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Abstract The regular fractional transformations of the extended quaternionic space
have been recently introduced as variants of the classical linear fractional transfor-
mations. These variants have the advantage of being included in the class of slice
regular functions, introduced by Gentili and Struppa in 2006, so that they can be
studied with the useful tools available in this theory. We first consider their general
properties, then focus on the regular Möbius transformations of the quaternionic
unit ball B, comparing the latter with their classical analogs. In particular we study
the relation between the regular Möbius transformations and the Poincaré metric
of B, which is preserved by the classical Möbius transformations. Furthermore, we
announce a result that is a quaternionic analog of the Schwarz-Pick lemma.

1 Classical Möbius Transformations and Poincaré Distance on
the Quaternionic Unit Ball

A classical topic in quaternionic analysis is the study of Möbius transformations.
It is well known that the set of linear fractional transformations of the extended
quaternionic space H∪ {∞} ∼= HP

1

G =
{
g(q) = (aq + b) · (cq + d)−1

∣∣∣∣
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a b

c d

]
∈ GL(2,H)

}
(1)

Both authors are partially supported by GNSAGA INdAM and by FIRB “Geometria Differenziale
Complessa e Dinamica Olomorfa”. The second author is also partially supported by FSE and by
Regione Lombardia.

C. Bisi
Department of Mathematics and Informatics, University of Ferrara, Via Machiavelli 35,
44121 Ferrara, Italy
e-mail: cinzia.bisi@unife.it

C. Stoppato (B)
Department of Mathematics “F. Enriques”, University of Milan, Via Saldini 50, 20133 Milan,
Italy
e-mail: caterina.stoppato@unimi.it

G. Gentili et al. (eds.), Advances in Hypercomplex Analysis, Springer INdAM Series 1,
DOI 10.1007/978-88-470-2445-8_1, © Springer-Verlag Italia 2013

1

mailto:cinzia.bisi@unife.it
mailto:caterina.stoppato@unimi.it
http://dx.doi.org/10.1007/978-88-470-2445-8_1


2 C. Bisi and C. Stoppato

is a group with respect to the composition operation. We recall that GL(2,H) de-
notes the group of 2 × 2 invertible quaternionic matrices, and that SL(2,H) denotes
the subgroup of those such matrices which have unit Dieudonné determinant (for
details, see [3] and references therein). It is known in literature that G is isomorphic
to PSL(2,H) = SL(2,H)/{±Id} and that all of its elements are conformal maps.
Among the works that treat this matter, even in the more general context of Clifford
Algebras, let us mention [1, 10, 19]. The alternative representation

G =
{
FA(q) = (qc + d)−1 · (qa + b)

∣∣∣∣ A =
[

a c

b d

]
∈ GL(2,H)

}
(2)

is also possible, and the anti-homomorphism GL(2,H) → G mapping A to FA in-
duces an anti-isomorphism between PSL(2,H) and G. The group G is generated by
the following four types of transformations:

(i) L1(q) = q + b, b ∈H;
(ii) L2(q) = q · a, a ∈H, |a| = 1;

(iii) L3(q) = r · q = q · r , r ∈ R
+ \ {0};

(iv) L4(q) = q−1.

Moreover, if Si is the family of all real i-dimensional spheres, if Pi is the family
of all real i-dimensional affine subspaces of H and if Fi = Si ∪ Pi then G maps
elements of Fi onto elements of Fi , for i = 3,2,1. At this regard, see [20]; detailed
proofs of all these facts can be found in [3].

The subgroup M ≤ G of (classical) Möbius transformations mapping the quater-
nionic open unit ball

B = {
q ∈H

∣∣ |q| < 1
}

onto itself has also been studied in detail. Let us denote H = [ 1 0
0 −1

]
and

Sp(1,1) = {
C ∈ GL(2,H)

∣∣ C
t
HC = H

} ⊂ SL(2,H).

Theorem 1 An element g ∈G is a classical Möbius transformation of B if and only
if g(q) = (qc + d)−1 · (qa + b) with

[ a c
b d

] ∈ Sp(1,1). This is equivalent to

g(q) = v−1(1 − qq̄0)
−1(q − q0)u

for some u,v ∈ ∂B, q0 ∈ B.

For a proof, see [3]. Hence, M is anti-isomorphic to Sp(1,1)/{±Id}. Since G

leaves invariant the family F1 of circles and affine lines of H, and since the elements
of G are conformal, the group M of classical Möbius transformations of B preserves
the following class of curves.

Definition 1 If q1 	= q2 ∈ B are R-linearly dependent, then the diameter of B

through q1, q2 is called the non-Euclidean line through q1 and q2. Otherwise, the
non-Euclidean line through q1 and q2 is defined as the unique circle through q1, q2
that intersects ∂B = S

3 orthogonally.



Regular vs. Classical Möbius Transformations of the Quaternionic Unit Ball 3

Theorem 2 The formula

δB(q1, q2) = 1

2
log

(
1 + |1 − q1q̄2|−1|q1 − q2|
1 − |1 − q1q̄2|−1|q1 − q2|

)
(3)

(for q1, q2 ∈ B) defines a distance that has the non-Euclidean lines as its geodesics.
The elements of M and the map q 
→ q̄ are all isometries for δB.

We refer the reader to [2]; a detailed presentation can be found in [3].
So far, we mentioned properties of the classical Möbius transformations that

are completely analogous to the complex case. However, the analogy fails on one
crucial point. The group M is not included in the best known analog of the class
of holomorphic functions: the set of Fueter regular functions, i.e., the kernel of
∂

∂x0
+ i ∂

∂x1
+ j ∂

∂x2
+ k ∂

∂x3
(see [18]). For instance, none of the rotations q 
→ aq

with a ∈ H, a 	= 0 is Fueter regular, nor are any of the transformations listed as (i),
(ii), (iii), (iv) in our previous discussion. The variant of the Fueter class considered
in [11], defined as the kernel of ∂

∂x0
+ i ∂

∂x1
+j ∂

∂x2
−k ∂

∂x3
, includes part of the group,

for instance the rotations q 
→ qb for b ∈ H, b 	= 0, but not all of it (for instance,
the left multiplication q 
→ kq by the imaginary unit k is not in the kernel, nor is
q 
→ q−1).

A more recent theory of quaternionic functions, introduced in [7, 8], has proven
to be more comprehensive. The theory is based on the next definition.

Definition 2 Let Ω be a domain in H and let f : Ω → H be a function. For all I ∈
S = {q ∈ H | q2 = −1}, let us denote LI = R + IR, ΩI = Ω ∩ LI and fI = f|ΩI

.
The function f is called (Cullen or) slice regular if, for all I ∈ S, the restriction fI

is real differentiable and the function ∂̄I f : ΩI →H defined by

∂̄I f (x + Iy) = 1

2

(
∂

∂x
+ I

∂

∂y

)
fI (x + Iy)

vanishes identically.

By direct computation, the class of slice regular functions includes all of the gen-
erators we listed as (i), (ii), (iii), (iv). It does not contain the whole group G (nor its
subgroup M), because composition does not, in general, preserve slice regularity.
However, [17] introduced the new classes of (slice) regular fractional transforma-
tions and (slice) regular Möbius transformations of B, which are nicely related to
the classical linear fractional transformations. They are presented in detail in Sects. 2
and 3.

One of the purposes of the present paper is, in fact, to compare the slice regu-
lar fractional transformations with the classical ones. Furthermore, we take a first
glance at the role played by slice regular Möbius transformations in the geometry
of B. In Sect. 4, we undertake a first study of their differential properties: we prove
that they are not, in general, conformal, and that they do not preserve the Poincaré
distance δB. In Sect. 5, we announce a result of [4]: a quaternionic analog of the
Schwarz-Pick lemma, which discloses the possibility of using slice regular func-
tions in the study of the intrinsic geometry of B.
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2 Regular Fractional Transformations

This section surveys the algebraic structure of slice regular functions, and its appli-
cation to the construction of regular fractional transformations. From now on, we
will omit the term ‘slice’ and refer to these functions as regular, tout court. Since
we will be interested only in regular functions on Euclidean balls

B(0,R) = {
q ∈H

∣∣ |q| < R
}
,

or on the whole space H = B(0,+∞), we will follow the presentation of [6, 16].
However, we point out that many of the results we are about to mention have been
generalized to a larger class of domains in [5].

Theorem 3 Fix R with 0 < R ≤ +∞ and let DR be the set of regular functions
f : B(0,R) → H. Then DR coincides with the set of quaternionic power series
f (q) = ∑

n∈N qnan (with an ∈ H) converging in B(0,R). Moreover, defining the
regular multiplication ∗ by the formula

(∑
n∈N

qnan

)
∗

(∑
n∈N

qnbn

)
=

∑
n∈N

qn

n∑
k=0

akbn−k, (4)

we conclude that DR is an associative real algebra with respect to +,∗.

The ring DR admits a classical ring of quotients

LR = {
f −∗ ∗ g

∣∣ f,g ∈ DR, f 	≡ 0
}
.

In order to introduce it, we begin with the following definition.

Definition 3 Let f (q) = ∑
n∈N qnan be a regular function on an open ball B =

B(0,R). The regular conjugate of f , f c : B →H, is defined as f c(q) = ∑
n∈N qnān

and the symmetrization of f , as f s = f ∗ f c = f c ∗ f .

Notice that f s(q) = ∑
n∈N qnrn with rn = ∑n

k=0 akān−k ∈R. Moreover, the zero
sets of f c and f s have been fully characterized.

Theorem 4 Let f be a regular function on B = B(0,R). For all x, y ∈ R with
x + yS ⊆ B , the regular conjugate f c has as many zeros as f in x + yS. Moreover,
the zero set of the symmetrization f s is the union of the x + yS on which f has a
zero.

We are now ready for the definition of regular quotient. We denote by

Zh = {
q ∈ B

∣∣ h(q) = 0
}

the zero set of a function h.
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Definition 4 Let f,g : B = B(0,R) → H be regular functions. The left regular
quotient of f and g is the function f −∗ ∗ g defined in B \ Zf s by

f −∗ ∗ g(q) = f s(q)
−1

f c ∗ g(q). (5)

Moreover, the regular reciprocal of f is the function f −∗ = f −∗ ∗ 1.

Left regular quotients proved to be regular in their domains of definition. If we
set (f −∗ ∗ g) ∗ (h−∗ ∗ k) = (f shs)−1f c ∗ g ∗ hc ∗ k then (LR,+,∗) is a division
algebra over R and it is the classical ring of quotients of (DR,+,∗) (see [14]). In
particular, LR coincides with the set of right regular quotients

g ∗ h−∗(q) = hs(q)
−1

g ∗ hc(q).

The definition of regular conjugation and symmetrization is extended to LR setting
(f −∗ ∗ g)c = gc ∗ (f c)−∗ and (f −∗ ∗ g)s(q) = f s(q)−1gs(q). Furthermore, the
following relation between the left regular quotient f −∗ ∗ g(q) and the quotient
f (q)−1g(q) holds.

Theorem 5 Let f , g be regular functions on B = B(0,R). Then

f ∗ g(q) =
{

0 if f (q) = 0,

f (q)g(f (q)−1qf (q)) otherwise.
(6)

Setting Tf (q) = f c(q)−1qf c(q) for all q ∈ B \ Zf s ⊆ B \ Zf c ,

f −∗ ∗ g(q) = f
(
Tf (q)

)−1
g
(
Tf (q)

)
, (7)

for all q ∈ B \ Zf s . For all x, y ∈ R with x + yS ⊂ B \ Zf s , the function Tf

maps x + yS to itself (in particular Tf (x) = x for all x ∈ R). Furthermore, Tf is a
diffeomorphism from B \ Zf s onto itself, with inverse Tf c .

We point out that, so far, no simple result relating g ∗ h−∗(q) to g(q)h(q)−1 is
known.

This machinery allowed the introduction in [17] of regular analogs of linear frac-
tional transformations, and of Möbius transformations of B. To each A = [ a c

b d

] ∈
GL(2,H) we can associate the regular fractional transformation

FA(q) = (qc + d)−∗ ∗ (qa + b).

By the formula (qc + d)−∗ ∗ (qa + b) we denote the aforementioned left regular
quotient f −∗ ∗g of f (q) = qc + d and g(q) = qa + b. We denote the 2 × 2 identity
matrix as Id.

Theorem 6 Choose R > 0 and consider the ring of quotients of regular quater-
nionic functions in B(0,R), denoted by LR . Setting

f.A = (f c + d)−∗ ∗ (f a + b) (8)

for all f ∈ LR and for all A = [ a c
b d

] ∈ GL(2,H) defines a right action of GL(2,H)

on LR . A left action of GL(2,H) on LR is defined setting

At .f = (a ∗ f + b) ∗ (c ∗ f + d)−∗. (9)
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The stabilizer of any element of LR with respect to either action includes the nor-
mal subgroup N = {t · Id | t ∈ R \ {0}} � GL(2,H). Both actions are faithful when
reduced to PSL(2,H) = GL(2,H)/N .

The statements concerning the right action are proven in [17], the others can be
similarly derived. The two actions coincide in one special case.

Proposition 1 For all Hermitian matrices A = [
a b̄
b d

]
with a, d ∈ R, b ∈ H,

f.A = (f b̄ + d)−∗ ∗ (f a + b) = (a ∗ f + b) ∗ (b̄ ∗ f + d)−∗ = At .f.

Proof We observe that

(f b̄ + d)−∗ ∗ (f a + b) = (a ∗ f + b) ∗ (b̄ ∗ f + d)−∗

if, and only if,

(f a + b) ∗ (b̄ ∗ f + d) = (f b̄ + d) ∗ (a ∗ f + b),

which is equivalent to

af ∗ b̄ ∗ f + |b|2f + adf + db = af ∗ b̄ ∗ f + adf + |b|2f + db. �

In general, a more subtle relation holds between the two actions.

Remark 1 For all A ∈ GL(2,H) and for all f ∈ LR , by direct computation

(f.A)c = Āt .f c.

As a consequence, if A ∈ GL(2,H) is Hermitian then (f.A)c = f c.Ā.

Interestingly, neither action is free, not even when reduced to PSL(2,H). Indeed,
the stabilizer of the identity function with respect to either action of GL(2,H) equals{

c · Id
∣∣ c ∈H \ {0}},

a subgroup of GL(2,H) that strictly includes N and is not normal. As a conse-
quence, the set of regular fractional transformations

G = {
FA

∣∣ A ∈ GL(2,R)
} = {

FA

∣∣ A ∈ SL(2,R)
}
,

which is the orbit of the identity function id = FId under the right action of
GL(2,H) on L∞, does not inherit a group structure from GL(2,H).

Lemma 1 The set G of regular fractional transformations is also the orbit of id
with respect to the left action of GL(2,H) on L∞.

Proof Let A = [ a c
b d

] ∈ GL(2,H), and let us prove that FA = id.A can also be
expressed as C.id for some C ∈ GL(2,H). If c = 0 then

FA(q) = d−1 ∗ (qa + b) = (
d−1a

) ∗ q + d−1b,
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else

FA(q) = Fc−1A(q) = (q − p)−∗ ∗ (qα + β) = [
(q − p)s

]−1
(q − p̄) ∗ (qα + β)

for some p,α,β ∈ H. If p = x + Iy then there exists p̃ ∈ x + yS and γ, δ ∈H such
that (q − p̄) ∗ (qα + β) = (qγ + δ) ∗ (q − p̃); additionally, (q − p)s = (q − p̃)s

(see [6] for details). Hence,

FA(q) = [
(q − p̃)s

]−1
(qγ + δ) ∗ (q − p̃)

= (qγ + δ) ∗ (q − p̃)−∗ = (γ ∗ q + δ) ∗ (q − p̃)−∗,
which is of the desired form. Similar manipulations prove that for all C ∈ GL(2,H),
the function C.id equals FA = id.A for some A ∈ GL(2,H). �

We now state an immediate consequence of the previous lemma and of Remark 1.

Remark 2 The set G of regular fractional transformations is preserved by regular
conjugation.

3 Regular Möbius Transformations of BBB

The regular fractional transformations that map the open quaternionic unit ball B
onto itself, called regular Möbius transformations of B, are characterized by two
results of [17].

Theorem 7 For all A ∈ SL(2,H), the regular fractional transformation FA maps B
onto itself if and only if A ∈ Sp(1,1), if and only if there exist (unique) u ∈ ∂B, a ∈ B

such that

FA(q) = (1 − qā)−∗ ∗ (q − a)u. (10)

In particular, the set M = {f ∈ G | f (B) = B} of the regular Möbius transforma-
tions of B is the orbit of the identity function under the right action of Sp(1,1).

Theorem 8 The class of regular bijective functions f : B → B coincides with the
class M of regular Möbius transformations of B.

As a consequence, the right action of Sp(1,1) preserves the class of regular bi-
jective functions from B onto itself. We now study, more in general, the effect of the
actions of Sp(1,1) on the class

Reg(B,B) = {f : B → B | f is regular}.

Proposition 2 If f ∈Reg(B,B) then for all a ∈ B

(1 − f ā)−∗ ∗ (f − a) = (f − a) ∗ (1 − ā ∗ f )−∗. (11)

Moreover, the left and right actions of Sp(1,1) preserve Reg(B,B).
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Proof The fact that (1−f ā)−∗ ∗ (f −a) = (f −a)∗ (1− ā ∗f )−∗ is a consequence
of Proposition 1.

Let us turn to the second statement, proving that for all a ∈ B, u,v ∈ ∂B, the
function

f̃ = v−∗ ∗ (1 − f ā)−∗ ∗ (f − a)u = (v − f āv)−∗ ∗ (f − a)u

is in Reg(B,B). The fact that for all a ∈ B, u, v ∈ ∂B the function u∗ (f −a)∗ (1−
ā ∗f )−∗ ∗ v−∗ belongs to Reg(B,B) will then follow from the equality just proven.

The function f̃ is regular in B since h = v − f āv has no zero in B (as a conse-
quence of the fact that |a| < 1, |f | < 1 and |v| = 1). Furthermore,

f̃ = (
v − (f ◦ Th)āv

)−1
(f ◦ Th − a)u

= v−1(1 − (f ◦ Th)ā
)−1

(f ◦ Th − a)u = v−1(Ma ◦ f ◦ Th)u

where Th and Ma(q) = (1−qā)−1(q −a) map B to itself bijectively and u,v ∈ ∂B.
Hence, f̃ = v−∗ ∗ (1 − f ā)−∗ ∗ (f − a) ∗ u ∈Reg(B,B), as desired. �

As a byproduct, we obtain that the orbit of the identity function under the left
action of Sp(1,1) equals M.

Proposition 3 If f ∈ Reg(B,B) then its regular conjugate f c belongs to Reg(B,B)

as well. Furthermore, f c is bijective (hence an element of M) if and only if f is.

Proof Suppose f c(p) = a ∈ H \ B for some p = x + Iy ∈ B. Then p is a zero of
the regular function f c − a. By Theorem 4, there exists p̃ ∈ x + yS ⊂ B such that
(f c − a)c = f − ā vanishes at p̃. Hence, f (B) includes ā ∈ H \ B, a contradiction
with the hypothesis f (B) ⊆ B.

As for the second statement, f c is bijective if and only if, for all a ∈ B, there
exists a unique p ∈ B such that f c(p) = a. Reasoning as above, we conclude that
this happens if and only if for all a ∈ B, there exists a unique p̃ ∈ B such that
f (p̃) = ā. This is equivalent to the bijectivity of f . �

4 Differential and Metric Properties of Regular Möbius
Transformations

The present section is concerned with two natural questions:

(a) whether the regular Möbius transformations are conformal (as the classical
Möbius transformations);

(b) whether they preserve the quaternionic Poincaré distance defined on B by for-
mula (3).
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For a complete description of the Poincaré metric, see [3]. In order to answer ques-
tion (a), we will compute for a regular Möbius transformation the series develop-
ment introduced by the following result of [15]. Let us set

U(x0 + y0S, r) = {
q ∈H

∣∣ ∣∣(q − x0)
2 + y2

0

∣∣ < r2}
for all x0, y0 ∈R, r > 0.

Theorem 9 Let f be a regular function on Ω = B(0,R), and let U(x0 +
y0S, r) ⊆ Ω . Then for each q0 ∈ x0 + y0S there exists {An}n∈N ⊂ H such that

f (q) =
∑
n∈N

[
(q − x0)

2 + y2
0

]n[
A2n + (q − q0)A2n+1

]
(12)

for all q ∈ U(x0 + y0S, r). As a consequence,

∂f

∂v
(q0) = lim

t→0

f (q0 + tv) − f (q0)

t
= vA1 + (q0v − vq̄0)A2 (13)

for all v ∈ Tq0Ω
∼= H.

If q0 ∈ LI and if we split the tangent space Tq0Ω
∼= H as H= LI ⊕ L⊥

I , then the
differential of f at q0 acts by right multiplication by A1 on L⊥

I and by right multi-
plication by A1 + 2 Im(q0)A2 on LI . Furthermore, if for all q0 ∈ Ω the differential
quotient Rq0f is defined as

Rq0f (q) = (q − q0)
−∗ ∗ (

f (q) − f (q0)
)

then the coefficients of (12) are computed as A2n = (Rq̄0Rq0)
nf (q0) and A2n+1 =

Rq0(Rq̄0Rq0)
nf (q̄0).

Let us recall the definition of the Cullen derivative ∂cf , given in [8] as

∂cf (x + Iy) = 1

2

(
∂

∂x
− I

∂

∂y

)
f (x + Iy) (14)

for I ∈ S, x, y ∈ R, as well as the definition of the spherical derivative

∂sf (q) = (
2 Im(q)

)−1(
f (q) − f (q̄)

)
(15)

given in [9]. We can make the following observation.

Remark 3 If f is a regular function on B(0,R) and if (12) holds then ∂cf (q0) =
Rq0f (q0) = A1 + 2 Im(q0)A2 and ∂sf (q0) = Rq0f (q̄0) = A1.

In the case of the regular Möbius transformation

Mq0(q) = (1 − qq̄0)
−∗ ∗ (q − q0) = (q − q0) ∗ (1 − qq̄0)

−∗,

clearly Rq0Mq0(q) = (1 − qq̄0)
−∗, so that we easily compute the coefficients An.

Proposition 4 Let q0 = x0 + y0I ∈ B. Then the expansion (12) of Mq0 at q0 has
coefficients
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A2n−1 = q̄2n−2
0

(1 − |q0|2)n−1(1 − q̄2
0 )n

, (16)

A2n = q̄2n−1
0

(1 − |q0|2)n(1 − q̄2
0 )n

(17)

for all n ≥ 1. As a consequence, for all v ∈H,

∂Mq0

∂v
(q0) = v

(
1 − q̄2

0

)−1 + (q0v − vq̄0)
q̄0

(1 − |q0|2)(1 − q̄2
0 )

. (18)

Proof We have already observed that Rq0Mq0(q) = (1 − qq̄0)
−∗, so that A1 =

Rq0Mq0(q̄0) = (1 − q̄2
0 )−1. Moreover,

Rq̄0Rq0Mq0(q) = (q − q̄0)
−∗ ∗ [

Rq0Mq0(q) − A1
]

= (q − q̄0)
−∗ ∗ [

(1 − qq̄0)
−∗ − A1

]
= (1 − qq̄0)

−∗ ∗ (q − q̄0)
−∗ ∗ [(

1 − q̄2
0

) − (1 − qq̄0)
]
A1

= (1 − qq̄0)
−∗q̄0A1.

The thesis follows by induction, proving that for all n ≥ 1

(Rq̄0Rq0)
nMq0(q) = (1 − qq̄0)

−∗q̄0A2n−1,

Rq0(Rq̄0Rq0)
nMq0(q) = (1 − qq̄0)

−∗q̄0A2n

by means of similar computations.
Formula (18) is a direct application of the previous formula (13) and of the above

computations. �

We are now in a position to answer question (a).

Remark 4 For each q0 = x0 + Iy0 ∈ B \ R, the differential of Mq0 at q0 acts by
right multiplication by ∂cMq0(q0) = (1 − |q0|2)−1 on LI and by right multipli-
cation by ∂sMq0(q0) = (1 − q̄2

0 )−1 on L⊥
I . Since LI , L⊥

I are both invariant and
∂cMq0(q0), ∂sMq0(q0) have different moduli, Mq0 is not conformal.

We now turn our attention to question (b): whether or not regular Möbius trans-
formations preserve the quaternionic Poincaré metric on B described in Sect. 1 and
in [3]. We recall that this metric was constructed to be preserved by the classical
(nonregular) Möbius transformations of B. Thanks to Theorem 5, we observe what
follows.

Remark 5 If Mq0(q) = (1 − qq̄0)
−∗ ∗ (q − q0) and Mq0(q) = (1 − qq̄0)

−1(q − q0)

then

Mq0(q) = Mq0

(
T (q)

)
(19)

where T (q) = (1 − qq0)
−1q(1 − qq0) is a diffeomorphism of B with inverse func-

tion T −1(q) = (1 − qq̄0)
−1q(1 − qq̄0).
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Thus, a generic regular Möbius transformation of B

q 
→ Mq0(q)u = Mq0

(
T (q)

)
u

(with u ∈ ∂B) is an isometry if and only if T is. An example shows that this is not
the case.

Example 1 Let q0 = I0
2 for some I0 ∈ S. Then T (q) = (1 − qq0)

−1q(1 − qq0) is
not an isometry for the Poincaré metric defined by formula (3). Indeed, if J0 ∈ S,
J0 ⊥ I0 then setting q1 = J0

2 we have

δB(q0, q1) > δB
(
T (q0), T (q1)

)
since

|q1 − q0|2
|1 − q1q̄0|2 = |2J0 − 2I0|2

|4 + J0 · I0|2 = 8

17

while, computing T (q0) = q0 = I0
2 and T (q1) = 8I0+15J0

34 , we conclude that

|T (q1) − q0|2
|1 − T (q1)q̄0|2 = 4

|−3I0 + 5J0|2
|20 − 5 I0 · J0|2 = 8

25
.

Thus, the regular Möbius transformations do not have a definite behavior with re-
spect to δB: we have seen that T (hence Mq0 ) is not an isometry, nor a dilation; the
same computation shows that T −1(q) = (1 − qq̄0)

−1q(1 − qq̄0) (hence Mq̄0 ) is not
a contraction.

The previous discussion proves that the study of regular Möbius transformations
cannot be framed into the classical study of B, and that it requires further research.
On the other hand, the theory of regular functions provides working tools that were
not available for the classical Möbius transformations. These tools led us in [4] to
an analog of the Schwarz-Pick lemma, which we will present in the next section.

5 The Schwarz-Pick Lemma for Regular Functions

In the complex case, holomorphic functions play a crucial role in the study of the
intrinsic geometry of the unit disc Δ = {z ∈C | |z| < 1} thanks to the Schwarz-Pick
lemma [12, 13].

Theorem 10 Let f : Δ → Δ be a holomorphic function and let z0 ∈ Δ. Then∣∣∣∣ f (z) − f (z0)

1 − f (z0)f (z)

∣∣∣∣ ≤
∣∣∣∣ z − z0

1 − z̄0z

∣∣∣∣, (20)

for all z ∈ Δ and

|f ′(z0)|
1 − |f (z0)|2 ≤ 1

1 − |z0|2 . (21)

All inequalities are strict for z ∈ Δ \ {z0}, unless f is a Möbius transformation.
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This is exactly the type of tool that is not available, in the quaternionic case, for
the classical Möbius transformations. To the contrary, an analog of the Schwarz-
Pick lemma is proven in [4] for quaternionic regular functions. To present it, we
begin with a result concerning the special case of a function f ∈ Reg(B,B) having
a zero.

Theorem 11 If f : B → B is regular and if f (q0) = 0 for some q0 ∈ B, then∣∣M −∗
q0

∗ f (q)
∣∣ ≤ 1 (22)

for all q ∈ B. The inequality is strict, unless M −∗
q0

∗ f (q) ≡ u for some u ∈ ∂B.

A useful property of the moduli of regular products is also proven in [4]:

Lemma 2 Let f,g,h : B(0,R) → H be regular functions. If |f | ≤ |g| then |h∗f | ≤
|h ∗ g|. Moreover, if |f | < |g| then |h ∗ f | < |h ∗ g| in B \ Zh.

The property above allows us to derive from Theorem 11 the perfect analog of
the Schwarz-Pick lemma in the special case f (q0) = 0. We recall that ∂cf denotes
the Cullen derivative of f , defined by formula (14), while ∂sf denotes the spherical
derivative, defined by formula (15).

Corollary 1 If f : B → B is regular and if f (q0) = 0 for some q0 ∈ B then∣∣f (q)
∣∣ ≤ ∣∣Mq0(q)

∣∣ (23)

for all q ∈ B. The inequality is strict at all q ∈ B \ {q0}, unless there exists u ∈ ∂B

such that f (q) = Mq0(q) · u at all q ∈ B. Moreover, |Rq0f (q)| ≤ |(1 − qq̄0)
−∗| in

B and in particular

∣∣∂cf (q0)
∣∣ ≤ 1

1 − |q0|2 , (24)

∣∣∂sf (q0)
∣∣ ≤ 1

|1 − q̄2
0 | . (25)

These inequalities are strict, unless f (q) = Mq0(q) · u for some u ∈ ∂B.

Finally, the desired result is obtained in full generality.

Theorem 12 (Schwarz-Pick lemma) Let f : B → B be a regular function and let
q0 ∈ B. Then∣∣(f (q) − f (q0)

) ∗ (
1 − f (q0) ∗ f (q)

)−∗∣∣ ≤ ∣∣(q − q0) ∗ (1 − q̄0 ∗ q)−∗∣∣, (26)∣∣Rq0f (q) ∗ (
1 − f (q0) ∗ f (q)

)−∗∣∣ ≤ ∣∣(1 − q̄0 ∗ q)−∗∣∣ (27)

in B. In particular,
∣∣∂cf ∗ (

1 − f (q0) ∗ f (q)
)−∗∣∣|q0

≤ 1

1 − |q0|2 , (28)
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|∂sf (q0)|
|1 − f s(q0)| ≤ 1

|1 − q̄2
0 | . (29)

If f is a regular Möbius transformation of B then equality holds in (26), (27) for all
q ∈ B, and in (28), (29). Else, all the aforementioned inequalities are strict (except
for (26) at q0, which reduces to 0 ≤ 0).

This promising result makes it reasonable to expect that regular functions play
an important role in the intrinsic geometry of the quaternionic unit ball. Therefore,
it encourages to continue the study of regular Möbius transformations and of their
differential or metric properties.
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