7, 8]) and in the
theory of cellular automata [9, 10].

In the papers [8, 11–20], several dynamicalmodels related
to SPM(𝑛𝑛𝑛 have been studied. Almost all systems studied
in the previous works have a linear topology and they have
extended the classical models SPM(𝑛𝑛𝑛 and 𝐿𝐿𝐵𝐵(𝑛𝑛𝑛 to obtain
more general models. An excellent survey on these topics is
[21].

Let now 𝑟𝑟 and 𝑑𝑑 be non-negative integers less or equal
than 𝑛𝑛 and [𝑛𝑛𝑛 the 𝑛𝑛-set {1,… , 𝑛𝑛𝑛. In [22] the authors
have introduced and studied a poset (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆 related to
some extremal combinatorial sums problems (see also [23–
26] for studies on these problems). Such a poset can be
seen as a lattice of particular integer partitions with all dis-
tinct summands which can be positive or negative, whose
maximum positive summand is not exceeding 𝑟𝑟 and whose
minimum negative summand is not less than −(𝑛𝑛𝑛𝑛𝑛 𝑛. Such a
poset is an involution poset; that is, it has an involution map
that gives it some special symmetric properties, and it is also
a lattice isomorphic (as noted in [27]) to the direct product
𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  ∗, where 𝑀𝑀𝑀𝑀𝑀𝑀 is the lattice introduced by
Stanley, [28], in order to solve an Erdös andMoser conjecture
(here we denote by𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ the dual lattice of𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀).e
structure of𝑀𝑀𝑀𝑀𝑀𝑀 is well known. For example, since𝑀𝑀𝑀𝑀𝑀𝑀 is
Peck, it follows that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is Peck by [29].is lattice contains
an interesting sublattice (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   𝑆𝑆 that is the set of all
the integer partitions of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  having exactly 𝑑𝑑 non-zero
summands. Also this sublattice has been introduced in [22]
and its structure at present is incompletely understood. For
example, we know that it is a graded poset because it is a �nite
distributive lattice, but its rank function is unknown. In [30]
Andrews introduced the concept of signed partition: a signed
partition is a �nite sequence of integers𝜆𝜆𝑘𝑘,… , 𝜆𝜆1, 𝜆𝜆−1,… , 𝜆𝜆−𝑙𝑙
such that 𝜆𝜆𝑘𝑘 ≥ ⋯ ≥ 𝜆𝜆1 > 0 > 𝜆𝜆−1 ≥ ⋯ ≥ 𝜆𝜆−𝑙𝑙. In [30, 31]
the signed partitions are studied from an arithmetical point
of view.

In this paper we study the lattice 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   as a Sand
Piles Model of signed integer partitions with three evolution
rules. e �rst of these rules is an outside adjunction rule
on the “positive” piles. e second rule is a switching rule
between “negative” piles and “positive” piles which allows
to maintain constant the number of the piles. e third
rule is an outside elimination rule on the negative “piles”.
We prove that the covering relation in the lattice 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
is uniquely determined from the three previous rules. e
paper is articulated as follows. In Section 1 we recall some
basic de�nitions and preliminary results, for example, the
de�nition of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   and some of its properties. In Section
2 we explain how to see the signed partitions of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   as
con�gurations of our Sand Piles Model and also we de-
scribe its evolution rules. In Section 3 we prove (eorem 3)
that the covering relation in the lattice 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   is uniquely
determined by three evolution rules of our Sand Piles Model.
We determine the rank function of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   and we compute
the rank of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  , that is, the sequential convergence time
from the minimum to the maximum in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  . Finally, in

Section 4 we give some estimates for the parallel convergence
time in our model.

If (𝑋𝑋𝑋 𝑋𝑋 is a poset and 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥, we write 𝑦𝑦 𝑦 𝑦𝑦 (or 𝑥𝑥 𝑥
𝑦𝑦) if 𝑦𝑦 covers 𝑥𝑥. Now we brie�y recall the de�nition of the
lattice 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  that we have introduced in [22] in amore formal
context. In this paper we always denote with 𝑛𝑛 and 𝑟𝑟 two �xed
non-negative integers such that 𝑟𝑟 𝑟𝑟𝑟 . We call (𝑛𝑛𝑛𝑛𝑛 𝑛-string an
𝑛𝑛-pla of integers

𝑎𝑎𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛, (1)

such that

(i) 𝑎𝑎1,… , 𝑎𝑎𝑟𝑟 ∈ {1,… , 𝑟𝑟𝑟𝑟𝑟 ;
(ii) 𝑏𝑏1,… , 𝑏𝑏𝑛𝑛𝑛𝑛𝑛 ∈ {−1,… , −(𝑛𝑛 𝑛𝑛𝑛 𝑛𝑛𝑛 𝑛;
(iii) 𝑎𝑎𝑟𝑟 ≥ ⋯ ≥ 𝑎𝑎1 ≥ 0 ≥ 𝑏𝑏1 ≥ ⋯ ≥ 𝑏𝑏𝑛𝑛𝑛𝑛𝑛;
(iv) the unique element in (1) which can be repeated is 0.

If 𝑤𝑤 is a (𝑛𝑛𝑛𝑛𝑛 𝑛-string, we call parts of 𝑤𝑤 the integers 𝑎𝑎𝑟𝑟,
…, 𝑎𝑎1, 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛, non-negative parts of 𝑤𝑤 the integers
𝑎𝑎𝑟𝑟,… , 𝑎𝑎1 and non-positive parts of 𝑤𝑤 the integers 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛.
We set ∑(𝑤𝑤𝑤 𝑤𝑤 𝑤𝑟𝑟

𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 + ∑
𝑛𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗 𝑏𝑏𝑗𝑗, and if 𝑚𝑚 𝑚 𝑚 is such that

∑(𝑤𝑤𝑤 𝑤 𝑤𝑤, we say that 𝑤𝑤 is a signed partitions of 𝑚𝑚; in this
case we write 𝑤𝑤 𝑤 𝑤𝑤. We set 𝑤𝑤+ = 𝑎𝑎𝑟𝑟 …𝑎𝑎1 ∣ and 𝑤𝑤− = ∣
𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛. Also, we denote by |𝑤𝑤𝑤> the number of parts of 𝑤𝑤
that are strictly positive, with |𝑤𝑤𝑤< the number of parts of 𝑤𝑤
that are strictly negative and we set ||𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤> + |𝑤𝑤𝑤<. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
is the set of all the (𝑛𝑛𝑛𝑛𝑛 𝑛-strings. If 𝑤𝑤 𝑤 𝑤𝑤𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛
and 𝑤𝑤′ = 𝑎𝑎′𝑟𝑟 …𝑎𝑎′1 ∣ 𝑏𝑏′1 …𝑏𝑏′𝑛𝑛𝑛𝑛𝑛 are two (𝑛𝑛𝑛𝑛𝑛 𝑛-strings, we set
𝑤𝑤+ = 𝑤𝑤′

+ if 𝑎𝑎
′
𝑖𝑖 = 𝑎𝑎𝑖𝑖 for all 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖   , 𝑤𝑤− = 𝑤𝑤′

− if 𝑏𝑏
′
𝑗𝑗 = 𝑏𝑏𝑗𝑗 for

all 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗      and 𝑤𝑤 𝑤 𝑤𝑤′ if 𝑤𝑤+ = 𝑤𝑤′
+ and 𝑤𝑤− = 𝑤𝑤′

−. On
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  we consider the partial order on the components, that
we denote by⊑. To simplify the notations, in all the numerical
examples the integers on the right of the vertical bar | will
be written without minus sign. Since (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆 is a �nite
distributive lattice it is also graded, with minimum element
0⋯0 ∣ 12⋯ (𝑛𝑛 𝑛𝑛𝑛 𝑛 and maximum element 𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
0⋯0.

We recall now the concept of involution poset (see [32, 33]
for some recent studies on such class of posets). An involution
poset (IP) is a poset (𝑋𝑋𝑋 𝑋𝑋 𝑋𝑋𝑋 with a unary operation 𝑐𝑐𝑐𝑐𝑐𝑐  
𝑋𝑋 𝑋 𝑋𝑋𝑐𝑐 ∈ 𝑋𝑋, such that

(I1) (𝑥𝑥𝑐𝑐)𝑐𝑐 = 𝑥𝑥, for all 𝑥𝑥 𝑥 𝑥𝑥;
(I2) if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥 and if 𝑥𝑥 𝑥 𝑥𝑥, then 𝑦𝑦𝑐𝑐 ≤ 𝑥𝑥𝑐𝑐.

e map 𝑐𝑐 is called complementation of 𝑋𝑋 and 𝑥𝑥𝑐𝑐 the
complement of 𝑥𝑥. Let us observe that if 𝑋𝑋 is an involution
poset, by (I1) follows that 𝑐𝑐 is bijective and by (I1) and (I2)
it holds that if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥 are such that 𝑥𝑥 𝑥 𝑥𝑥, then 𝑦𝑦𝑐𝑐 < 𝑥𝑥𝑐𝑐.
If (𝑋𝑋𝑋 𝑋𝑋 𝑋𝑋𝑋 is an involution poset and if 𝑍𝑍 𝑍 𝑍𝑍, we will set
𝑍𝑍𝑐𝑐 = {𝑧𝑧𝑐𝑐 ∶ 𝑧𝑧 𝑧𝑧𝑧𝑧 . We note that if 𝑋𝑋 is an involution
poset then𝑋𝑋 is a self-dual poset because from (I1) and (I2) it
follows that if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥 we have that 𝑥𝑥 𝑥 𝑥𝑥, if and only if 𝑦𝑦𝑐𝑐 ≤
𝑥𝑥𝑐𝑐, and this is equivalent to say that the complementation is
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an isomorphism between 𝑋𝑋 and its dual poset 𝑋𝑋∗. In [22]
has been shown that (𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 is an involution poset and its
complementation map 𝑐𝑐 is the following:

󶀡󶀡𝑎𝑎𝑘𝑘 …𝑎𝑎1 0…0 ∣ 0…0 𝑏𝑏1 …𝑏𝑏𝑙𝑙󶀱󶀱
𝑐𝑐

= 𝑎𝑎′𝑟𝑟𝑟𝑟𝑟 …𝑎𝑎′1 0…0 ∣ 0…0 𝑏𝑏′1 …𝑏𝑏′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,
(2)

where {𝑎𝑎′1,… , 𝑎𝑎′𝑟𝑟𝑟𝑟𝑟} is the usual complement of {𝑎𝑎1,… , 𝑎𝑎𝑘𝑘}
in {1,… ,𝑟𝑟𝑟 , and {𝑏𝑏′1,… , 𝑏𝑏′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} is the usual complement of
{𝑏𝑏1,… , 𝑏𝑏𝑙𝑙} in {−1,… ,− (𝑛𝑛𝑛𝑛𝑛𝑛𝑛   (e.g., in 𝑆𝑆𝑆𝑆𝑆 𝑆𝑆, we have that
(4310 ∣ 001)𝑐𝑐 = 2000 ∣ 023). If 𝑑𝑑 is an integer such that
0 ≤ 𝑑𝑑 𝑑𝑑𝑑 , we set now 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆 𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 . It’s
easy to see that (𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 is a sub-lattice of (𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 and
obviously |𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆  󶀡󶀡 𝑛𝑛𝑑𝑑 󶀱󶀱. In the sequel we always denote,
respectively, by 󵰁󵰁0 and 󵰁󵰁1 the minimum and the maximum
element of the lattice 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆.

3. Evolution Rules

In this section we describe a discrete dynamical model with
three evolution rules. In this model a con�guration will be
a generic element of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. In the sequel, to comply with
the terminology concerning the Sand Piles Models, if 𝑤𝑤𝑤
𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆, we represent the sequence of the positive parts
of 𝑤𝑤 as a not-increasing sequence of columns of stacked
squares and the sequence of the negative parts of 𝑤𝑤 as a not-
decreasing sequence of columns of stacked squares. We call
a column of stacked squares a pile and each square of a pile
is called a grain. For example, if 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛     𝑛𝑛𝑛𝑛𝑛   𝑛, the
con�guration

.

.

(3)

is identi�ed with the partition (4, 3, 1, 0, 0, 0 ∣ 0, 0,− 1,− 3) =
433100 ∣ 0113 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆 𝑆𝑆. We denote by 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝐷𝐷+(𝑤𝑤𝑤𝑤
𝐷𝐷−(𝑤𝑤𝑤 the con�guration associated to𝑤𝑤, where𝐷𝐷+(𝑤𝑤𝑤 is the
Young diagram (represented with not-increasing columns) of
the partition (𝑎𝑎𝑟𝑟,… , 𝑎𝑎1) and 𝐷𝐷−(𝑤𝑤𝑤 is the Young diagram
(represented with not-decreasing columns) of the partition
with negative summands (−𝑏𝑏1,… ,− 𝑏𝑏𝑛𝑛𝑛𝑛𝑛). Our goal is to
de�ne some rules of evolution that starting from the mini-
mum of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 allow us to reconstruct the Hasse diagram
of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 (and therefore to determine the covering relations
in 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆).

Let 𝑤𝑤𝑤𝑤𝑤  𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. We formally set
𝑎𝑎0 ∶= 0, 𝑎𝑎𝑟𝑟𝑟𝑟 ∶= 𝑟𝑟𝑟𝑟   and 𝑏𝑏0 ∶= 0. If 0 ≤ 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖    we call
𝑎𝑎𝑖𝑖 the 𝑖𝑖th-plus pile of 𝑤𝑤, and if 0 ≤ 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗    we call 𝑏𝑏𝑗𝑗 the
𝑗𝑗th-minus pile of 𝑤𝑤. We call 𝑎𝑎𝑖𝑖 plus singleton pile if 𝑎𝑎𝑖𝑖 = 1
and 𝑏𝑏𝑗𝑗 minus singleton pile if 𝑏𝑏𝑗𝑗 = −1. If 1 ≤ 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖    we set
Δ+𝑖𝑖 (𝑤𝑤𝑤𝑤𝑤𝑤  𝑖𝑖 −𝑎𝑎𝑖𝑖𝑖𝑖 and we callΔ

+
𝑖𝑖 (𝑤𝑤𝑤 the plus height difference

of 𝑤𝑤 in 𝑖𝑖. If 1 ≤ 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗    we set Δ−𝑗𝑗 (𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑗𝑗| − |𝑏𝑏𝑗𝑗𝑗𝑗| and we
call Δ−𝑗𝑗 (𝑤𝑤𝑤 the minus height difference of 𝑤𝑤 in 𝑗𝑗. If 1 < 𝑖𝑖 𝑖𝑖𝑖 ,

we say that𝑤𝑤 has a plus cliff at 𝑖𝑖 if Δ+𝑖𝑖 (𝑤𝑤𝑤 𝑤 𝑤. If 1 < 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗   ,
we say that 𝑤𝑤 has a minus cliff at 𝑗𝑗 if Δ−𝑗𝑗 (𝑤𝑤𝑤 𝑤 𝑤.

Remark 1. e choice to set 𝑎𝑎0 = 0, 𝑎𝑎𝑟𝑟𝑟𝑟 = 𝑟𝑟 and 𝑏𝑏0 = 0
is a formal trick for decrease the number of rules necessary
for our model. is means that when we apply the next
rules to one element 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤     we think that there is
an “invisible” extra pile in the imaginary place 𝑟𝑟𝑟𝑟   having
exactly 𝑟𝑟𝑟𝑟   grains, an “invisible” extra pile with 0 grains in
the imaginary place to the right of 𝑎𝑎1 and to the le of | and
another “invisible” extra pile with 0 grains in the imaginary
place to the le of 𝑏𝑏1 and to the right of |. However the piles
corresponding respectively to 𝑎𝑎0 = 0, 𝑎𝑎𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟   and 𝑏𝑏0 = 0
must be not considered as parts of 𝑤𝑤.

3.1. Evolution Rules

𝑅𝑅1: If the 𝑖𝑖th-plus pile has at least one grain and if𝑤𝑤 has a
plus cliff at 𝑖𝑖 𝑖𝑖  then one grain must be added on the
𝑖𝑖th-plus pile:

•

.

.
.
.

(4)

𝑅𝑅2: If there is not a plus singleton pile and there is aminus
singleton pile, then the latter must be shied to the
side of the lowest not empty plus pile:

••
.
.

.

.

(5)

𝑅𝑅3: One grain must be deleted from the 𝑗𝑗th-minus pile if
𝑤𝑤 has a minus cliff at 𝑗𝑗:

•

.

.
.
.

(6)

Remark 2. (i) Under the hypothesis in 𝑅𝑅3, the 𝑗𝑗th minus pile
must have at least 2 grains.

(ii) In 𝑅𝑅2 the lowest not empty plus pile can also be the
invisible column in the place 𝑟𝑟𝑟𝑟  . In this case all the plus
piles are empty and an eventual minus singleton pile must be
shied in the place 𝑟𝑟.

4. Covering Relations in 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆

In this section we describe the covering relation in the lattice
𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. e main result of this section is the eorem 3.
In the sequel we write 𝑤𝑤𝑤𝑘𝑘 𝑤𝑤′ (or 𝑤𝑤′ = 𝑤𝑤𝑤𝑘𝑘) to denote
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that𝑤𝑤′ is a 𝑛𝑛-pla of integers obtained from𝑤𝑤 applying 𝑅𝑅𝑘𝑘, for
𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘.

eorem 3. (i) If 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑤 𝑤𝑤𝑤 and 𝑤𝑤′ = 𝑤𝑤𝑤𝑘𝑘 for some
𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘, then 𝑤𝑤′ ∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆    and 𝑤𝑤′ ⋗ 𝑤𝑤.

(ii) If 𝑤𝑤𝑤𝑤𝑤′ ∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆    and 𝑤𝑤′ ⋗ 𝑤𝑤, then 𝑤𝑤′ = 𝑤𝑤𝑤𝑘𝑘 for
some 𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘.

Proof. (i) Let 𝑤𝑤 𝑤 𝑤𝑤𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛 ∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   , 𝑎𝑎𝑟𝑟𝑟𝑟 =
𝑟𝑟 𝑟 𝑟 (the invisible pile in the place 𝑟𝑟 𝑟 𝑟) and 𝐷𝐷 𝐷 𝐷𝐷𝐷𝐷𝐷𝐷.
We distinguish the three possible cases related to the previous
rules.

Case 1. Let us assume that 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟, 𝑎𝑎𝑖𝑖 ≠ 0 and that 𝑤𝑤 has a
plus cliff at 𝑖𝑖𝑖𝑖  . If 𝑤𝑤′ = 𝑤𝑤𝑤1, then 𝑤𝑤′ =𝑎𝑎 𝑟𝑟 …𝑎𝑎𝑖𝑖𝑖𝑖(𝑎𝑎𝑖𝑖 +
1)𝑎𝑎𝑖𝑖𝑖𝑖 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛. It is clear that ||𝑤𝑤

′|| =𝑑𝑑  because
𝑎𝑎𝑖𝑖 ≠ 0. Since there is a plus cliff at 𝑖𝑖𝑖𝑖   we have 𝑎𝑎𝑖𝑖𝑖𝑖 −𝑎𝑎 𝑖𝑖 ≥2 ,
hence 𝑎𝑎𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖 +2  > 𝑎𝑎𝑖𝑖 +1  > 𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑖𝑖𝑖𝑖, and this implies
that 𝑤𝑤′ ∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   . We must show now that 𝑤𝑤′ covers 𝑤𝑤
in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  . Since 𝑤𝑤 and 𝑤𝑤′ differ between them only in the
place 𝑖𝑖 for 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖 +1 , respectively, it is clear that there does
not exist an element 𝑧𝑧 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧    such that 𝑤𝑤 𝑤 𝑤𝑤 𝑤 𝑤𝑤′.
Hence 𝑤𝑤′ ⋗ 𝑤𝑤.

Case 2. Let us assume that in 𝐷𝐷 there is not a plus singleton
pile and that there is a minus singleton pile 𝑏𝑏𝑗𝑗 =−1  for some
1 ≤ 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗   . Since 𝑎𝑎𝑟𝑟𝑟𝑟 =𝑟𝑟  𝑟 𝑟, we can assume that
𝑎𝑎𝑖𝑖𝑖𝑖 > 0, 𝑎𝑎𝑖𝑖 = 0, for some 1 ≤ 𝑖𝑖𝑖𝑖𝑖  . is means that
𝑤𝑤 has the following form: 𝑤𝑤 𝑤 𝑤𝑤𝑟𝑟 …𝑎𝑎𝑖𝑖𝑖𝑖00…0 ∣
0…0(−1)𝑏𝑏𝑗𝑗𝑗𝑗 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛, where 𝑎𝑎𝑖𝑖𝑖𝑖 > 1 (otherwise 𝐷𝐷 has a
plus singleton pile). Applying 𝑅𝑅2 to 𝑤𝑤 we obtain 𝑤𝑤′ = 𝑤𝑤𝑤2,
where 𝑤𝑤′ =𝑎𝑎 𝑟𝑟 …𝑎𝑎𝑖𝑖𝑖𝑖10…0 ∣ 0…00𝑏𝑏𝑗𝑗𝑗𝑗 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛. It is
clear then that 𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑤 and ||𝑤𝑤′|| =𝑑𝑑  since 𝑤𝑤′ is
obtained from 𝑤𝑤 with only a shi of the pile −1 to the le
in the place 𝑖𝑖. Let us note that the only elements 𝑧𝑧1, 𝑧𝑧2 ∈
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  such that 𝑤𝑤 𝑤 𝑤𝑤1 ⊏ 𝑤𝑤′ and 𝑤𝑤 𝑤 𝑤𝑤2 ⊏ 𝑤𝑤′ are
𝑧𝑧1 =𝑎𝑎 𝑟𝑟 …𝑎𝑎𝑖𝑖𝑖𝑖10…0 ∣ 0…0(−1)𝑏𝑏𝑗𝑗𝑗𝑗 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛 and 𝑧𝑧2 =
𝑎𝑎𝑟𝑟 …𝑎𝑎𝑖𝑖𝑖𝑖00…0 ∣ 0…00𝑏𝑏𝑗𝑗𝑗𝑗 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛, but ||𝑧𝑧1|| =𝑑𝑑𝑑𝑑    and
||𝑧𝑧2|| =𝑑𝑑𝑑𝑑   , hence 𝑧𝑧1, 𝑧𝑧2 are not elements of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  . is
implies that 𝑤𝑤𝑤 covers 𝑤𝑤 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  .

Case 3. If 1 < 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗    and 𝑤𝑤 has a minus cliff at 𝑗𝑗, we
apply 𝑅𝑅3 to𝑤𝑤 on the pile 𝑏𝑏𝑗𝑗 and we obtain𝑤𝑤

′ = 𝑤𝑤𝑤3, where
𝑤𝑤′ =𝑎𝑎 𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑗𝑗𝑗𝑗(𝑏𝑏𝑗𝑗 +1) 𝑏𝑏𝑗𝑗𝑗𝑗 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛. Since 𝑤𝑤 has a
minus cliff at 𝑗𝑗, we have−𝑏𝑏𝑗𝑗+𝑏𝑏𝑗𝑗𝑗𝑗 = |𝑏𝑏𝑗𝑗|−|𝑏𝑏𝑗𝑗𝑗𝑗| ≥2 , therefore
𝑤𝑤′ ∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   because 0 ≥ 𝑏𝑏𝑗𝑗𝑗𝑗 ≥ 𝑏𝑏𝑗𝑗 +2 > 𝑏𝑏𝑗𝑗+1 > 𝑏𝑏𝑗𝑗 > 𝑏𝑏𝑗𝑗𝑗𝑗 and
||𝑤𝑤′|| =𝑑𝑑  since 𝑏𝑏𝑗𝑗 ≤ −2 implies 𝑏𝑏𝑗𝑗+1 < 0. As in the Case 1, we
note that𝑤𝑤′ covers𝑤𝑤 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   because they differ between
them only for a grain in the place 𝑗𝑗.

(ii) As in (i), we take 𝑤𝑤 𝑤 𝑤𝑤𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛 ∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  
and 𝑎𝑎𝑟𝑟𝑟𝑟 =𝑟𝑟 𝑟𝑟 (the invisible pile in the place 𝑟𝑟𝑟𝑟). Let𝑤𝑤

′′ =
𝑎𝑎′′𝑟𝑟 …𝑎𝑎′′1 ∣ 𝑏𝑏

′′
1 … 𝑏𝑏′′𝑛𝑛𝑛𝑛𝑛 a generic element of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   such that

𝑤𝑤′′ ⊒ 𝑤𝑤 and 𝑤𝑤′′ ≠𝑤𝑤. If we show that there exists an element

𝑤𝑤′ =𝑎𝑎 ′𝑟𝑟 …𝑎𝑎′1 ∣ 𝑏𝑏
′
1 …𝑏𝑏′𝑛𝑛𝑛𝑛𝑛 of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   such that 𝑤𝑤′ = 𝑤𝑤𝑤𝑘𝑘

for some 𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘 and𝑤𝑤′′ ⊒ 𝑤𝑤′ we complete the proof. Since
𝑤𝑤′′ ≠𝑤𝑤, there is a place where the corresponding component
of𝑤𝑤′′ is an integer strictly bigger than the integer component
of𝑤𝑤 corresponding to the same place. We distinguish several
cases.

Case 𝐴𝐴. 𝑎𝑎′′𝑖𝑖 > 𝑎𝑎𝑖𝑖 for some 𝑖𝑖𝑖  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    𝑖.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆. 𝑎𝑎𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖+2. In this case we apply𝑅𝑅1 in the place
𝑖𝑖 to obtain 𝑤𝑤′ = 𝑤𝑤𝑤1 such that 𝑤𝑤′′ ⊒ 𝑤𝑤′.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆. 𝑎𝑎𝑖𝑖𝑖𝑖 =𝑎𝑎 𝑖𝑖 +1 . Since 𝑎𝑎
′′
𝑖𝑖 > 0 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    , then

𝑎𝑎′′𝑖𝑖𝑖𝑖 > 𝑎𝑎
′′
𝑖𝑖 > 𝑎𝑎𝑖𝑖, therefore 𝑎𝑎

′′
𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖 +2  > 𝑎𝑎𝑖𝑖𝑖𝑖. Now, if 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    ,

then 𝑟𝑟 𝑟 𝑟𝑟′′𝑟𝑟 > 𝑎𝑎𝑟𝑟 and we can apply 𝑅𝑅1 in the place 𝑟𝑟. We can
assume therefore 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    . If 𝑎𝑎𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖𝑖𝑖 +2  we proceed as in
A1 with 𝑅𝑅1 in the place 𝑖𝑖𝑖𝑖  , otherwise, if 𝑎𝑎𝑖𝑖𝑖𝑖 =𝑎𝑎 𝑖𝑖𝑖𝑖 +1  and
𝑖𝑖𝑖𝑖𝑖𝑖𝑖  we proceed as before with𝑅𝑅1 in the place 𝑟𝑟. Iterating,
it follows that the cases to be examined are 𝑎𝑎𝑖𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +2
or 𝑎𝑎𝑖𝑖𝑖𝑖𝑖 =𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +1 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  . In all these case we can apply
𝑅𝑅1 in the place 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    .

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶. 𝑎𝑎′′𝑟𝑟 > 𝑎𝑎𝑟𝑟. In this case we just apply 𝑅𝑅1 in the place 𝑟𝑟.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶. 𝑏𝑏′′𝑗𝑗 > 𝑏𝑏𝑗𝑗 for some 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     .

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆. 𝑏𝑏′′𝑗𝑗 < 0. en 𝑏𝑏𝑗𝑗 ≥−2  and we can apply 𝑅𝑅3 in the
place 𝑗𝑗.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆. 𝑏𝑏′′𝑗𝑗 = 0 and 𝑏𝑏𝑗𝑗 ≥−2 . We apply 𝑅𝑅3 in the place 𝑗𝑗.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆. 𝑏𝑏′′𝑗𝑗 = 0, 𝑏𝑏𝑗𝑗 =−1  and 𝑎𝑎𝑖𝑖 =1  for some 𝑖𝑖𝑖  𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖.
If 𝑎𝑎1 =1  then 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑤𝑤𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛

with ||𝑤𝑤𝑤𝑤𝑤  𝑤𝑤, therefore we can not have 𝑤𝑤′′ ∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆    such
that 𝑤𝑤′′ ⊑ 𝑤𝑤 and 𝑤𝑤𝑤𝑤𝑤′′. We can assume then 𝑖𝑖𝑖𝑖  , and
therefore 𝑎𝑎𝑖𝑖𝑖𝑖 = ⋯ =𝑎𝑎 1 = 0. Since ||𝑤𝑤′′|| = ||𝑤𝑤𝑤𝑤𝑤  𝑤𝑤, it
must be 𝑎𝑎′′𝑖𝑖 > 𝑎𝑎′′𝑖𝑖𝑖𝑖 > 0, hence 𝑎𝑎′′𝑖𝑖 ≥2  and 𝑎𝑎𝑖𝑖 =1 . Now, if
𝑎𝑎𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖 +2 , we apply 𝑅𝑅1 in the place 𝑖𝑖. We can suppose then
that 𝑎𝑎𝑖𝑖𝑖𝑖 =𝑎𝑎 𝑖𝑖 +1=2   . Since 𝑎𝑎′′𝑖𝑖𝑖𝑖 > 0, it must be 𝑎𝑎′′𝑖𝑖𝑖𝑖 ≥ 4,
therefore, if 𝑎𝑎𝑖𝑖𝑖𝑖 =𝑎𝑎

′′
𝑖𝑖𝑖𝑖 then 𝑎𝑎𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖𝑖𝑖 +2  and we can apply

𝑅𝑅1 in the place 𝑖𝑖𝑖𝑖  . Hence we can assume 𝑎𝑎𝑖𝑖𝑖𝑖 < 𝑎𝑎′′𝑖𝑖𝑖𝑖. If
𝑎𝑎𝑖𝑖𝑖𝑖 ≥𝑎𝑎 𝑖𝑖𝑖𝑖 +2  we apply then 𝑅𝑅1 in the place 𝑖𝑖𝑖𝑖   because
𝑎𝑎′′𝑖𝑖𝑖𝑖 ≥3  > 𝑎𝑎𝑖𝑖𝑖𝑖 =2 . en we can suppose 𝑎𝑎𝑖𝑖𝑖𝑖 =𝑎𝑎 𝑖𝑖𝑖𝑖 +1=3   .
Iterating this reasoning, we apply 𝑅𝑅1 in some place 𝑖𝑖𝑖𝑖𝑖  , with
𝑘𝑘 𝑘 𝑘, or we obtain for 𝑤𝑤 and 𝑤𝑤′′ the following forms:

𝑤𝑤 𝑤 𝑤𝑤 (𝑙𝑙𝑙𝑙  )…3210…0 ∣ 0…0 (−1) 𝑏𝑏𝑗𝑗𝑗𝑗 …𝑏𝑏𝑛𝑛𝑛𝑛𝑛,

𝑤𝑤′′ =𝑙𝑙 ′ 󶀣󶀣𝑙𝑙′ −1 󶀳󶀳…3210…0 ∣ 0…00 𝑏𝑏′′𝑗𝑗𝑗𝑗 …𝑏𝑏′′𝑛𝑛𝑛𝑛𝑛
(7)

with 𝑟𝑟 𝑟 𝑟𝑟′ > 𝑙𝑙. We can apply therefore 𝑅𝑅1 in the place 𝑟𝑟.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆. 𝑏𝑏′′𝑗𝑗 = 0, 𝑏𝑏𝑗𝑗 =−1  and 𝑎𝑎𝑖𝑖 ≠ 1 for each 𝑖𝑖𝑖  𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖.
In this case there is at least one place 𝑖𝑖𝑖  𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖 such

that 𝑎𝑎𝑖𝑖 = 0. We take this 𝑖𝑖maximal, so that 𝑖𝑖𝑖𝑖𝑖   or 𝑖𝑖𝑖𝑖𝑖   and
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𝑎𝑎𝑖𝑖𝑖𝑖 > 0. en, since 𝑏𝑏′′𝑗𝑗 = 0, 𝑏𝑏𝑗𝑗 = −1, 𝑎𝑎′′𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎𝑖𝑖𝑖𝑖 > 0 and
||𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑤𝑤′′|| = 𝑑𝑑, it must be necessarily 𝑎𝑎′′𝑖𝑖 > 0. We apply
then 𝑅𝑅2 shiing the negative grain from the place 𝑗𝑗 into a
positive grain in the place 𝑖𝑖, that is, we take 𝑤𝑤𝑤𝑤  𝑤𝑤𝑤2 with
𝑎𝑎′𝑖𝑖 = 1 and 𝑏𝑏

′
𝑗𝑗 = 0 and all other components unchanged.

Hence in all the previous cases we obtain an element𝑤𝑤′ =
𝑤𝑤𝑤𝑘𝑘, for some 𝑘𝑘 𝑘𝑘 𝑘 𝑘𝑘 𝑘, such that 𝑤𝑤′ ⊑ 𝑤𝑤′′.

Below we draw the Hasse diagram of the lattice 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆
by using the evolution rules 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3 starting to the mini-
mum element of this lattice, which is 00 ∣ 123. We label a
generic edge of the next diagram with the integer 𝑘𝑘 if it leads
to a production that uses 𝑅𝑅𝑘𝑘, for 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘:

.

.

2

1
3

3

1

3

2

3

1

3
2

3

.

.

.

.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

(8)

Since 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆 is a �nite distributive lattice it is also graded�
in the next proposition we determine its rank function.

Proposition 4. e rank function 𝜌𝜌 of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆 is 𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∑(𝑤𝑤𝑤𝑤𝑤𝑤  󵰁󵰁0) − (|𝑤𝑤𝑤> − |󵰁󵰁0|>).

Proof. We denote by 𝜚𝜚 the rank function of the graded lattice
𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆. It is easy to verify that 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌    󵰁󵰁0) for each
𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   (see also [22]). Let 𝑤𝑤 𝑤 𝑤𝑤𝑡𝑡 ⋗ ⋯ ⋗ 𝑤𝑤1 ⋗ 󵰁󵰁0 be any
saturated chain from 󵰁󵰁0 to𝑤𝑤. Let us assume that in this chain𝑤𝑤
is obtained from 󵰁󵰁0 with 𝑘𝑘 applications of 𝑅𝑅2, for some integer
𝑘𝑘 𝑘𝑘 . To each step 𝑙𝑙 𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙  where we apply 𝑅𝑅2, there

is the following situation: 𝑤𝑤𝑙𝑙 ⊐ 𝑢𝑢𝑙𝑙 ⊐ 𝑤𝑤𝑙𝑙𝑙𝑙, for exactly one
only element 𝑢𝑢𝑙𝑙 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆. is means that 𝜚𝜚𝜚𝜚𝜚𝜚𝜚
(𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡   , that is, 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌    . e integer 𝑘𝑘 is also the
difference between the number of positive parts of 𝑤𝑤 and the
number of positive parts of 󵰁󵰁0. Hence the thesis follows.

In the next proposition we compute the rank of the lattice
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆.

Proposition 5. rank(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆.

Proof. If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟      , then 󵰁󵰁1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟      
and
󵰁󵰁0 = (𝑑𝑑 𝑑 (𝑛𝑛𝑛𝑛𝑛  ))…10…0 ∣ (−1)( −2)… (− (𝑛𝑛𝑛𝑛𝑛  )) . (9)

So that |󵰁󵰁1|> − |󵰁󵰁0|> = 𝑛𝑛𝑛𝑛𝑛  . If 𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑    and 𝑑𝑑 𝑑𝑑𝑑 , then
󵰁󵰁1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟     and 󵰁󵰁0 = (𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   
(−1)(−2)…( −(𝑛𝑛𝑛𝑛𝑛𝑛𝑛  . So that |󵰁󵰁1|> − |󵰁󵰁0|> = 𝑛𝑛𝑛𝑛𝑛  . If 𝑑𝑑 𝑑
𝑛𝑛𝑛𝑛𝑛   and 𝑑𝑑 𝑑 𝑑𝑑, then 󵰁󵰁1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟      
and 󵰁󵰁0 = 0…0 ∣ 0…0(−((𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛         .
erefore |󵰁󵰁1|> − |󵰁󵰁0|> = 𝑑𝑑. Finally, if 𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑   and 𝑑𝑑 𝑑𝑑𝑑 ,
then 󵰁󵰁1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟      and 󵰁󵰁0 = 0…0 ∣
0…0(−((𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 .erefore |󵰁󵰁1|>−|󵰁󵰁0|> = 𝑟𝑟.
e rank of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆 is obviously 𝜌𝜌𝜌󵰁󵰁1)−𝜌𝜌𝜌󵰁󵰁0), that we compute
in all the previous cases applying the Proposition 4.e thesis
follows then from simply arithmetic manipulations.

5. Dynamics of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆 as Sand Piles Model

In this section we study the lattice 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆 as a discrete
dynamical system. For the terminology concerning the dis-
crete dynamical system we refer to [21]. In such a context,
we call con�guration a generic element of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆. e
initial con�guration is 󵰁󵰁0. �ach con�guration converges, in
sequential and in parallel, toward the unique �xed point 󵰁󵰁1
because of the lattice structure of the model. Let us note
that if 𝑤𝑤 is a con�guration, when we use the evolution rules
in parallel, on each column of 𝑤𝑤 we can apply (due to the
nature of the Rules 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3) exactly one evolution rule,
hence our model is deterministic. With the same notations
of [3], we denote respectively by 𝑇𝑇sec(𝑤𝑤𝑤 and 𝑇𝑇par(𝑤𝑤𝑤 the
number of time steps required to reach 󵰁󵰁1 starting from the
con�guration𝑤𝑤, using the sequential or the parallel updating
scheme. Obviously 𝑇𝑇sec(𝑤𝑤𝑤 is independent of the order in
which the sites are updated because 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑆𝑆𝑆 is a graded
lattice. Moreover it is also clear that

𝑇𝑇sec (𝑤𝑤) = 𝜌𝜌 󶀢󶀢󵰁󵰁1󶀲󶀲 − 𝜌𝜌 (𝑤𝑤) . (10)
We study now some properties of the dynamics in parallel. If
𝑤𝑤 and 𝑤𝑤′ are two different con�gurations, we say that 𝑤𝑤′ is a
parallel successor of𝑤𝑤, and we write𝑤𝑤 𝑤 𝑤𝑤′ or𝑤𝑤′ = 𝑤𝑤 𝑤, if
𝑤𝑤′ is the con�guration which is obtained with all the possible
parallel applications of the Rules 1–3 on the parts of 𝑤𝑤. If we
can apply in parallel 𝑚𝑚𝑖𝑖 times 𝑅𝑅𝑖𝑖 on 𝑤𝑤, for 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖  , we set
𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀 1,𝑚𝑚2,𝑚𝑚3) and |𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀 1 + 𝑚𝑚2 + 𝑚𝑚3. Let us
note that 𝑚𝑚2 can be only 0 or 1. Obviously there is a unique
�nite sequence (𝑤𝑤0, 𝑤𝑤1,…, 𝑤𝑤𝑠𝑠) of con�gurations such that

𝑤𝑤0 = 󵰁󵰁0 ⇉ 𝑤𝑤1 ⇉ ⋯ ⇉ 𝑤𝑤𝑠𝑠𝑠𝑠 ⇉ 𝑤𝑤𝑠𝑠 = 󵰁󵰁1. (11)
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e sequence in (11) is obviously a chain of length 𝑠𝑠 in
(𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 that we call fundamental chain of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. It
is clear that 𝑇𝑇par(󵰁󵰁0) = 𝑠𝑠. We also call fundamental sequence
of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 the �nite integer sequence

󶀡󶀡󶙡󶙡𝑀𝑀 󶀡󶀡𝑤𝑤0󶀱󶀱󶙡󶙡 , 󶙡󶙡𝑀𝑀 󶀡󶀡𝑤𝑤1󶀱󶀱󶙡󶙡 ,… , 󶙡󶙡𝑀𝑀 󶀡󶀡𝑤𝑤𝑠𝑠𝑠𝑠󶀱󶀱󶙡󶙡󶙡󶙡 . (12)

Remark 6. If (𝑤𝑤0, 𝑤𝑤1,… ,𝑤𝑤𝑠𝑠) is the fundamental chain of
𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 then

𝑠𝑠𝑠𝑠
󵠈󵠈
𝑖𝑖𝑖𝑖
󶙡󶙡𝑀𝑀 󶀡󶀡𝑤𝑤𝑖𝑖󶀱󶀱󶙡󶙡 = rank (𝑆𝑆 (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  )) . (13)

In the next result we compute the exact value of 𝑇𝑇par(󵰁󵰁0) for
a wide range of the integers parameters 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   and in another
case we provide a lower estimate.

eorem 7. (i) If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑      , 𝑇𝑇par(󵰁󵰁0) = 2𝑑𝑑𝑑𝑑  .
(ii) If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     𝑑 𝑑𝑑, 𝑇𝑇par(󵰁󵰁0) = 𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑      .
(iii) If 𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑   and 𝑟𝑟 𝑟 𝑟𝑟, 𝑇𝑇par(󵰁󵰁0)≥  2𝑑𝑑𝑑𝑑  .
(iv) If 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟   and 2𝑑𝑑𝑑𝑑𝑑  , 𝑇𝑇par(󵰁󵰁0) = 2𝑑𝑑𝑑𝑑  .
(v) If 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟   and 2𝑑𝑑𝑑𝑑𝑑   𝑑 𝑑, 𝑇𝑇par(󵰁󵰁0) = 𝑛𝑛𝑛𝑛  .
Moreover, in all the previous cases the fundamental

sequence of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 is symmetric and unimodal.

Proof. (i) If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       then 󵰁󵰁0 = 0…0 ∣ 1… (𝑛𝑛𝑛𝑛𝑛𝑛   and
󵰁󵰁1 = 𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟. In this case the �rst and the last rule which
applies is always 𝑅𝑅2: in between all the rules 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3 apply
in a very symmetric way, in view of their de�nition and of
the symmetry of three parameters of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. e number
of rules which apply at each step follows this sequence:
1,… , (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑         and the unimodularity and
the symmetry of the sequence of parallel con�gurations is
therefore straightforward. Moreover there exists a unique
time 𝑇𝑇 𝑇𝑇𝑇  in which the maximal number 𝑑𝑑 of rules apply;
the string at which the 𝑑𝑑 rules apply is always of the following
type:

if 𝑑𝑑 is even: (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    , where in
both positive and negative part each number is the
previous minus 2;
if 𝑑𝑑 is odd: (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    , where in
both positive and negative part each number is the
previous minus 2.

Hence 𝑇𝑇par(󵰁󵰁0) = 2𝑑𝑑𝑑𝑑  .
(ii) If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     𝑑 𝑑𝑑 then 󵰁󵰁0 = 0…0 ∣ 1… (𝑛𝑛𝑛𝑛𝑛𝑛   and

󵰁󵰁1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟       . e �rst rule which applies
is always 𝑅𝑅2 and the last one is always 𝑅𝑅1. In this case there
are several strings obtainedwith themaximal number of rules
which is 𝑑𝑑: the �rst one which appears from the bottom in the
fundamental sequence of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 is:

if𝑑𝑑 is even, (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  , where
in both positive and negative part each number is the
previous minus 2;
if 𝑑𝑑 is odd, (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  ,
where in both positive and negative part each number
is the previous minus 2.

e number of steps with 𝑑𝑑 rules is exactly (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   
and the number of rules which apply at each step follows
this sequence: 1,… , (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑        : hence the
unimodularity and the symmetry of the sequence of the
parallel con�gurations is straightforward. Finally, 𝑇𝑇par(󵰁󵰁0) =
𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑      .

(iii) With these parameters, 󵰁󵰁0 = 0…0 ∣ 0… (𝑛𝑛𝑛𝑛𝑛𝑛  
𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    and 󵰁󵰁1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟       . e
�rst rule from the bottom which applies is always 𝑅𝑅3 and the
last rule from the top which applies is always 𝑅𝑅1. In this case
there are several strings obtained with the maximal number
of rules which is still 𝑑𝑑, and the number of rules which apply
at each step follows this sequence: 1,… , (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    
1),… , 1: therefore the unimodularity and the symmetry of
the sequence of the parallel con�gurations follow such as the
lower bound for 𝑇𝑇par(󵰁󵰁0).

(iv) With these parameters, 󵰁󵰁0 = (𝑑𝑑𝑑𝑑𝑑   𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1… (𝑛𝑛𝑛𝑛𝑛𝑛 and 󵰁󵰁1 = 𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟. In this case the
�rst and the last rule which applies is always 𝑅𝑅1: in between
all the rules 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3. e number of rules which apply at
each step follows this sequence: 1,… , (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       
and the unimodularity and the symmetry of the sequence of
parallel con�gurations is immediate. Moreover there exists a
unique time 𝑇𝑇 𝑇𝑇𝑇  in which the maximal number 𝑑𝑑 of rules
apply. Hence 𝑇𝑇par(󵰁󵰁0) = 2𝑑𝑑𝑑𝑑  .

(v) With these parameters, 󵰁󵰁0 = (𝑑𝑑𝑑𝑑𝑑   𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1… (𝑛𝑛𝑛𝑛𝑛𝑛   and 󵰁󵰁1 = 𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    𝑟𝑟𝑟𝑟  𝑟𝑟. In this
case the �rst and the last rule which applies is always 𝑅𝑅1. A
difference with the previous case is that here there are several
strings obtained with the maximal number of rules which
is 𝑑𝑑; the number of string at which 𝑑𝑑 rules apply is exactly
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    . e very interesting thing is that 𝑇𝑇par(󵰁󵰁0) = 𝑛𝑛𝑛𝑛 
is independent of 𝑑𝑑 in this case, as in case (ii). Obviously also
in this case we have the unimodularity and the symmetry of
the sequence of the parallel con�gurations.

References

[1] T. Brylawski, “e lattice of integer partitions,” Discrete Mathe-
matics, vol. 6, no. 3, pp. 201–219, 1973.

[2] E. Goles, “Sand pile automata,” Annales de l’Institut Henri
Poincaré, vol. 56, no. 115, pp. 75–90, 1992.

[3] E. Goles andM. A. Kiwi, “Games on line graphs and sand piles,”
eoretical Computer Science, vol. 115, no. 2, pp. 321–349, 1993.

[4] J. Spencer, “Balancing vectors in themax norm,”Combinatorica,
vol. 6, no. 1, pp. 55–65, 1986.

[5] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality,”
Physical Review A, vol. 38, no. 1, pp. 364–374, 1988.

[6] D. Dhar, “e Abelian sandpile and related models,” Physica A,
vol. 263, no. 1–4, pp. 4–25, 1999.

[7] E. Goles and M. Margenstern, “�niversality of the chip-�ring
game,” eoretical Computer Science, vol. 172, no. 1-2, pp.
121–134, 1997.

[8] E. Goles, M. Morvan, and H. Phan, “Lattice structure and
convergence of a game of cards,” Annals of Combinatorics, vol.
6, pp. 327–335, 2002.

[9] J. Cervelle, E. Formenti, and B.Masson, “From sandpiles to sand
automata,” eoretical Computer Science, vol. 381, no. 1–3, pp.
1–28, 2007.



ISRN Combinatorics 7

[10] E. Goles and M. A. Kiwi, One-Dimensional Sand Piles, Cellular
Automata and Related Models, Nonlinear Phenomena in Uids,
Solids and Other Complex Systems, 1990.

[11] E. Formenti, B. Masson, and T. Pisokas, “On symmetric
sandpiles,” Lecture Notes in Computer Science, vol. 4173, pp.
676–685, 2006.

[12] E. Formenti, B. Masson, and T. Pisokas, “Advances in symmet-
ric sandpiles,” Fundamenta Informaticae, vol. 76, no. 1-2, pp.
91–112, 2007.

[13] E. Goles, M. Morvan, and H. D. Phan, “Sandpiles and order
structure of integer partitions,” Discrete Applied Mathematics,
vol. 117, no. 1–3, pp. 51–64, 2002.

[14] M. H. Le and T. H. D. Phan, “Strict partitions and discrete
dynamical systems,”eoretical Computer Science, vol. 389, no.
1-2, pp. 82–90, 2007.

[15] M. Latapy, “Partitions of an integer into powers,” in Proceedings
of the conference Discrete Models: Combinatorics, Computation,
and Geometry, Discrete Mathematics and eoretical Computer
Science, pp. 215–228, 2001.

[16] M. Latapy, “Integer partitions, tilings of 2D-gons and lattices,”
eoretical Informatics and Applications, vol. 36, no. 4, pp.
389–399, 2002.

[17] M. Latapy, R. Mantaci, M. Morvan, and H. D. Phan, “Structure
of some sand piles model,” eoretical Computer Science, vol.
262, no. 1-2, pp. 525–556, 2001.

[18] M. Latapy and H. D. Phan, “e lattice structure of chip �ring
games and related models,” Physica D, vol. 155, no. 1-2, pp.
69–82, 2001.

[19] M. Latapy and T. H. D. Phan, “e lattice of integer partitions
and its in�nite e�tension,”Discrete Mathematics, vol. 309, no. 6,
pp. 1357–1367, 2009.

[20] P. T. H. Duong and T. T. T. Huong, “On the stability of sand
piles model,” eoretical Computer Science, vol. 411, no. 3, pp.
594–601, 2010.

[21] E. Goles, M. Latapy, C. Magnien, M. Morvan, and H. D.
Phan, “Sandpile models and lattices: a comprehensive survey,”
eoretical Computer Science, vol. 322, no. 2, pp. 383–407, 2004.

[22] C. Bisi and G. Chiaselotti, “A class of lattices and boolean
functions related to the Manickam-Miklös-Singhi Conjecture,”
Advances in Geometry, vol. 13, no. 1, pp. 1–27, 2013.

[23] G. Chiaselotti, “On a problem concerning theweight functions,”
European Journal of Combinatorics, vol. 23, no. 1, pp. 15–22,
2002.

[24] G. Chiaselotti, G. Infante, and G. Marino, “New results related
to a conjecture of Manickam and Singhi,” European Journal of
Combinatorics, vol. 29, no. 2, pp. 361–368, 2008.

[25] G. Chiaselotti, G. Marino, and C. Nardi, “A minimum problem
for chcnite sets of real numbers with nonnegative sum,” Journal
of Applied Mathematics, vol. 2012, Article ID 847958, 15 pages,
2012.

[26] G. Marino and G. Chiaselotti, “A method to count the positive
3-subsets in a set of real numbers with non-negative sum,”
European Journal of Combinatorics, vol. 23, no. 5, pp. 619–629,
2002.

[27] K. Engel and C. Nardi, “Solution of a problem on non-negative
subset sums,” European Journal of Combinatorics, vol. 33, pp.
1253–1256, 2012.

[28] R. P. Stanley, “Weyl groups, the hard Lefschetz theorem, and
the Sperner property,” SIAM Journal on Algebraic and Discrete
Methods, vol. 1, pp. 168–184, 1980.

[29] S. Bezrukov and K. Engel, Properties of Graded Posets Preseved
by Some Operations, Algorithms and Combinatorics, vol. 14 of
emathematics of Paul Erdos, Springer, Berlin, Germany, 1997.

[30] G. E. Andrews, “Euler’s “de partitio numerorum”,” Bulletin of
the American Mathematical Society, vol. 44, no. 4, pp. 561–573,
2007.

[31] W. J. Keith, “A bijective toolkit for signed partitions,” Annals of
Combinatorics, vol. 15, no. 1, pp. 95–117, 2011.

[32] K. J. Al-Agha and R. J. Greechie, “e involutory dimension of
involution posets,” Order, vol. 18, no. 4, pp. 323–337, 2001.

[33] K. Brenneman, R. Haas, and A. G. Helminck, “Implementing
an algorithm for the twisted involution poset for Weyl groups,”
in Proceedings of the irty-Seventh Southeastern International
Conference on Combinatorics, Graph eory and 7-Computing,
vol. 182, pp. 137–144, 2006.


