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Abstract. In this paper we carry out in an abstract order context some real subset combinatorial sum

problems. Specifically, we introduce the notion of w+-bases on X and prove that the family Bw+(X)

of all w+-bases on X and the family W+(X) of all total maps satisfying some conditions related to
the definition of strong involution poset. In such a bijection, a w+-basis Ω on X corresponds to a

map B ∈ W+(X) whose restriction to Ω is the smallest 2-valued partial map on X which has B as its

unique extension in W+(X). Next we show how each w+-basis on X becomes, in a particular context,
a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of

the whole system.

1. Introduction

Involution partially ordered sets (briefly involution posets) are order structures best known to describe
some combinatorial aspects of Ockam algebras and de Morgan algebras (see [9] for more details). These
posets generalize the classical Boolean algebras [23, 37], and in literature they are studied in several
different mathematical contexts (see for example [1, 11, 16, 19, 25, 26, 29, 30, 35, 36]).
In this paper we use involution posets in a set operatorial perspective, in analogy with what has been
recently done for integral domains [14] and monoid actions [15].
Our basic motivation start with an extremal combinatorial sum problem described in [12]. In such a
problem one has two fixed integer parameters n ≥ r ≥ 0 and a numerical map

f : {r, . . . , 1,−1, . . . ,−(n− r)} := I(n, r)→ R
such that

f(r) ≥ · · · ≥ f(1) ≥ 0 > f(−1) ≥ · · · ≥ f(−(n− r)),
which in the present paper we will call (n, r)-function. We denote by F (n, r) the set of all (n, r)-functions
and we call partial sum of f ∈ F (n, r) a sum

∑
k∈C f(k), for some C ⊆ I(n, r). The total sum of f is∑

k∈I(n,r) f(k).

Next, in [13] the problem of computing the number

γ(n, r) := min |{C ⊆ I(n, r) :
∑
k∈C

f(k) ≥ 0}|,

where the minimum is taken over all the functions f ∈ F (n, r) such that
∑
k∈I(n,r) f(k) ≥ 0, has

been solved by using a particular involution lattice (S(n, r),v, c) introduced in [6], whose elements
can be identified with the subsets of I(n, r) (for detail see [6]). In analogy with what has been done in
[?, ?, 5, 17, 31, 32, 33, 38] for several types of discrete structures, in [7] the lattice S(n, r) is also described
as a discrete dynamical system of signed integer partitions by means of some evolution rules. The signed
integer partitions were introduced by Andrews in [4] and further studied in [27]. Recently, having as
reference the classical integer partition lattices introduced in [10], several types of lattice structures of
signed integer partitions have been investigated in terms discrete dynamical systems in [7, 8, 24]. In the
specific case of S(n, r), the partial order v is naturally related (see [6]) to a particular class of linear
system inequalities on n real variables

ur ≥ · · · ≥ u1 ≥ 0 > u−1 ≥ · · · ≥ u−(n−r),
that we call (n, r)-systems. An (n, r)-system S has exactly one inequality of the type

∑
i∈B ui ≥ 0 (or

< 0) for each subset B of the indexes set I(n, r). Each (n, r)-system S can be identified with an order-
preserving 2-valued map AS : S(n, r)→ B2, where B2 := {N < P} is the 2-chain. If we assume that the
inequality

ur + · · ·+ u1 + u−1 + · · ·+ u−(n−r) ≥ 0
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appears in the (n, r)-system S, then the 2-valued map AS is such that AS(Bc) = P if AS(B) = N , where
Bc is the complementary subset of B in I(n, r). For further details on this type of problems see also [6].
As mentioned above, the present study has as its underlying motivation the research of some particular
types of (n, r)-functions. Moreover, our most relevant applications are linked to the involution map
c : S(n, r)→ S(n, r) introduced in [6].
To this regard, we often must consider the compatibility of a correspondent (n, r)-system S. It is therefore
natural to study the 2-valued map AS to obtain some information on the system S.
However, from a more theoretical perspective, if one investigates in detail the above involution map c
on S(n, r) in connection with any 2-valued map AS, he realizes that there two basic properties having
a fundamental role. These two properties (that we investigated in a more general context) are the
monotonicity of any 2-valued map AS and the condition AS(Bc) = P whenever AS(B) = N .
In this paper we investigate such properties in more general order structures, which are the aforemen-
tioned involution posets. More in detail, we start with an arbitrary finite involution poset (X,≤, c),
that is a partially ordered set (X,≤) equipped with an involutive and order-reversing map c : X → X,
having, in our case, the further property that c(x) 6= x for all x ∈ X. On X we examine then the
family W+(X,B2) of all the 2-valued maps B : X → {N < P} which are order-preserving and such that
B(c(x)) = P if B(x) = N .
In the study of the (n, r)-systems, it is important to know (see [6] for details) when a 2-valued partial
map A on S(n, r) determines a unique total map B ∈ W+(S(n, r), B2) which extends A. Moreover,
given any total map B ∈ W+(S(n, r), B2), it is also important to know how it is made the “minimum”
sub-partial map in the set of all the partial maps having B as unique extension.
Similar extension problems already arise in classical Boolean algebra literature (see [37]), and in our
context they naturally conduct us to introduce the notion of core for any fixed family H of 2-valued
maps on X.
More specifically, let H be a family of 2-valued global maps on X. We say that a 2-valued partial map
A on X is a H-core if there is a unique map BA ∈ H which extends B, and, in this case, we also say
that BA is the total map in H generated by A and that A is a H-core of BA. Moreover, we say that a
H-core A is a fundamental H-core if for each other H-core C such that BA = BC , the map C extends A.
In this paper, we first build the fundamental core of a generic 2-valued map B ∈ W+(X,B2). Next, we
show which must be the particular form of a finite subset V of X so that it is the fundamental core of
some B ∈W+(X,B2), and, in this case, we also determine the corresponding form of the map B.
Next, we translate these abstract results in the terminology of the (n, r)-systems, when X = S(n, r),
showing as the concept of core is related to the study of the compatibility of such types of linear inequal-
ities systems.
The paper is organized as follows.
The succeeding section, Section 2, contains a explanatory discussion of the basic notions. In this section
we thus fix the definitions and the general results that we use in what follows.
In Section 3 we determine the fundamental core of an arbitrary 2-valued map B ∈W+(X), were X is a
finite SIP. The last part of the same section is devoted to compute the specific W+(X)-core of a 2-valued
total map in a particular case, when X is a given infinite SIP.
Section 4 provides the specific form that must have a subset of X in order to be the fundamental core of
some 2-valued map B ∈W+(X).
In Section 5 we take X = S(n, r) and we show that its partial order is characterized in a natural way
from the partial sums

∑
k∈C f(k), where C ⊆ I(n, r) and f ∈ F (n, r). In this section we also remark the

fact that each f ∈ F (n, r) induces a sum function
∑
f : S(n, r) → R which is a valuation on the lattice

S(n, r).
Section 6 is devoted to the analysis of the (n, r)-systems. We use the notion of core in order to provide
a local criterion that characterize the compatibility of such systems.
Finally, in Section 7 we give an example that shows how the family W+(S(n, r), B2) is not sufficiently
small in order to be in bijective correspondence with the family of all the (n, r)-systems having non-
negative total sum. In this section we define a subfamily FC+(n, r) of W+(S(n, r), B2) which for us is a
good candidate to be a family of 2-valued maps that capture all the combinatorial properties necessary
and sufficient to characterize the family of the (n, r)-consistent systems. We leave this as an open problem
for a future research.

2. Definitions, notations and some general results.

We use the same terminology of [18].
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Let (X,≤) be a poset. If Z ⊆ X, we will set ↓Z = {x ∈ X : ∃ z ∈ Z such that z ≥ x}, ↑Z = {x ∈
X : ∃ z ∈ Z such that z ≤ x}. In particular, if z ∈ X, we will set ↓z = ↓{z} = {x ∈ X : z ≥ x},
↑z = ↑{z} = {x ∈ X : z ≤ x}. Z is called a down-set of X if for each z ∈ Z and x ∈ X with z ≥ x, then
x ∈ Z. Analogously, Z is called an up-set of X if for each z ∈ Z and x ∈ X with z ≤ x, then x ∈ Z. ↓Z is
the smallest down-set of X which contains Z and Z is a down-set in X if and only if Z = ↓Z. Similarly
↑Z is the smallest up-set of X which contains Z and Z is an up-set in X if and only if Z = ↑Z.

If X and Y are two arbitrary posets, a partial map from X to Y is a map A : Z → Y , where Z is a subset
of X. A map A : X → Y is called a total map. If A : Z ⊆ X → Y is a partial map, we will say that A
is order-preserving (briefly OP) if for every x1, x2 ∈ Z such that x1 ≤ x2 in X, then A(x1) ≤ A(x2) in
Y . We denote by OP(X, Y ) the family of all total maps from X o Y which are order-preserving.

Denote with B2 the Boolean lattice composed of a chain with 2 elements that we will denote by N (the
minimal element) and P (the maximal element). The set of all the partial maps from X to B2, here
denoted by BPM(X), is a poset with the natural order: if A, B ∈ BPM(X), then A E B if and only if
B extends A.

A 2-valued partial map (briefly BPM) on X is an element A of BPM(X). If dom(A) = X, we will say
that A is a 2-valued total map (BTM) on X. We say that a 2-valued partial map A on X is up-positive
if A−1(P ) is an up-set of X; we say that it is down-negative if A−1(N) is a down-set of X.

Given a 2-valued partial map A on X, a minimal element in A−1(P ) is called minimal positive of A; a
maximal element in A−1(N) is called maximal negative of A. If Z ⊂ X we denote by Min(Z) the set of
minimal elements of Z and with Max(Z) the set of maximal elements of Z. If A is a 2-valued partial
map on X and if Z is a subset of X, we set:

ZAP = A−1(P ) ∩ Z = {x ∈ Z ∩ dom(A) : A(x) = P},

ZAN = A−1(N) ∩ Z = {x ∈ Z ∩ dom(A) : A(x) = N}.

As usual, we denote by t the disjoint union between two sets.
The following proposition shows that the concepts of up-positivity, down-negativity and of order-preserving
are equivalent for 2-valued total maps.

Proposition 2.1. Let X be an arbitrary poset and A a BTM on X. Then the following are equivalent:
i) A is order-preserving (OP);
ii) A is up-positive (UP);
iii) A is down-negative (DN).

Proof. Straightforward. �

Our next question is the following: let X be a poset and let A be a 2-valued partial map on X Which prop-
erties has A to have in order that there exists a unique particular type of BTM B on X which extends A?

Definition 2.2. Let X be an arbitrary poset and let H be a family of BTM’s on X. A BPM A on X
is a H-core if there exists a unique B ∈ H such that A E B. If A is a H-core, the unique map B ∈ H

which extends A is called the H-map spanned by the core A. We also say that A spans B or that A is a
H-core of B and sometime we write B = BA to mean that B is spanned by A. If the family H is clear
from the context, we say simply core instead of H-core.

Definition 2.3. We say that A is a H-fundamental core of B if it is a H-core of B and if, for each
H-core A′ of B, A E A′.

Obviously, if there exists a H-fundamental core of B, then it is unique, therefore we can speak of the
H-fundamental core of B.
We will denote by CoreH(X) the family of all the H-cores onX. Let us define a function f : CoreH(X)→
H by setting f(A) = BA. Naturally f is surjective, since for all B ∈ H we have B = BB = f(B).

We define on CoreH(X) the following relation

A ∼ A′ ⇔ BA = BA′ .
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Then ∼ is an equivalence relation and by the universal property of the quotient there exists a unique
injective map f∗ from CoreH(X)/∼ into H induced by f . Since f is surjective, it follows that f∗ is
bijective.
In this paper we study the cores for two particular families of BTM’s and we determine explicitly the
set CoreH(X)/∼ for these families of 2-valued maps. The two families of BTM’s that we will examine
are defined on a particular class of posets, which are the involution posets. An involution poset (IP) is a
poset (X,≤) with a unary map c : X → X such that:

I1) c(c(x)) = x, for all x ∈ X;
I2) if x, y ∈ X and if x ≤ y, then c(y) ≤ c(x).

In what follows, if x ∈ X, we usually write xc instead of c(x).
In this paper, we consider involution posets (X,≤, c) having the following further property:

I3) xc 6= x for all x ∈ X.

Definition 2.4. We call strong involution poset (SIP) an involution poset (X,≤, c) which satisfies I3).
Let us note that, by property I3), a SIP must have at least two elements.

Remark 2.5. Let us observe that if X is an involution poset, by I1) it follows that c is bijective and
by I1) and I2) it holds that if x, y ∈ X are such that x < y, then yc < xc. Moreover it holds that
(↓Z)c =↑(Zc) and (↑Z)c =↓(Zc).

If (X,≤, c) is an involution poset and if Z ⊆ X, we will set Zc = {zc : z ∈ Z}. If X is a SIP,
we will say that a 2-valued partial map A on X is complemented-positive [complemented-negative] if
A−1(N)c ⊆ A−1(P ) [A−1(P )c ⊆ A−1(N)].

Definition 2.6. If X is a SIP, a BPM A on X is called positively weighted 2-valued partial map (briefly
+WBPM) if it is up-positive, down-negative and complemented-positive; in particular, if A is also total
on X, it is called positively weighted 2-valued total map (briefly +WBTM).

Similar definitions are given when complemented-positive is replaced with complemented-negative:
+WBPM with -WBPM and +WBTM with -WBPM.
Moreover, we use term WBPM to mean a +WBPM or a -WBPM, and WBTM to mean a +WBTM or
a -WBTM.

Example 2.7. Let X be a set. Then the power set P(X) with the usual set inclusion relation ⊆ and
the complement operation c is a SIP.
Let X = R. On (P(X), ⊆, c) let us define a BTM B by setting:

B(Y ) =

{
P if Y is unbounded from above,
N otherwise.

This map B is up-positive, down-negative and complemented positive, but not complemented negative,
so it is a +WBTM but not a -WBTM.

If X is a SIP, we denote by W+(X) the family of all the +WBTMs on X and by W−(X) that of all
the -WBTMs on X. Then W+(X) and W−(X) are the two families that we will study in this paper.
Obviously, if X is a SIP, by virtue of Proposition 2.1, it follows that W+(X) [W−(X)] is the sub-family
of all the maps in OP(X,B2) which are also complemented positive [negative].
By Proposition 2.1 it follows that if A is a BTM on X, then A is a +WBTM [-WBTM] if and only if A
is up-positive and complemented positive [negative]. The following proposition shows that each Boolean
lattice is also a SIP and that a Boolean lattices morphism is a +WBTM and a -WBTM.

Proposition 2.8. Let (X,∧,∨, 0, 1,′ ) be a Boolean lattice, then X is a SIP. Moreover, if A : X → B2

is a Boolean lattice morphism, then A is both a +WBTM and a -WBTM.

Proof. Let c : X → X be such that c(x) = x′ where x′ is the complement of x in X, i.e. the unique
element of X such that x ∧ x′ = 0 and x ∨ x′ = 1. By the well-known properties of the function x 7→ x′,
it follows that c satisfies the properties I1) I2) I3).
By definition of morphism of Boolean lattices, A is such that

A(a ∨ b) = A(a) ∨A(b), A(a ∧ b) = A(a) ∧A(b),

A(0) = N, A(1) = P, A(a′) = (A(a))′.

It is well-known by the general theory that A is order-preserving (hence also up-positive and down-
negative). Finally, if x ∈ X is such that A(x) = N , then A(xc) = A(x′) = A(x)′ = N ′ = P because
in B2 the complement of N is P . Hence A is complemented positive. Similarly we prove that A is also
complemented negative. �
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Proposition 2.9. Let X be a SIP and A a +WBPM on X, then:
i) if w is a minimal positive of A and A(wc) = N , then wc is a maximal negative of A;
ii) if x, xc ∈ dom(A) and xc ≤ x, then A(x) = P .
Moreover, if A is a -WBPM on X, then:
i′) if w is a maximal negative of A and A(wc) = P , then wc is a minimal positive of A;
ii′) if x, xc ∈ dom(A) and xc ≤ x, then A(xc) = N .

Proof. i) Let y ∈ X such that A(y) = N and wc ≤ y. Then yc ≤ w. Moreover, since A is complemented
positive, we have that A(yc) = P . By minimality of w in A−1(P ), yc = w, so wc = y and wc is a maximal
negative of A.
ii) Suppose by contradiction that A(x) = N . Since A is complemented positive, we have that xc ∈
dom(A) and A(xc) = P . Since xc ≤ x and A is up-positive, we have that A(x) = P and this is a
contradiction.
The proof of i′) and ii′) is similar. �

By Proposition 2.9-ii) and Proposition 2.9-ii′) the elements w ∈ X such that wc ≤ w are called comple-
mented.

3. The H-cores when H = W+(X) or H = W−(X)

In this section we assume that X is a finite strong involution poset and we determine the W+(X)-
fundamental core of an arbitrary +WBTM in W+(X) and the W−(X)-fundamental core of an arbitrary
-WBTM in W−(X).

Although almost all of the following results still hold when X is infinite, we will consider only finite
SIPs. The reason of that is that, in the finite case, each subset S of X has some minimal and maximal
elements, so if A is a BPM on a X, then Min(A−1(P )) and Max(A−1(N)) are not empty. Propositions
3.13, 3.14, 3.15 and 3.16 analyze, through an example (see Example 2.7), the infinite case. In particular
in Proposition 3.16 we will show that in the infinite case we can have situations that, as far as our analysis
is concerned, appear to have a marginal importance.

Proposition 3.1. i) Let B ∈W+(X) and let A be a W+(X)-core of B. Then

B−1(N) ⊆↓A−1(N).

ii) Let B ∈W−(X) and let A be a W−(X)-core of B. Then

B−1(P ) ⊆↑A−1(P ).

Proof. i) Let us suppose, by contradiction, that W := B−1(N)\ ↓A−1(N) is not empty and let w be a
maximal element in W . Define a 2-valued total map B′ on X by setting

B′(x) :=

{
B(x) if x 6= w,
P if x = w.

Let us prove that B′ is a +WBTM.
Let us prove first that B′ is up-positive. For this, let z ∈ B′−1(P ) and let x ∈ X such that z < x. If
both x and z are different from w, then B′(z) = B(z), B′(x) = B(x) and the thesis follows directly
by the assumption made on B. If z < x = w, then B′(x) = B′(w) = P . Finally let z = w < x. By
maximality of w in W , x /∈ W , so x /∈ B−1(N) or x ∈ B−1(N)∩ ↓A−1(N). In the firs case, it holds
trivially B′(x) = B(x) = P . In the second case, there exists y ∈ A−1(N) such that z < x < y. Thus
z =←−w ∈↓A−1(N), by contradicting the fact that w ∈W .
We prove that B′ is complemented positive, i.e. that (B′−1(N))c ⊆ B′−1(P ). For this, let x ∈ X such
that B′(x) = N . Let us prove that B′(xc) = P .
Since B′(w) = P , x 6= w. If xc = w, then clearly B′(xc) = B′(w) = P . If xc 6= w, then B′(xc) = B(xc) =
P because x ∈ B−1(N) and B is complemented positive.

ii) Similar arguments apply. �

Corollary 3.2. i) Let B ∈W+(X) and let A be a W+(X)-core of B. Then

B−1(N) = ↓A−1(N).

ii) Let B ∈W−(X) and let A be a W−(X)-core of B. Then

B−1(P ) = ↑A−1(P ).
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Proof. i) By Proposition 3.1-i), we have to prove that ↓A−1(N) ⊆ B−1(N). Let x ∈↓A−1(N). Then
there exist y ∈ X such that A(y) = N and x ≤ y. Since B extends A and it is down-negative, B(x) = N ,
i.e. x ∈ B−1(N).
ii) This follows by the same reasoning of part i) and using then Proposition 3.1-ii). �

Corollary 3.3. i) Let B ∈W+(X) and let A be a W+(X)-core of B. Then

Max(B−1(N)) ⊆ A−1(N)

.
ii) Let B ∈W−(X) and let A be a W−(X)-core of B. Then

Min(B−1(P )) ⊆ A−1(N)

.

Proof. i) Let x ∈ Max(B−1(N)), by Proposition 3.1-i) it follows that x ∈↓A−1(N). This implies that
there exists an element y ∈ A−1(N) ⊆ B−1(N) such that x ≤ y. By the maximality of x in B−1(N), it
holds that x = y ∈ A−1(N).
ii) Analogously using Proposition 3.1-ii). �

Corollary 3.4. i) Let B ∈W+(X) and let A be a W+(X)-core of B such that A−1(N) is an anti-chain
on X. Then

Max(B−1(N)) = A−1(N).

ii) Let B ∈W−(X) and let A be a W−(X)-core of B such that A−1(P ) is an anti-chain on X. Then

Min(B−1(P )) = A−1(P ).

Proof. i) By Corollary 3.3-i), we need to prove the inclusion Max(B−1(N)) ⊇ A−1(N). Suppose that
x ∈ A−1(N) and that (by contradiction) x 6∈ Max(B−1(N)). Then there exists an element y ∈ B−1(N)
such that x < y. By Proposition 3.1-i), we have that y ∈↓A−1(N). Then there exists an element
z ∈ A−1(N) such that z ≥ y, and hence we have that z ≥ y > x, with z, x ∈ A−1(N), and this
contradicts the hypothesis that A−1(N) is an anti-chain on X.
ii) Similar proof by using Corollary 3.3-ii) and Proposition 3.1-ii). �

Proposition 3.5. i) Let B ∈W+(X) and A a W+(X)-core of B. Then

B−1(P ) ⊆↑(A−1(P ) ∪ (A−1(N))c).

ii) Let B ∈W−(X) and A a W−(X)-core of B. Then

B−1(N) ⊆↓(A−1(N) ∪ (A−1(P ))c).

Proof. i) Let us assume, by contradiction, that B−1(P )\ ↑(A−1(P ) ∪ (A−1(N))c) is not empty and let
w be a minimal element in this set. Let us define a 2-valued total map B′ onX by setting

B′(x) =

{
B(x) if x 6= w,
N if x = w.

We prove now that B′ is a +WBTM on X.
Let us prove first that B′ is up-positive. For this, let z ∈ X such that B′(z) = P and let x ∈ X with
z < x. Note that z 6= w because B′(z) = P 6= N = B′(w). If both x and z are different from w,
then B′(z) = B(z), B′(x) = B(x) and the thesis follows directly by the assumption made on B. If
z < x = w, then, by minimality of w in W , z /∈ B−1(P )\ ↑(A−1(P ) ∪ (A−1(N))c) and since B(z) = P ,
z ∈↑ (A−1(P ) ∪ (A−1(N))c). But in this case we would have that x = w ∈↑ (A−1(P ) ∪ (A−1(N))c),
because this set is an up set, by contradicting our assumptions on w.

Let us prove that B′ is complemented positive, i.e. that (B′−1(N))c ⊆ B′−1(P ). For this, let x ∈ X
such that B′(x) = N . We have to prove that B′(xc) = P . We claim that B′(wc) = P . Indeed, by
contradiction, suppose that B′(wc) = N ; since wc 6= w we will have that A(wc) = A′(wc) = N , and
hence wc ∈ B−1(N). By Corollary 3.2-i), it follows that wc ∈↓A−1(N). Hence there exists an el-
ement y ∈ A−1(N) such that wc ≤ y, and hence yc ≤ (wc)c = w, with yc ∈ A−1(N)c. Therefore
z ∈↑(A−1(N))c, by contradicting the hypothesis made on w. This proves our claim.

If x 6= w and x 6= wc, then N = B′(x) = B(x). Since B is complemented positive, we have that
B(xc) = P , and hence, since xc 6= w, by definition of B′ we have that B′(xc) = B(xc) = P . If x = w,
then B′(xc) = B′(wc) = P . Finally, if x = wc, then the hypothesis B′(x) = N is empty because we have
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proved that B′(wc) = P . Hence A′ is complemented positive.

In the same way we can prove ii), using Corollary 3.2-ii). �

Corollary 3.6. i) Let B ∈W+(X) and A be a W+(X)-core of B. Then

B−1(P ) =↑(A−1(P )) ∪ (A−1(N))c).

ii) Let B ∈W−(X) and A be a W−(X)-core of B. Then

B−1(N) =↓(A−1(N)) ∪ (A−1(N))c).

Proof. i) Let z ∈↑(A−1(P )) ∪ (A−1(N))c). Then there exists an element z′ ∈ A−1(P ) ∪ A−1(N)c such
that z′ ≤ z. Since B(z′) = P and B is up-positive, we have that B(z) = P , i.e. z ∈ B−1(P ). This
implies that ↑(A−1(P )) ∪ (A−1(N))c) ⊆ B−1(P ). The assertion follows by Proposition 3.5-i).

ii) Similarly, by using Proposition 3.5-ii). �

Theorem 3.7. i) Let B ∈W+(X) and A a W+(X)-core of B, then

X = (↑(A−1(P )) ∪ (A−1(N))c))t ↓A−1(N).

ii) Let B ∈W−(X) and A a W−(X)-core of B, then

X = (↓(A−1(N)) ∪ (A−1(N))c))t ↑A−1(P ).

Proof. Since X = B−1(P )tB−1(N), the assertion is a direct consequence of Corollaries 3.2 and 3.6. �

Proposition 3.8. i) Let B ∈W+(X) and A a W+(X)-core of B. Then

Min(B−1(P )) ⊆ A−1(P ) ∪ (A−1(N))c.

ii) Let B ∈W−(X) and A a W−(X)-core of B. Then

Max(B−1(N)) ⊆ A−1(N) ∪ (A−1(P ))c.

Proof. i) Suppose that x ∈ Min(B−1(P )). By Corollary 3.6-i), since ↑ (A−1(P )) ∪ (A−1(N))c) =↑
A−1(P )∪ ↑ (A−1(N))c, it follows that x ∈↑A−1(P ) or x ∈ ↑ (A−1(N))c. If x ∈ ↑A−1(P ), then there
exists y ∈ A−1(P ) such that y ≤ x. By the minimality of x in B−1(P ), we will have that x = y ∈ A−1(P ).
If x ∈↑(A−1(N))c, then there exists z ∈ (A−1(N))c such that z ≤ x. By the minimality of x in B−1(P ),
it follows also that x = z ∈ (A−1(N))c. Hence Min(B−1(P )) ⊆ A−1(P ) ∪ (A−1(N))c.
ii) Likewise, by using Corollary 3.6-ii). �

Proposition 3.9. i) Let B ∈W+(X) and A a W+(X)-core of B, then

Min(B−1(P )) = Min(A−1(P ) ∪ (A−1(N))c).

ii) Let B ∈W−(X) and A a W−(X)-core of B, then

Max(B−1(N)) = Max(A−1(N) ∪ (A−1(P ))c).

Proof. i) We start proving the inclusion Min(B−1(P )) ⊆ Min(A−1(P ) ∪ (A−1(N))c). Suppose that
z ∈ Min(B−1(P )). By Proposition 3.8-i), it follows that z ∈ A−1(P ) ∪ (A−1(N))c. Suppose by con-
tradiction that z 6∈ Min(A−1(P ) ∪ (A−1(N))c), then there exists z ∈ A−1(P ) ∪ (A−1(N))c such that
z < z. Since B(z) = P , this contradicts the minimality of z in B−1(P ). Hence Min(B−1(P )) ⊆
Min(A−1(P ) ∪ (A−1(N))c).
Now we prove the other inclusion Min(B−1(P )) ⊇ Min(A−1(P ) ∪ (A−1(N))c). Suppose that w ∈
Min(A−1(P ) ∪ (A−1(N))c). Obviously w ∈ B−1(P ). If, by contradiction, w 6∈ Min(B−1(P )), then there
exists an element w ∈ B−1(P ) such that w < w. By Corollary 3.6-i) it follows that either w ∈↑A−1(P )
or w ∈↑(A−1(N))c.

1) if w ∈↑A−1(P ), there exists an element w̃ ∈ A−1(P ) such that w̃ ≤ w, therefore w̃ ≤ w < w,
and this contradicts that w ∈ Min(A−1(P ) ∪ (A−1(N))c).

2) if w ∈↑ (A−1(N))c, then there exists an element w̃ ∈ (A−1(N))c such that w̃ ≤ w, hence
w̃ ≤ w < w, and this contradicts that w ∈ Min(A−1(P ) ∪ (A−1(N))c).

ii) Analogously by using Proposition 3.8-ii) and Corollary 3.6-ii). �
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Proposition 3.10. Let B be a +WBTM or a -WBTM on X. Then, setting

N(B) := Min(B−1(P )) ∪Max(B−1(N)),

it follows that B|N(B)
is a W+(X)-core of B on X.

Proof. Let Min(B−1(P )) = {w1, · · · , wk} and Max(B−1(N)) = {v1, · · · , vq}. Then

N(B) = {w1, · · · , wk, v1, · · · , vq}

We start observing that B−1(P ) and B−1(N) are two anti-chains in X, because they are, respectively,
the minimal elements of B−1(P ) and the maximal elements of B−1(N). Let B′ be an other +WBTM on
X such that B′|N(B) = B|N(B) i.e. such that B′(w1) = · · · = B′(wk) = P and B′(v1) = · · · = B′(vq) = N .

Suppose, by contradiction, that B′ 6= B. Then there exists an element w ∈ X such that B(w) 6= B(w′).
Then there are two possibilities:

i) B(w) = P and B′(w) = N . In this case, w ∈ B−1(P ) and, since B−1(P ) = ∪ki=1(↑wi), there
exists i ∈ {1, · · · , k} such that w ∈ (↑wi), i.e. such that wi ≤ w. Since B′(wi) = P , we will have
that wi ∈ (B′)−1(P ) and since B′ is up-positive and wi ≤ w, it follows that B′(w) = P , and this
is a contradiction.

ii) B(w) = N and B′(w) = P . In this case, w ∈ B−1(N), and hence, by B−1(N) = ∪qj=1(↓vj),
there exists j ∈ {1, · · · , q} such that w ∈ (↓vj), i.e. such that w ≤ vj . Since vj ∈ (B′)−1(N) and
since B′ is down-negative, it follows that B′(w) = N which is a contradiction.

Therefore B = B′, and hence B|N(B)
is a W+(X)-core of B. �

In the next theorem we show that each +WBTM and each -WBTM have a unique fundamental core and
we also describe such a core.

Theorem 3.11. i) Let B ∈W+(X). Then, setting

C+(B) := N(B) \ (Max(B−1(N)))c,

it holds that B|C+(B)
is the W+(X)-fundamental core of B.

ii) Let B ∈W−(X). Then, setting

C−(B) := N(B) \ (Min(B−1(P )))c,

it holds that B|C−(B)
is the W−(X)-fundamental core of B.

Proof. i) Let Min(B−1(P )) = {w1, · · · , wk} and Max(B−1(N)) = {v1, · · · , vq}. Then {vc1, · · · , vcq} ⊆
B−1(P ). If {vc1, · · · , vcq} ∩ {w1, · · · , wk} = ∅ then C+(B) coincides with N(B) and hence the assertion
holds by Proposition 3.10.
If {vc1, · · · , vcq} ∩ {w1, · · · , wk} 6= ∅ we assume, without loss of generality, that
{vc1, · · · , vcq} ∩ {w1, · · · , wk} = {w1, · · · , wp}, for some p such that 1 ≤ p ≤ min(k, q).
Re-ordering the indexes, we can assume that w1 = vc1, · · · , wp = vcp. Then we have that:

C+(B) = {wp+1, · · · , wk, v1, · · · , vp, vp+1, · · · , vq}.

Observe that C+(B) ∩ B−1(P ) = {wp+1, · · · , wk} is an anti-chain in X, because it is a subset of the
anti-chain Min(B−1(P )); C+(B)∩B−1(N) = {v1, · · · , vq} is an anti-chain in X because it coincides with
the anti-chain Max(B−1(N)). Let B′ be another +WBTM on X and suppose that B′(wp+1) = · · · =
B′(wk) = P , and B′(v1) = · · · = B′(vq) = N . We need to prove that B′ = B on all X. Suppose by
contradiction that B 6= B′ on X, then there exists an element w ∈ X such that B(w) 6= B′(w). First
suppose that B′(w) = P and B(w) = N . In this case, w ∈ B−1(N) and hence by B−1(N) = ∪qj=1(↓vj)
there exists j ∈ {1, · · · q} such that w ∈↓vj i.e. such that w ≤ vj . Since vj ∈ (B′)−1(N) and since B′ is
down-negative, by w ≤ vj it follows that w ∈ (B′)−1(N) i.e. B′(w) = N , which is a contradiction.
Finally suppose that B′(w) = N and B(w) = P . In this case, since w ∈ B−1(P ) and since B−1(P ) =
∪ki=1(↑wi) there exists i ∈ {1, · · · , k} such that w ∈↑wi, i.e. such that wi ≤ w. We distinguish two cases:

j1) if i ∈ {p+ 1, · · · , k}, then wi ∈ (B′)−1(P ) and since B′ is up-positive, by wi ≤ w it follows that
w ∈ (B′)−1(P ) i.e. B′(w) = P , and this is a contradiction.

j2) if i ∈ {1, · · · , p}, then we will have wi = vci . Since wi ≤ w, we will have that wc ≤ wci = (vci )
c = vi;

since vi ∈ (B′)−1(N) and B′ is down-negative, it follows that wc ∈ (B′)−1(N). Therefore since
B′ is complemented positive, w = (wc)c ∈ (B′)−1(P ), i.e. B′(w) = P , which is a contradiction.
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This shows that B|C+(B)
is a W+(X)-core of B on X.

Let now A be a W+(X)-core of B on X. At first we observe that

C+(B) = (Min(B−1(P )) \ (Max(B−1(N)))c) tMax(B−1(N)).

Moreover, by Proposition 3.8-i) we have that

(1) Min(B−1(P )) ⊆ A−1(P ) ∪ (A−1(N))c,

and, by Corollary 3.3-i) we have that

(2) Max(B−1(N)) ⊆ A−1(N).

Therefore, in order to show that C+(B) ⊆ dom(A), by (2), it is sufficient to prove that

H = Min(B−1(P )) \ (Max(B−1(N)))c ⊆ A−1(P ).

Since H ⊆ Min(B−1(P )), by (1) it is sufficient to prove that H ∩ (A−1(N))c = ∅. Suppose on the
contrary that there exists w ∈ H such that w ∈ (A−1(N))c. In this case there exists w̃ ∈ A−1(N) such
that w̃c = w. It follows that w is a minimal positive of A (w ∈ H) such that wc = w̃ is negative for A,
hence by Proposition 2.9-i) it follows that w̃ ∈ Max(B−1(N)) and therefore w = w̃c ∈ Max(B−1(N))c,
which is a contradiction since w ∈ H.
ii) Similarly by using Proposition 3.10, Proposition 3.8-ii), Corollary 3.3-ii) and Proposition 2.9-ii). �

Remark 3.12. Let us note that all the previous results can be given in an equivalent form, a ‘negative’
one, by using the properties of the involution map c with respect to the order relation and thus with respect
to the operators ↑, ↓, Min and Max.

In the remaining part of the present section we consider the specific SIP X = (P(R), ⊆, c) and the
+WBTM B defined in Example 2.7. In such cases we characterize all the W+(X)-cores of B.

Proposition 3.13. Let A be a BPM such that B extends A. Then, if Z is a bounded from above real
subset which is not in dom(A) such that, for any bounded from above real subset Y such that Z ⊆ Y it
holds that Y /∈ dom(A), then A is not a W+(X)-core of B.

Proof. Let us define a +WBTM B′ different from B such that B′|dom(A)
= A, by setting:

B′(Y ) =

{
P if Y is bounded from above and Z ⊆ Y,
B(Y ) otherwise.

Prove that B′ is up-positive. For this let Y ⊆ Y ′ such that B′(Y ) = P . Then Y is bounded from above
and Z ⊆ Y or Y is unbounded from above. Thus also Y ′ is bounded from above and Z ⊆ Y ′ or Y ′ is
unbounded from above, so B′(Y ′) = P and B′ is up-positive.
Let us prove now that B′ is complemented positive, i.e. that if Y ⊆ R is such that B′(Y ) = N , then Y
is bounded from above and Z * Y . So Y c is unbounded from above and thus B′(Y c) = P . This proves
our assert. �

Proposition 3.14. Let A be a BPM such that B extends A. Then, if Z is an unbounded from above real
subset which is not in dom(A) such that, for any unbounded from above real subset Y such that Y ⊆ Z
it holds that Y /∈ dom(A), then A is not a W+(X)-core of B.

Proof. Let B′ be the total map on X defined by setting:

B′(Y ) =

{
N if Y is unbounded from above and Y ⊆ Z,
B(Y ) otherwise.

The proof that this map is a +WBTM is similar to that described in the previous proposition. Moreover
it is different from B, so the proposition holds. �

By the previous propositions it follows the following result.

Proposition 3.15. Let A be a BPM on X. Then A is a W+(X)-core of B if and only if the following
conditions hold:
i) B extends A.
ii) if Z is a bounded from above real subset which is not in dom(A), then there exists a bounded from
above real subset Y in dom(A) such that Z ⊆ Y .
iii) if Z is an unbounded from above real subset which is not in dom(A),then there exists an unbounded
from above real subset Y in dom(A) such that Y ⊆ Z.



10 CINZIA BISI*, GIAMPIERO CHIASELOTTI AND TOMMASO GENTILE

Proof. It follows directly by Proposition 3.13, Proposition 3.14 and because B is order preserving. �

The following proposition is easy to prove.

Proposition 3.16. Let X and B as in the previous propositions. Then the following conditions hold:
i) there is not a W+(X)-fundamental core of B;
ii) Max(B−1(N)) = Min(B−1(P )) = ∅;
iii) there is not a W+(X)-core A of B such that A−1(N) is an anti-chain on X.

4. Essential properties of a W±(X,B2)-fundamental core

In this section we determine the properties characterizing the fundamental core of a WBTM. This will
lead us to define the concepts of w+-basis and w−-basis for X. At the end of the section we will show that
each w+-basis identifies uniquely the fundamental core of a +WBTM on X and each w−-basis identifies
uniquely the fundamental core of a -WBTM on X.
In all this section, X will denote a finite SIP.

Definition 4.1. i) A w+-basis for X is an ordered pair 〈W+|W−〉, where W+ and W− are two disjoint
anti-chains on X such that:

B1+) (↓W+) ∩ (W c
−) = ∅;

B2+) ↑((W+ ∪ W−)c)∩ ↓W− = ∅;

B3+) X =↑((W+ ∪ W−)c)∪ ↓W−.

ii) A w−-basis for X is an ordered pair 〈W+|W−〉, where W+ and W− are two disjoint anti-chains of X
such that:

B1-) (↑W−) ∩ (W c
+) = ∅;

B2-) ↓((W− ∪ W+)c)∩ ↑W+ = ∅;

B3-) X =↓((W− ∪ W+)c)∪ ↑W+.

Two w+-bases [w−-bases] 〈W+|W−〉 and 〈W ′+|W ′−〉 are considered equal if W+ = W ′+ and W− = W ′−.

Proposition 4.2. i) If B ∈W+(X) and if A = B|C+(B)
, then 〈A−1(P )|A−1(N)〉 is a w+-basis for X.

ii) If B ∈W−(X) and if A = B|C−(B)
, then 〈A−1(P )|A−1(N)〉 is a w−-basis for X.

Proof. i) By definition of C+(B), we have that A−1(P ) = Min(B−1(P ))\(Max(B−1(N)))c and A−1(N) =
Max(B−1(N)). By Theorem 3.11-i) we know that A is a W+(X)-core of B, therefore, by Theorem 3.7-i),
we have

X = (↑(A−1(P )) ∪ (A−1(N))c))t ↓A−1(N)

Moreover, since the elements of A−1(P ) are a part of the minimal positives of B and the elements
of A−1(N) are all the maximal negatives of B, it follows that A−1(P ) and A−1(N) are two disjoint
anti-chains of X. It will remain to prove that (↓A−1(P )) ∩ (A−1(N))c = ∅. Since

A−1(P ) = Min(B−1(P )) \ (A−1(N))c,

then A−1(P ) ∩ (A−1(N))c = ∅. Let us suppose now by contradiction that there exists an element
z ∈↓A−1(P ) ∩ (A−1(N))c. This implies the existence of an element x ∈ A−1(P ) such that z ≤ x. Since
A−1(P ) ∩ (A−1(N))c = ∅, we have that z < x (if z = x, then x ∈ A−1(P ) ∩ (A−1(N))c = ∅). Since x is
a minimal positive of A and A(z) = P (because z ∈ (A−1(N))c), this is a contradiction.
ii) Similarly, by using Theorem 3.11-ii) and Theorem 3.7-ii).

�

The following proposition is essential in [13]:

Proposition 4.3. i) Let 〈W+|W−〉 be a w+-basis for X. If we set W := W+ tW− and

B(x) :=

{
P if x ∈↑(W+ ∪ (W−)c)
N if x ∈↓W−

then B is a +WBTM on X and W = C+(B).
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ii) Let 〈W+|W−〉 be a w−-basis for X. If we set W := W+ tW− and

B(x) :=

{
P if x ∈↑W+

N if x ∈↓(W− ∪ (W+)c),

then B is a -WBTM on X and W = C−(B).

Proof. i) Let us observe that B is well defined because ↑(W+ ∪ (W−)c)∩ ↓W− = ∅; moreover, by setting
A := B|W , we have W+ = A−1(P ) and W− = A−1(N).

Let us prove now that B is up-positive and complemented positive. Trivially B−1(P ) = ↑(W+ ∪ (W−)c)
is an up-set. Furthermore, since (B−1(N))c = (↓W−)c = ↑ (W c

−) ⊆ B−1(P ), it follows that B is
complemented positive. Hence B is a +WBTM.
Suppose now that B′ is another +WBTM on X such that B′|W = A. We need to prove that B = B′ on

all X. Assume, by contradiction, that there exists w ∈ X such that B(w) 6= B′(w).

1) Suppose that w ∈↑W+. In this case, B(w) = P , hence it holds B′(w) = N . Since w ∈↑W+,
there exists w̃ ∈ W+ such that w̃ ≤ w; by hypothesis B and A coincides on W and hence
B(w̃) = A(w̃) = P . Since B is up-positive and w̃ ≤ w, we have that B(w) = P and this is a
contradiction.

2) Suppose that w ∈↓W−. In this case, B(w) = N , and hence B′(w) = P . Since w ∈↓W−, there
exists w̃ ∈ W− such that w ≤ w̃; by hypothesis B(w̃) = A(w̃) = N . Since B is down-negative,
with w ≤ w̃, we have that B(w) = N . This is a contradiction.

3) Suppose that w ∈↑(W c
−). In this case, B(w) = P , and hence B′(w) = N . Since w ∈↑(W c

−),
there exists w̃ ∈ W c

− such that w̃ ≤ w. Since w̃ ∈ W c
−, there exists w ∈ W− such that w̃ = wc,

and hence B(w) = A(w) = N . Since A and B are complemented positive, it follows that
B(wc) = A(wc) = P , i.e. B(w̃) = P . Now since w̃ ≤ w and B is up-positive, it follows that
B(w) = P , and this is a contradiction.

Hence A is a W+(X)-core of B. By Theorem 3.11-i) it follows then that C+(B) ⊆W .
Let us prove now that

(3) A−1(P ) ⊆ Min(B−1(P )).

Suppose that w ∈ A−1(P ) and that by contradiction w 6∈ Min(B−1(P )).
In this case there exists w ∈ B−1(P ) such that w < w. By Corollary 3.6 i) we have that w ∈↑A−1(P )
or w ∈↑(A−1(N))c.
1) if w ∈↑A−1(P ), there exists w̃ ∈ A−1(P ) such that w̃ ≤ w and hence we will have that w̃ < w ≤ w,
with w̃, w ∈ A−1(P ), by contradicting the hypothesis that A−1(P ) is an anti-chain.
2) if w ∈↑ (A−1(N))c, there exists w̃ ∈ (WA

N )c such that w̃ ≤ w and hence w̃ ≤ w < w, with w̃ ∈
(A−1(N))c and w ∈ A−1(P ), against the B1+) and the hypothesis that 〈A−1(P )|A−1(N)〉 is a w+-basis
for X. This proves (3).
Let us suppose now that C+(B) 6= W . Since C+(B) ⊆W , this implies that C+(B) &W , and hence that

|C+(B)| < |W |. Let W̃ = C+(B) and set Ã = B|Ã .

Since A and Ã are both two W+(X)-cores for B, by Proposition 3.9-i) we know that

Min(A−1(P ) t (A−1(N))c) = Min(B−1(P )) = Min(Ã−1(P ) ∪ (Ã−1(N))c).

Since 〈A−1(P )|A−1(N)〉 is a w+-basis for X, we have that A−1(N) is an anti-chain, moreover, by

definition of C+(B), also Ã−1(N) is an anti-chain; by Corollary 3.4 i), then it follows that A−1(N) =

Max(B−1(N)) = Ã−1(N), and hence (A−1(N))c = (Ã−1(N))c. Since W = A−1(P ) t A−1(N) and

W̃ = Ã−1(P ) t Ã−1(N), by the equality A−1(N) = Ã−1(N) and by the inequality |W̃ | < |W |, it follows
that

(4) |Ã−1(P )| < |A−1(P )|.
By (3) we have that

(5) A−1(P ) ⊆ Min(B−1(P )) = Min(A−1(P ) t (A−1(N))c) = Min(Ã−1(P ) ∪ (Ã−1(N))c).

Since A−1(P ) ∩ (Ã−1(N))c = A−1(P ) ∩ (A−1(N))c = ∅ in view of the fact that 〈A−1(P )|A−1(N)〉 is a

w+-basis for X, by (5) it follows that A−1(P ) ⊆ Ã−1(P ), and hence |A−1(P )| ≤ |Ã−1(P )|, that is in
contradiction with (4). This proves that W = C+(B).
ii) The same reasoning applies by using Theorem 3.11-ii), Corollary 3.6-ii) and Proposition 3.9-ii).

�
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We denote now with Bw+(X) the family of all w+-bases on X and with Bw−(X) the family of all w−-
bases on X. If B ∈ W+(X), by Proposition 4.2-i), it follows that 〈A−1(P )|A−1(N)〉 ∈ Bw+(X), where
A = B|C+(B)

. This defines an application h+ : W+(X)→ Bw+(X) such that h+(A) = 〈A−1(P )|A−1(N)〉,
where W = C+(B).
If B ∈ W−(X), by Proposition 4.2-ii) we can define a similar map h− : W−(X) → Bw−(X). It holds
then the following result.

Theorem 4.4. The maps h+ and h− are bijective.

Proof. The map h+ is onto by virtue of Proposition 4.3-i). We prove now that h+ is a one-to-one map.

Let B and B̃ be two +WBTMs on X such that 〈A−1(P )|A−1(N)〉 = 〈Ã−1(P )|Ã−1(N)〉, where A =

B|C+(B)
and Ã = B̃|C+(B̃)

.

Then, if w ∈ Ã−1(P ), we have that B̃(w) = P and also B(w) = P ; similarly, if w ∈ Ã−1(N), we have

that B̃(w) = N and B(w) = N . Therefore B|W̃ = B|W̃ . Since Ã is a W+(X)-core of B̃, it follows that

B = B̃.

The case of h− is analogue. �

5. The Involution Lattice S(n, r)

In what follows n and r are two integer numbers such that n ≥ r ≥ 0.
We set I(n, r) := {r, . . . , 1, −1, . . . , −(n − r)} and A(n, r) := I(n, r) ∪ {0}. Now we briefly recall the
definition of the lattice S(n, r). Let A(n, r) := I(n, r) ∪ {0} = {r, . . . , 1, 0,−1, . . . ,−(n − r)}. We call
(n, r)-string a n-pla of integers

(6) i1 . . . ir|j1 . . . jn−r,
such that:
i) r ≥ i1 ≥ · · · ≥ ir ≥ 0 ≥ j1 ≥ · · · ≥ jn−r ≥ −(n− r);
ii) the unique element in (6) which can be repeated is 0.
We denote by S(n, r) the set of all (n, r)-strings. On S(n, r) we consider the partial order on the
components, that we denote by v. To simplify the notations, in all the numerical examples the integers
on the right of the vertical bar | will be written without minus sign. Since (S(n, r),v) is a finite
distributive lattice it is also graded, with minimum element 0 · · · 0|12 · · · (n − r) and maximum element
r(r − 1) · · · 21|0 · · · 0. In [6] it has been shown that if we define

(i1 . . . ik 0 . . . 0|0 . . . 0 j1 . . . jl)c := i′1 . . . i
′
r−k 0 . . . 0|0 . . . 0 j′1 . . . j′n−r−l,

where {i′1, . . . , i′r−k} is the usual complement of {i1, . . . , ik} in {1, . . . , r} and {j′1, . . . , j′n−r−l} is the usual
complement of {j1, . . . , jl} in {−1, . . . ,−(n− r)}, then S(n, r) becomes a SIP.

It is straightforward to prove the following result.

Proposition 5.1. The lattice S(n, r) is isomorphic to the direct product of the two lattice S(r, r) and
the dual lattice (S(n− r, n− r))δ.

We call (n, r)-function a function f : A(n, r)→ R such that

(7) f(r) ≥ · · · ≥ f(1) ≥ f(0) = 0 > f(−1) ≥ · · · ≥ f(−(n− r)).
We denote by F (n, r) the set of the (n, r)-functions. The (n, r)-function f is a (n, r)-positive weight
function [negative weight function] if

(8) f(r) + · · ·+ f(1) + f(−1) + · · ·+ f(−(n− r)) ≥ 0 [< 0].

We denote by WF+(n, r) the set of the (n, r)-positive weight functions and with WF−(n, r) the set
of the (n, r)-negative weight functions. If w = i1 . . . ir|j1 . . . jn−r ∈ S(n, r) and f ∈ F (n, r), we set∑
f (w) := f(i1) + · · ·+ f(ir) + f(j1) + · · ·+ f(jn−r).

The next result shows as the order structure in S(n, r) is strictly related to the properties of the family
of maps {

∑
f : f ∈ F (n, r)}.

We recall at first the definition of valuation on an arbitrary lattice X. If X is a lattice, a map ν : X → R
is called a valuation on X if for all a, b ∈ X: ν(a ∧ b) + ν(a ∨ b) = ν(a) + ν(b). For classical and more
recent studies concerning the valuations on distributive lattices see [20, 21, 22, 28].

Proposition 5.2. i) If f ∈ F (n, r), the map
∑
f is a valuation on S(n, r).

ii) If w,w′ ∈ S(n, r), then w v w′ if and only if
∑
f (w) ≤

∑
f (w′) for each f ∈ F (n, r).
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Proof. i) Follows directly from the definition of v.
ii) Let w = ar . . . a1|b1 . . . , bn−r and w′ = a′r . . . a

′
1|b′1 . . . , b′n−r two elements in S(n, r). If w v w′, it is

immediate that
∑
f (w) ≤

∑
f (w′) for each f ∈ F (n, r). We assume now that

∑
f (w) ≤

∑
f (w′) for each

f ∈ F (n, r) and that the condition w v w′ is false. This means that there exists some i ∈ {1, . . . , r}
such that ai > a′i or some j ∈ {1, . . . , n − r} such that bj > b′j . Let us suppose at first that there
exists i ∈ {1, . . . , r} such that ai > a′i and we assume that i is maximal among all the positive integers
l ∈ {1, . . . , r} such that al > a′l, therefore

(9) ar ≥ · · · ≥ ai+1 ≥ ai > a′i ≥ a′i−1 ≥ · · · ≥ a′1 and a′r ≥ ar, . . . , a′i+1 ≥ ai+1.

We consider now the following function:

f(α) :=


−1 if α ∈ {−1, . . . ,−(n− r)}
0 if α ∈ {0, 1, . . . , ai − 1}
+1 if α ∈ {ai, . . . , r}

Then f ∈ F (n, r) and by (9) it follows that
∑
f (w) ≥ (r − i + 1) +

∑
1≤j≤n−r f(bj) > (r − i) +∑

1≤j≤n−r f(bj) = (r − i) +
∑

1≤j≤n−r f(b′j) =
∑
f (w′), that is a contradiction.

We can suppose then ai ≤ a′i for all i = 1, . . . , r, so there exists j ∈ {1, . . . , n− r} such that bj > b′j and
we assume that j is minimal among all the positive integers l ∈ {1, . . . , n− r} such that bl > b′l, therefore

(10) b1 ≥ · · · ≥ bj−1 ≥ bj > b′j ≥ b′j+1 ≥ · · · ≥ b′n−r and b′1 ≥ b1, . . . , b′j−1 ≥ bj−1

We must now distinguish two cases. First we suppose that bj = 0. In this case we consider the following
function:

h(α) :=

{
0 if α ∈ {0, 1, . . . , r}
−1 if α ∈ {−1, . . . ,−(n− r)}

Then h ∈ F (n, r) and by (10) it follows that
∑
h(w) ≥ (−1)(n− r− j) > (−1)(n− r− j + 1) =

∑
h(w′),

that is a contradiction. We assume now that bj < 0. In this case we consider the following function:

g(α) :=


0 if α = 0
+1 if α ∈ {1, . . . , r}
−1 if α ∈ {−1, . . . , bj}
−2 if α ∈ {bj − 1, . . . ,−(n− r)}

Then g ∈ F (n, r) and by (10) we have:∑
g(w) ≥

∑
1≤l≤j−1 g(bl) + (−1) +

∑
j+1≤l≤n−r g(bl) >

∑
1≤l≤j−1 g(bl) + (−2) +

∑
j+1≤l≤n−r g(bl)

=
∑

1≤l≤j−1 g(b′l) + g(b′j) +
∑
j+1≤l≤n−r g(bl) ≥

∑
1≤l≤j−1 g(b′l) + (−2) + (−2)(n− r − j) =∑

g(w
′)

that is a contradiction. This completes the proof of ii). �

In particular, if
∑
f is one-to-one, then

∑
f is also a linear extension of S(n, r). In [34] Rota showed

that a valuation on a finite distributive lattice is uniquely determined by the values that it takes on the
join-irreducible elements of the lattice, therefore, in our case, this means that

∑
f is uniquely determined

by the values that it takes on the join-irreducible elements of the distributive lattice S(n, r).
For each f ∈ F (n, r), we can define a 2-valued map Bf : S(n, r)→ {N,P} as follows:

Bf (w) :=

{
P if

∑
f (w) ≥ 0

N if
∑
f (w) < 0.

Then it is clear that Bf is a +WBTM if f ∈WF+(n, r) and Bf is a -WBTM if f ∈WF−(n, r).

6. (n, r)-Systems

In the present section, let us suppose that we have r variables xr, · · · , x1 and other (n − r) variables
y1, · · · , y(n−r).
We call (n, r)-system of size p a system S of linear inequalities having the following form:
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(11) S :



xr ≥ · · · ≥ x1 ≥ 0 ≥ y1 ≥ · · · ≥ yn−r∑
i∈A1

ti ≥ 0 (or ≤ 0)∑
i∈A2

ti ≥ 0 (or ≤ 0)
· · ·
· · ·∑
i∈Ap

ti ≥ 0 (or ≤ 0)

where A1, · · · , Ap are different subsets of I(n, r) of cardinality strictly greater than 1; moreover ti = xi
if i ∈ {r, · · · , 1} and ti = yi if i ∈ {−1, · · · ,−(n − r)}. When the subsets A1, · · · , Ap coincide with
all the possible subsets of I(n, r) different from the singletons and from the empty set, we say that the
(n, r)-system (11) is total. Furthermore, when in (11) the following inequality appears:

(12) xr + · · ·+ x1 + y1 + · · ·+ yn−r ≥ 0 (or ≤ 0)

we say that it is an (n, r)-positively weighted system (or an (n, r)-negatively weighted system).
Let S, S′ be two (n, r)-systems: we say that they are equal (in symbols S = S′) if they have exactly the
same inequalities, otherwise we say that they are different (in symbols S 6= S′).
If they are both consistent (i.e. they have solutions) and equivalent (i.e. they have the same solutions)
we shall write S ≡ S′.
We denote by

• Syst(n, r) the set of all (n, r)-systems;
• TSyst(n, r) the set of all (n, r)-total systems;
• CSyst(n, r) the set of all (n, r)-systems which are also consistent;
• CTSyst(n, r) := CSyst(n, r) ∩ TSyst(n, r);
• W+Syst(n, r) the set of all (n, r)-positively weighted systems;
• W+CSyst(n, r) the set of all (n, r)-consistent positively weighted systems;
• W+TSyst(n, r) the set of all (n, r)-total positively weighted systems;
• W+CTSyst(n, r) := W+CSyst(n, r) ∩W+TSyst(n, r);
• W−Syst(n, r), W−CSyst(n, r), W−TSyst(n, r), W−CTSyst(n, r) the analogues of the previous

four sets but negatively weighted.

Notice that if S, S′ ∈ CTSyst(n, r) and S 6= S′, then S and S′ can not be equivalent.
Let us consider an (n, r)-system S as in (11). Since there is an obvious bijection between the power set
P(I(n, r)) and S(n, r), all the subsets A1, · · · , Ap in (11) can be identified with strings of S(n, r), that
we denote by w1, · · · , wp (for example, if n = 7, r = 4, we identify the subset {1, 3, 4,−1} with the string
4310|001, or the subset {2,−2,−3} with 2000|023).
Let us note that 0 . . . 0|0 · · · 0 will be identified always with the empty subset of I(n, r). It is immediate
to see that if wk v wj for some k, j, then

∑
i∈Ak

ti ≤
∑
i∈Aj

ti.

We denote by (S(n, r) B2) the poset of the 2-valued partial maps on S(n, r) (see [18] for the definition
of a poset of partial maps).
Moreover, we also set

• ξr = r0 · · · 0|0 · · · 0, · · · , ξ1 = 10 · · · 0|0 · · · 0, ξ0 = 00 · · · 0|0 · · · 0,
• η1 = 0 · · · 0|0 · · · 01, · · · , ηn−r = 0 · · · 0|0 · · · 0(n− r),
• ΩS = {w1, · · · , wp, ξr, · · · , ξ1, ξ0, η1, · · · , ηn−r}.

Definition 6.1. Let S ∈ Syst(n, r). The induced S-2-valued partial map (briefly S-BPM) AS : ΩS ⊆
S(n, r)→ B2 is defined as follows:
for j ∈ {1, . . . , p},

AS(wj) =

{
P if

∑
i∈Aj

ti ≥ 0

N if
∑
i∈Aj

ti < 0

AS(ξ0) = AS(ξ1) = · · · = AS(ξr) = P and AS(η1) = · · · = AS(ηn−r) = N .

Definition 6.2. If S, S′ ∈ Syst(n, r), we set S . S′ if S is a subsystem of S′.

This obviously defines a partial order . on Syst(n, r). We denote by B(n, r) the sub-poset of all the
2-valued partial maps A ∈ (S(n, r)  B2) such that ξr, · · · , ξ1, ξ0, η1, · · · , ηn−r ∈ dom(A) and A(ξ0) =
A(ξ1) = · · · = A(ξr) = P , A(η1) = · · · = A(ηn−r) = N and with BT(n, r) the subset of all the total maps
of B(n, r). Then the map χ : Syst(n, r) → B(n, r) such that χ(S) = AS, for each S ∈ Syst(n, r), is an
isomorphism of posets. We denote by τ : B(n, r) → Syst(n, r) the inverse of χ and we set τ(b) = SB if
B ∈ B(n, r). Obviously the restriction of χ to BT(n, r) defines an isomorphism between BT(n, r) and
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TSyst(n, r), and we continue respectively to denote by χ and τ this isomorphism and its inverse. A very
difficult question is then:

Q1) What are the maps in χ(W+CTSyst(n, r)) and in χ(W−CTSyst(n, r))?

Roughly speaking, what are the order-properties that characterize a 2-valued map B ∈ BT(n, r) in such
a way that SB is a consistent system?
The following two results are very simple but they provide a possible strategy in order to approach the
problem raised in Q1).
Positive local criterion (p.l.c.) Let H be a family of maps of BT(n, r) such that

χ(W+CTSyst(n, r)) ⊆ H and H ∩ χ(W−CTSyst(n, r)) = ∅,

and let B ∈ H. Let A denote a H-core of B. Then, SB is consistent if and only if SA ∈W+CSyst(n, r)
and, in this case, if f ∈WF+(n, r) is a solution of SA, it is also a solution of SB.

Proof. If SB is consistent, then necessarily it holds that SB ∈W+CTSyst(n, r) because

H ∩ χ(W−CTSyst(n, r)) = ∅ and B = χ(SB)

Hence SA ∈W+CSyst(n, r). On the other side, if SA ∈W+CSyst(n, r), it has a solution f ∈WF+(n, r).
Then Sf ∈W+CTSyst(n, r) and hence, by hypothesis, χ(Sf ) ∈ H. It is easy to observe that χ(Sf ) = Bf .
Therefore Bf ∈ H. If we denote by W the domain of A, we have (Bf )|W = A since f is a solution of SA;
therefore (Bf )|W = B|W . Since B|W is a H-core of B, we have that B = Bf ; hence SB is consistent and
f is one of its solution. �

Negative local criterion (n.l.c.) Let H be a family of maps of BT(n, r) such that

χ(W−CTSyst(n, r)) ⊆ H and H ∩ χ(W+CTSyst(n, r)) = ∅,

and let B ∈ H. Let A denote a H-core of B. Then, SB is consistent if and only if SA ∈W−CSyst(n, r)
and, in this case, if f ∈WF−(n, r) is a solution of SA, it is also a solution of SB.

Proof. Similar to that of p.l.c. �

The previous results give us some “local” criteria that are useful in two directions: “from global to local”
and “from local to global”. In the direction “from global to local”, to decide if a map B that we choose in
a special family H of 2-valued total maps of BT(n, r) determines an (n, r)-consistent total system. In this
case the previous criteria are useful if we know, for each given map B ∈ H a H-core that is “sufficiently”
small. In the direction “from local to global”, we can ask if a given system S of W+CSyst(n, r) (or of
W−CSyst(n, r)) is equivalent to some S′ ∈ W+CTSyst(n, r) (or to some S′ ∈ W−CTSyst(n, r)) and if
S has a minimal cardinality between all the (n, r)-subsystems having the same solutions of S′.
We set now

OP(n, r) = OP(S(n, r), B2) ∩BT(n, r),

W+(n, r) = {B ∈W+(S(n, r), B2) ∩BT(n, r) B(r · · · 21|12 · · · (n− r)) = P},

W−(n, r) = {B ∈W−(S(n, r), B2) ∩BT(n, r) B(r · · · 21|12 · · · (n− r)) = N}.
The family W+(n, r) satisfies the hypotheses of p.l.c. and the family W−(n, r) satisfies the hypotheses
of n.l.c., i.e:

χ(W+CTSyst(n, r)) ⊆W+(n, r) and W+(n, r) ∩ χ(W−CTSyst(n, r)) = ∅,

χ(W−CTSyst(n, r)) ⊆W−(n, r) and W−(n, r) ∩ χ(W+CTSyst(n, r)) = ∅.
We can then apply the local criteria to the previous two families of 2-valued total maps on S(n, r). If
we apply the p.l.c. to a map B ∈W+(n, r), we take the W+(S(n, r), B2)-fundamental core, that is also
a W+(n, r)-core. Similarly, if we apply the n.l.c. to a map B ∈W−(n, r), we take the W−(S(n, r), B2)-
fundamental core, that is also a W−(n, r)-core. In these cases we say simply “the fundamental core” of
B.
In what follows, for simplicity, we will write a partial map as the set of the strings of its domain followed
by an N if they are negative or by a P if they are positive.
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000|12

100|12 000|02

200|12

100|02

000|01

300|12 210|12

200|02

100|01 000|00

310|12 300|02

210|02

200|01 100|00

320|12 310|02

300|01

210|01 200|00

321|12 320|02

310|01

300|00 210|00

321|02

320|01

310|00

321|01 320|00

321|00

Figure 1. The 2-valued map discussed in Example 6.3

Example 6.3. Let us consider the case n = 5 and r = 3. We take the system S ∈ W−TSyst(5, 3) such
that the relative 2-valued map BS associated to it is represented in Figure 1 (the white nodes are P and
the black nodes are N).
It results that BS ∈W−(5, 3). It is easy to verify that the fundamental core of BS is the partial map

A = {321|02N, 100|01N, 000|00P, 200|01P}

The (5, 3)-system SA is then the following:

SB :


x3 ≥ x2 ≥ x1 ≥ 0 > y1 ≥ y2
x1 + x2 + x3 + y2 < 0
x1 + y1 < 0
x2 + y1 ≥ 0

A solution of this system is easily given by:

x3 =
1

2
, x2 =

1

3
, x1 =

1

6
, y1 = −1

5
, y2 = −6

5
.

Then, by n.l.c. it follows that S ∈ W−CTSyst(5, 3), i.e. it is consistent and has the same solutions of
SB .

Example 6.4. Let us consider again the case n = 5 and r = 3. We take the system S ∈W+TSyst(5, 3)
such that the relative 2-valued map BS associated to it is represented in Figure 2 (as before, the white
nodes are P and the black nodes are N).
It is easy to verify that the fundamental core of BS is the partial map

A = {320|02N, 321|12P, 000|00P, 000|01N}
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000|12

100|12 000|02

200|12

100|02

000|01

300|12 210|12

200|02

100|01 000|00

310|12 300|02

210|02

200|01 100|00

320|12 310|02

300|01

210|01 200|00

321|12 320|02

310|01

300|00 210|00

321|02

320|01

310|00

321|01 320|00

321|00

Figure 2. The 2-valued map discussed in Example 6.4

Therefore the system SA is the following: x3 ≥ x2 ≥ x1 ≥ 0 > y1 ≥ y2
x1 + x2 + x3 + y1 + y2 ≥ 0
x3 + x2 + y2 < 0

A solution of this system is easily given by

x3 = 1, x2 = 1, x1 = 0.9, y1 = −0.8, y2 = −2.1.

By p.l.c. it follows then that S ∈W+CTSyst(5, 3), i.e. S is consistent and equivalent to SB .

In the previous example, we showed two different (5, 3)-total systems both consistent. In the next
example, we show a (6, 3)-total system S that is not consistent but it is such that BS ∈ W+(6, 3). The
next example shows that the inclusion χ(W+CTSyst(n, r)) ⊆W+(n, r) is strict, i.e. there exist maps in
W+(n, r) whose associated (n, r)-system has no solutions.

Example 6.5. Let us consider the map B ∈ BT(6, 3) represented in Figure 3 (the white nodes are P
and the black nodes are N).
Then it is easy to observe that B ∈W+(6, 3) and that the fundamental core of B is the following partial
map:

B = {321|123P, 300|003N, 210|003N, 200|002N, 100|001N, 000|000P}
Hence SB is the following (6, 3)-positively weighted system:

x3 ≥ x2 ≥ x1 ≥ 0 > y1 ≥ y2 ≥ y3
x1 + x2 + x3 + y1 + y2 + y3 ≥ 0
x3 + y3 < 0
x2 + y2 < 0
x1 + y1 < 0
x2 + x1 + y3 < 0.
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000|123

100|123 000|023

200|123

100|023

000|013

300|123 210|123 200|023 100|013 000|012 000|003

310|123 300|023 210|023

200|013

100|012 100|003 000|002

320|123 310|023 300|013 210|013 200|012 200|003 100|002 000|001

321|123 320|023 310|013 300|012 300|003 210|012 210|003 200|002 100|001

000|000

321|023 320|013 310|012 310|003 300|002 210|002 200|001 100|000

321|013 320|012 320|003

310|002

300|001 210|001 200|000

321|012 321|003 320|002 310|001 300|000 210|000

321|002

320|001

310|000

321|001 320|000

321|000

Figure 3. The 2-valued map discussed in Example 6.5

Obviously the previous system SA is not consistent, therefore also SB is not consistent. Hence BA ∈
W+(6, 3), but B /∈ χ(W+CTSyst(6, 3)).
Let us note that, for the previous map B, there does not exist an f ∈ W+F (n, r) such that B = Bf .
Therefore this example shows that the answer to the open problems raised in [6] is negative.

7. Open Problems

The last example of the previous section tell us that the family W+(n, r) does not capture all the
properties of the systems in W+CTSyst(n, r), therefore we give now a more restrictive condition on a
family of 2-valued maps in order to catch all the properties that characterize a system inW+CTSyst(n, r).
If w is a string in S(n, r) in the form (6) with i1 > · · · > ip > 0, ip+1 = . . . ir = 0 and j1 = · · · = jq−1 = 0,
0 > jq > · · · > jn−r, for some indexes p and q, we set

w∗ = {i1, · · · , ip, jq, · · · , jn−r}.

For example, if w = 4310|013 ∈ S(7, 4), then w∗ = {1, 3, 4,−1,−3}. In particular, if w = 0 · · · 0|0 · · · 0
then w∗ = ∅. It stays therefore defined a bijective map

∗ : w ∈ S(n, r) 7→ w∗ ∈ P(I(n, r)).
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Definition 7.1. Let w ∈ S(n, r); a partition of w is a subset {w1, · · · , wk} of S(n, r) such that
{w∗1 , · · · , w∗k} is a set-partition of w∗. If {w1, · · · , wk} is a partition of w, we write w : w1 o · · · o wk.

Example 7.2. If w = 7543100|0013 ∈ S(11, 7), then w : 7000000|0000 o 5430000|0001 o 1000000|0003.

Definition 7.3. If A is a BPM on S(n, r), we say that A is complemented pointwise if for each w ∈
dom(A) such that A(w) = T , where T = P or T = N , and for each partition w : w1 o · · · o wk, with
{w1, · · · , wk} ⊆ dom(A), we have A(wi) = T for some i ∈ {1, · · · , k}.

Definition 7.4. We say that a map A is +formally consistent [-formally consistent] on S(n, r) if:

• A ∈ OP(n, r);

• A is complemented pointwise;

• A(r · · · 21|12 · · · (n− r)) = P [A(r · · · 21|12 · · · (n− r)) = N ].

We denote by FC+(n, r) [FC−(n, r)] the family of all the maps +formally consistent [-formally consis-
tent] on S(n, r). It is immediate to observe that FC+(n, r) ⊆ W+(n, r) [FC−(n, r) ⊆ W−(n, r)] and
χ(W+CTSyst(n, r)) ⊆ FC+(n, r) [χ(W−CTSyst(n, r)) ⊆ FC−(n, r)].

000|123

100|123 000|023

200|123

100|023

000|013

300|123 210|123 200|023 100|013 000|012 000|003

310|123 300|023 210|023

200|013

100|012 100|003 000|002

320|123 310|023 300|013 210|013 200|012 200|003 100|002 000|001

321|123 320|023 310|013 300|012 300|003 210|012 210|003 200|002 100|001

000|000

321|023 320|013 310|012 310|003 300|002 210|002 200|001 100|000

321|013 320|012 320|003

310|002

300|001 210|001 200|000

321|012 321|003 320|002 310|001 300|000 210|000

321|002

320|001

310|000

321|001 320|000

321|000

Figure 4. The 2-valued map discussed in Example 7.5
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Open Problems:
Q2) χ(W+CTSyst(n, r)) = FC+(n, r)?
Q3) χ(W−CTSyst(n, r)) = FC−(n, r)?
The next example shows a map B ∈W−(n, r) such that the restriction of B to its W−(n, r)-fundamental
core is complemented pointwise but B is not -formally consistent: this proves that the open problem Q3)
is false if the system and the 2-valued map are not total. We can provide an analogue example for the
case B ∈W+(n, r), hence also the problem Q2) is false if the system and the 2-valued map are not total.

Example 7.5. Let us consider the 2-valued map B ∈ BT(6, 3) represented in Figure 4 (as in the above
cases, the white nodes are P and the black nodes are N).
It is easy to prove that B ∈ W−(6, 3) and that the W−(6, 3)-fundamental core of B is the following
partial map:

A = {321|012N, 000|001N, 100|003P, 000|000P}
Then A is a BPM on S(6, 3) that is complemented pointwise, but A /∈ FC−(6, 3). In fact, if we take
the string w = 321|123, we have w : 300|003 o 100|002 o 200|001, with B(w) = N and B(300|003) =
A(100|002) = A(200|001) = P .
The system SA determined from A is the following (6, 3)-weighted system: x3 ≥ x2 ≥ x1 ≥ 0 > y1 ≥ y2 ≥ y3

x3 + x2 + x1 + y1 + y2 + y3 < 0
x1 + y3 ≥ 0

The system SA is not consistent, because if it were then by n.l.c. also SB would be consistent and hence
B ∈ χ(W−CTSyst(6, 3)) ⊆ FC−(6, 3), which contradicts our assumptions.
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