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Abstract
In this article, we investigate harmonicity, Laplacians, mean value theorems, and
related topics in the context of quaternionic analysis. We observe that a Mean Value
Formula for slice regular functions holds true and it is a consequence of the well-
known Representation Formula for slice regular functions over H. Motivated by this
observation, we have constructed three order-two differential operators in the kernel
of which slice regular functions are, answering positively to the question: is a slice
regular function over H (analogous to an holomorphic function over C) ”harmonic”
in some sense, i.e., is it in the kernel of some order-two differential operator over H?
Finally, some applications are deduced such as a Poisson Formula for slice regular
functions over H and a Jensen’s Formula for semi-regular ones.

Keywords Slice regular functions · Harmonicity · Laplacians ·Mean value
theorems · Quaternionic analysis · Poisson formula · Jensen formula

Mathematics Subject Classification 30G35

1 Introduction

In [20] and [21], Gentili and Struppa gave the following definition of slice regular
function over the quaternions:

Definition 1.1 Let � be a domain in H. A real differentiable function f : �→ H is
said to be slice regular if, ∀ I ∈ S = {q ∈ H, �(q) = 0 : |q| = 1}, its restriction f I
to the complex line CI = R+ RI passing through the origin and containing 1 and I
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is holomorphic on � ∩ CI , which is equivalent to require that, ∀ I ∈ S,

∂ I f (x + y I ) := 1

2
(

∂

∂x
+ I

∂

∂ y
) f I (x + y I ) = 0 (1)

on � ∩ CI .

Later the notion of “slice regularity” was generalized to algebras other thanH [16,23].
For simplicity, sometimes slice regular functions are simply called “regular func-

tions.”
Let D ⊂ C be any symmetric set with respect to the real axis. A function F =

F1 + F2ı : D→ H⊗ C such that F(z) = F(z) is said to be a stem function.
Let �D = {α + β I : α, β ∈ R, I ∈ S, α + βi ∈ D}.
A function f : �D → H is said to be a (left) slice function if it is induced by a stem

function F = F1 + F2ı defined on D in the following way: for any α + Iβ ∈ �D ,

f (α + Iβ) = F1(α + iβ)+ I F2(α + iβ).

If a stem function F induces the slice function f , we will write f = I(F).

Proposition 1.2 Let D be a symmetric domain inCwhich intersectsR and let�D ⊂ H

be defined as above.
Then a slice function f : �D → H is slice regular if and only if its stem function

F : D→ H⊗ C is holomorphic.

(See Proposition 8 of [23].)
These notions have been studied a lot in the last years: see, for example, the many

results for slice regular functions from the unit ball of H to itself: [7–11] and for entire
slice regular functions [13].

Classically, mean value theorems are closely related to harmonicity. We investigate
mean value properties for quaternionic functions. We prove (Proposition 4.1) that a
slice regular function f fulfills

f (a + bI ) = 1

2π

∫
S

∫ 2π

0
(1− I J ) f (a + bJ + reJθ )dθdμ(J ), ∀a, b ∈ R, I ∈ S,

whereμ is a probabilitymeasure onSwhich is invariant under the involution J 	→ −J .
Conversely, we show that every continuous function f : H → H with this mean

value propertymust be the sumof a regular and an anti-regular function (Theorem 4.4).
We also show that for any point p ∈ H and every 3-sphere S containing p in the

interior, there exists a H-valued measure on S such that f (p) = ∫
S f (q)dμ(q) for

every slice regular function f (Theorem 7.1).
Over the field of complex numbers, the mean value property is equivalent to har-

monicity. Therefore it is natural ask ourselves if slice regular functions were in the
kernel of some order-two differential operator over H: in Sect. 8 we answer positively
to this question constructing three order-two differential operators in the kernel of
which slice regular functions are.
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The first one is �∗, introduced in Definition 6.15. For slice functions it is defined
everywhere, for other functions only outside R. On each slice CI the operator �∗ acts
as the complex Laplacian if we identify CI � C and H = CI ⊕ JCI � C

2 (with J
being an imaginary unit orthogonal to I ). If f is a slice function, then �∗( f ) is again
a slice function and �∗( f ) = I(�F) for f = I(F).

The second order-two differential operator is �′:

(�′ f )(q) =
(

�∗
∫
S

Rw f dμ(w)

)
(q)

Here Rw is an averaging operator which we define based on rotations, cf. Sect. 6. We
observe that (�′ f )(q) = 1

2�∗(Tr( f ))(q) = 1
2�∗( f + f c)(q). For the definition of

f c see Definition 2.10.
The third order-two differential operator is �′′:

(�′′ f )(q) = (�∗N ( f ))(q) = (�∗( f · f c))(q)

On one side �∗ and �′ are R−linear operator, on the other hand �′′ is not a linear
operator but for �′′ a sort of Leibnitz rule for ( f ∗ g) holds true (Proposition 6.25).
For the definition of slice product, denoted with ∗, see Definition 2.7.

Our main results on �∗ and �′ are the following :

Theorem 1.3 (Theorem 6.22) Let f : �D → H be a C2 slice function. Assume that
D is simply connected.

�∗ f is vanishing identically if and only if f can be written as a sum of a regular
function g and an anti-regular function h.

For the definition of anti-regular function see Remark 2.5.

Proposition 1.4 (Proposition 6.31) Let h : H→ R be a slice function with �′h = 0.
Then there exists a slice-preserving regular function f such that h = � ( f ).

Proposition 1.5 (Proposition 6.34)Let u : H→ R be aC2-function such that�′u = 0
outside R.

Then u admits no isolated zero in any real point a ∈ R.

Finally, we provide a Jensen’s formula.

Proposition 1.6 (Jensen’sFormula; Proposition8.7)Let� = �D bea circular domain
of H and let f : �→ H∪{∞} be a semi-regular function. Let ρ > 0 be such that the
ball, centered in 0 and of radius ρ, Bρ ⊂ �, f (0) �= 0,∞ and such that f (y) �= 0,∞,
for any y ∈ ∂Bρ . Let μ be a probability measure on S.

Then:

log | f (0)| ≤ 1

2πμ(S)

∫ 2π

0

∫
S

log | f (ρ cos θ + ρ sin θ I )|dμ(I )dθ +

−
∑
|pk |<ρ

mk log
ρ

|pk | (2)
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for div( f ) =∑
mk{pk}.

We hope that this paper can provide new ideas for studying slice regular func-
tions and their “harmonic properties” on slice regular quaternionic manifolds recently
introduced by Bisi-Gentili in [12] and Angella-Bisi in [5].

2 Prerequisites About Quaternionic Functions

In this section, we will overview the main notions and results needed for our aims.
First of all, let us denote by H the real algebra of quaternions. An element x ∈ H

is usually written as x = x0 + i x1 + j x2 + kx3, where i2 = j2 = k2 = −1 and
i jk = −1. Given a quaternion x we introduce a conjugation in H (the usual one),
as xc = x0 − i x1 − j x2 − kx3; with this conjugation we define the real part of x as
�(x) := (x + xc)/2 and the imaginary part as �(x) := (x − xc)/2. With the notion
of conjugation just defined we can write the euclidean square norm of a quaternion x
as |x |2 = xxc. The subalgebra of real numbers will be identified, of course, with the
set R := {x ∈ H | �(x) = 0}.

Now, if x ∈ H \ R is such that �(x) = 0, then the imaginary part of x is such that
(�(x)/|�(x)|)2 = −1.More precisely, any imaginary quaternion I = i x1+ j x2+kx3,
such that x21 + x22 + x23 = 1 is an imaginary unit. The set of imaginary units is then a
real 2−sphere and it will be conveniently denoted as follows:

S := {x ∈ H | x2 = −1} = {x ∈ H | �(x) = 0, |x | = 1}.

With the previous notation, any x ∈ H can be written as x = α + Iβ, where
α, β ∈ R and I ∈ S. Given any I ∈ S we will denote the real subspace of H generated
by 1 and I as

CI := {x ∈ H | x = α + Iβ, α, β ∈ R}.

Sets of the previous kind will be called slices.
Wedenote the 2−spherewith centerα ∈ R and radius |β| (passing throughα+Iβ ∈

H), as

Sα+Iβ := {x ∈ H | x = α + Jβ, J ∈ S}.

Obviously, if β = 0, then Sα = {α}.

2.1 Slice Functions and Regularity

In this part we will recall the main definitions and features of slice functions. The
theory of slice functions was introduced in [23] as a tool to generalize the theory of
quaternionic regular functions defined on particular domains introduced in [20,21], to
more general domains and to alternative ∗-algebras.
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The complexification of H is defined to be the real tensor product between H itself
and C:

HC := H⊗R C := {p + qı | p, q ∈ H}.

(Here ı = 1 ⊗ i .) Note that H ⊗ C has a natural structure of an associative algebra
induced by the algebra structures of H and C. Explicitly, the product on H ⊗ C is
given as follows: if p1 + q1ı, p2 + q2ı belong to H⊗ C, then,

(p1 + q1ı)(p2 + q2ı) = p1 p2 − q1q2 + (p1q2 + q1 p2)ı.

The usual complex conjugation p + qı = p− qı commutes with the following invo-
lution (the quaternionic conjugation) (p + qı)c = pc + qcı .

We introduce now the class of subsets of H where our functions will be defined.

Definition 2.1 Given any set D ⊆ C, we define its circularization as the subset in H

defined as follows:

�D := {α + Iβ | α, β ∈ R, α + iβ ∈ D, I ∈ S}.

Such subsets of H are called circular sets. If D ⊂ C is an open connected subset such
that D ∩ R �= ∅, then �D (which is again open and connected and intersects the real
line R) is called a slice domain (see [22]).

Note that for any subset D ⊂ C the circularization �D coincides with the circular-
ization �Ds of the symmetrized domain Ds = {z : z ∈ D or z̄ ∈ D}.

From now on, �D ⊂ H will always denote a circular domain arising as circular-
ization of a symmetric domain D ⊂ C.

Definition 2.2 Let D ⊂ C be any symmetric setwith respect to the real axis.A function
F = F1 + F2ı : D→ H⊗ C such that F(z) = F(z) is said to be a stem function.
A function f : �D → H is said to be a (left) slice function if it is induced by a stem
function F = F1 + F2ı defined on D in the following way:

f (α + Iβ) = F1(α + iβ)+ I F2(α + iβ) (3)

for all α+ iβ ∈ D and all I ∈ S. If a stem function F induces the slice function f , we
will write f = I(F). The set of slice functions defined on a certain circular domain
�D will be denoted by S(�D).

Lemma 2.3 Let f : �D → H be a function defined on a circular domain �D. If there
exists a function F = F1 + F2ı : D → H ⊗ C such that Eq. (3) holds, then F is a
stem function, i.e., F1(z) = F1(z̄) and F2(z) = −F2(z̄).
Proof We observe that for all z = α + iβ ∈ D and all I ∈ S we have

f (α + Iβ) = F1(α + iβ)+ I F2(α + iβ)
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and

f (α + (−I )(−β)) = F1(α − iβ)− I F2(α − iβ),

implying the statement. ��
Examples of (left) slice functions are polynomials and functions given by power

series in the variable x ∈ H with all coefficients on the right, i.e., a power series

+∞∑
k=0

xkak, {ak} ⊂ H,

if convergent, defines a slice function.
A function f : �D → H is a slice function if and only if it obeys the following

“representation formula”:

f (x + y J ) = 1− J I

2
f (x + y I )+ 1+ J I

2
f (x − y I ) ∀x, y ∈ R, ∀I , J ∈ S

(see [22,23]).

2.1.1 Regularity

Let now D ⊂ C be an open set and z = α + iβ ∈ D. Given a stem function
F = F1 + F2ı : D→ HC of class C1, then

∂F

∂z
,
∂F

∂ z̄
: D→ HC � C

4,

are defined as usual, i.e.,

∂F

∂z
= 1

2

(
∂F

∂α
− ı

∂F

∂β

)
and

∂F

∂ z̄
= 1

2

(
∂F

∂α
+ ı

∂F

∂β

)
.

They are again stem functions.
Let f be a slice function induced by a stem function F (i.e., f = I(F)) and let

q ∈ H, q ∈ CI , I ∈ S.
Then

(∂I f )(q) = I
(

∂F

∂z

)
(q), (∂̄I f )(q) = I

(
∂F

∂z

)
(q). (4)

These derivatives are also called “Cullen derivatives.”
We are now in the position to define slice regular functions (see Definition 8 in

[23]).
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Definition 2.4 Let �D be a circular open set. A slice function f = I(F) ∈ S(�D) is
(left) regular if its stem function F is holomorphic. The set of regular functions will
be denoted by

SR(�D) := { f ∈ S(�D) | f = I(F), F : D→ H⊗ C holomorphic}.

The set of regular functions is a real vector space and a right H-module. In the case
in which �D is a slice domain, the definition of regularity is equivalent to the one
given in [22].

Remark 2.5 A function f = I(F) ∈ S1(�D) is called (left) anti-regular if its stem
function F is anti-holomorphic.

We recall a key lemma of this theory that will be useful later on, [22].

Lemma 2.6 (Splitting) Let f be a regular function defined on an open set � of H.

Then, for any I ∈ S and for any J ∈ S with J ⊥ I , there exist two holomorphic
functions gI , hI : � ∩ CI → CI such that, ∀z = x + y I , it is

f I (z) = gI (z)+ hI (z)J ,

where f I is the restriction of f to CI .

2.1.2 Product of Slice Functions and Their Zero Set

In general, the pointwise product of slice functions is not a slice function. However
there is some product called “slice product” which does turn slice functions into slice
functions.

The following notion is of great importance in the theory. For the following basic
facts on this “slice product” see [23] and [22].

Definition 2.7 Let f = I(F), g = I(G) both belonging to S(�D) then the slice
product of f and g is the slice function

f ∗ g := I(FG) ∈ S(�D).

Explicitly, if F = F1 + F2ı and G = G1 + G2ı are stem functions, then

FG = F1G1 − F2G2 + (F1G2 + F2G1)ı.

Definition 2.8 A slice function f = I(F) ∈ S(�D) is called slice preserving if, for
all J ∈ S, f (�D ∩ CJ ) ⊂ CJ .

Slice-preserving functions satisfy the following characterization.

Proposition 2.9 Let f = I(F1 + F2ı) be a slice function. Then f is slice preserving
if and only if the H-valued components F1, F2 are real valued.
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Since real numbers commute with all quaternions, this has the following consequence:
Let f , g ∈ S(�D). If f is slice preserving, then

( f ∗ g)(x) = f (x)g(x).

If f and g are both slice preserving, then f g = f ∗ g = g ∗ f = g f .
As stated in [22], if f is a regular function defined on Bρ , the ball of center 0, and

radius ρ, then it is slice preserving if and only if f can be expressed as a power series
of the form

f (x) =
∑
n∈N

xnan,

with an real numbers.
The following definitions are taken from [22,23].

Definition 2.10 Let f = I(F) ∈ S(�D), then also Fc(z) = F(z)c := F1(z)c +
F2(z)cı is a stem function. We set

• f c := I(Fc) ∈ S(�D), the slice conjugate of f ;
• f s := f c ∗ f , the symmetrization of f .

Remark 2.11 We have that (FG)c = GcFc, and so ( f ∗ g)c = gc ∗ f c. In particular,
f s = ( f s)c. Moreover it holds

( f ∗ g)s = ( f )s(g)s and ( f c)s = f s .

Another observation is that, if f is slice preserving, then f c = f and so f s = f 2.

Frequently, the sum f + f c is denoted by Tr( f ).

2.1.3 Zeros of Regular Functions

We are going now to recall some key facts about the zeros of a slice function.
Let f : �D → H be any slice function with zero locus

Z( f ) = {x ∈ �D : f (x) = 0}.

Let x ∈ Z( f ). There are the following three possibilities:

• x ∈ R, i.e., x is a real zero;
• x a punctual (non-real) zero, i.e., x /∈ R and Sx ∩ Z( f ) = {x};
• x a spherical zero, i.e., x /∈ R and Sx ⊂ Z( f ).

The inclusion

Z( f ) ⊂ Z( f ∗ g), (5)

holds for any two slice functions f , g : �D → H, while in generalZ(g) �⊂ Z( f ∗ g).
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What is true in general is the following equality:

⋃
x∈Z( f ∗g)

Sx =
⋃

x∈Z( f )∪Z(g)

Sx

Theorem 2.12 [22] Let f ∈ SR(�D). If Sx ⊂ �D then the zeros of f c on Sx are in
bijective correspondence with those of f . Moreover f s vanishes exactly on the sets
Sx on which f has a zero.

2.1.4 Identity Principle

Theorem 2.13 (Identity principle, [20], [21]) Let �D be a slice domain. Given f =
I(F) : �D → H a regular function, if there exists a J ∈ S such that (�D∩CJ )∩Z( f )
admits an accumulation point, then f ≡ 0 on �D.

Corollary 2.14 Let f be a regular function on a circular slice domain �D.
If there exists a convergent sequence of distinct numbers pn = xn + iyn in D such

that f has at least one zero on every sphere of the form


n = {xn + I yn : I ∈ S},

then f vanishes identically.

Proof Under the assumptions of the corollary, the symmetrization f s = f c ∗ f van-
ishes identically on each 
n . Hence (�D ∩ CJ ) ∩ Z( f s) contains an accumulation
point for any J ∈ S. Consequently f must vanish identically. ��

2.1.5 Multiplicities of Zeros

Let f ∈ SR(�D) such that f s does not vanish identically.Givenn ∈ N andq ∈ Z( f ),
we say that x is a zero of f of total multiplicity n, and we will denote it bym f (x) = n,
if ((q − x)s)n | f s and ((x − q)s)n+1 � f s . If m f (x) = 1, then x is called a simple
zero of f .

Lemma 2.15 Let f be a regular function on a circular domain with f (p) = 0. Then
there exists p̃ ∈ Sp and a regular function g such that f (q) = g(q) ∗ (q − p̃).

Proof There is an element a ∈ Sp such that f c(a) = 0, implying that there exists a
regular function h with f c(q) = (q−a)∗h(q). It follows that f (q) = hc(q)∗(q−ac).

��

2.1.6 Semi-regular Functions and Their Poles

We will recall now some concept of “semi-regular functions” which are the quater-
nionic analog of meromorphic functions. Here our main references are [22] and [27].
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Definition 2.16 Let f = I(F) ∈ SR(�D). We call the slice reciprocal of f the slice
function

f −∗ : �D \ Z( f s)→ H, f −∗ = I((FcF)−1Fc).

From the previous definition it follows that, if x ∈ �D \ Z( f s), then

f −∗(x) = ( f s(x))−1 f c(x).

The regularity of f −∗ on �D \Z( f s) just defined follows thanks to the last equality.
If f is slice preserving, then f c = f and so f −∗ = f −1 where it is defined.

Moreover ( f c)−∗ = ( f −∗)c.

Proposition 2.17 Let f ∈ SR(�D) such that Z( f ) = ∅, then f −∗ ∈ SR(�D) and

f ∗ f −∗ = f −∗ ∗ f = 1.

The concept of a semi-regular function has been introduced in [27, pp. 11.1–11.2].
For our purposes the crucial property of semi-regular functions is that every semi-
regular function f may locally be written in the form F = g−∗ ∗ h with g, h being
slice regular functions.

Lemma 2.18 Let f be a slice function, x, y ∈ R, I , J ∈ S.
Then

f (x + y I )+ f (x − y I ) = f (x + y J )+ f (x − y J )

Proof Due to the representation formula we have

f (x + y J ) = 1− J I

2
f (x + y I )+ 1+ J I

2
f (x − y I )

and

f (x − y J ) = 1+ J I

2
f (x + y I )+ 1− J I

2
f (x − y I )

Adding both above equalities yields the assertion of the lemma. ��

3 Divisors

In complex analysis, the divisor of a holomorphic function is the formal sum of its
zeroes, counted with the respective multiplicities. We propose that for a quaternionic
slice regular function defined on �D the divisor should be defined as a formal sum of
points in the closed upper plane intersected with D, i.e., on {z ∈ D : �(z) ≥ 0}.

123



The Harmonicity of Slice Regular Functions

Definition 3.1 Let �D be a slice domain and let f be a slice regular function on �D .
Let D+ = D ∩ {z ∈ C : �(z) ≥ 0}.

Then the “(slice) divisor” div( f ) of f is defined as the formalZ-linear combination∑
z∈D+ mz( f ){z} where for z = x + yi the multiplicity mz( f ) is defined as follows:

mz( f ) = m if in a neighborhood of Sx+y I = {x + y J : J ∈ S} the function f can be
written as

f (q) = (q − a1) ∗ . . . ∗ (q − am) ∗ g(q)

with ai ∈ Sx+y I and g being a slice regular function without zeros on Sx+y I .

Standard facts on zeros of slice regular functions (see 2.1.3) guarantee us the fol-
lowing properties:

• div( f ∗ g) = div( f )+ div(g) if both f and g are slice regular on �D .
• If pk = ak + Ikbk (with ak, bk ∈ R, bk ≥ 0, Ik ∈ S) are the isolated zeros with
multiplicity nk and Sck+Jdk are the spherical zeros with multiplicity mk , then

div( f ) =
∑
k

nk{ak + ibk} + 2mk{ck + idk}

• {z ∈ D+ : div( f ) > 0} is discrete in D+ (for f �≡ 0).

For example, let I , J ∈ S with I �= J and consider f (q) = (q − I ) ∗ (q − J ) =
q2− q(I + J )+ I J . Then f has a zero only at I while g(q) = (q − J ) ∗ (q − I ) has
a zero only at J , but the divisor is the same:

div( f ) = div(q − I )+ div(q − J ) = div(g) = 2{i}.

This notion of a divisor is easily extended from (slice) regular to semi-regular
functions, since semi-regular functions may locally be written in the form f = g−∗h
with g, h slice regular. If z = x + yi is a point in a symmetric domain D, and f
is semi-regular on �D we choose a sufficiently small symmetric domain D′ with
p ∈ D′ ⊂ D such that f may be written in the form g−∗ ∗ h on �D′ . Then we define
div( f ) = div(h)− div(g) on D′.

Warning In complex analysis, ameromorphic function f is holomorphic iff div( f ) ≥
0.The analogquaternionic statement isnot true. For example, let I , J ∈ S and consider

(q − I ) ∗ (q − J )
1

q2 + 1
= (q2 − q(I + J )+ I J )

1

q2 + 1

This is a semi-regular function whose divisor is zero, although f is not slice regular
unless I = −J .
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4 AMean Value Theorem

Proposition 4.1 (General mean value formula) Let μ be a probability measure on S

which is invariant under J 	→ −J .
Let f be a slice regular function on a slice domain �D induced by a stem function

F : D→ H⊗C. Let a, b, r ∈ R, b ≥ 0, r > 0, and I ∈ S such that �D contains the
closed ball with radius r and center a + bI .

Then we have:

F1(a + bi) = 1

4π

∫
S

∫ 2π

0
f (a + bJ + reJθ )+ f (a − bJ + re−Jθ )dθdμ(J )

= 1

2π

∫
S

∫ 2π

0
f (a + bJ + reJθ )dθdμ(J )

as well as

F2(a + bi) = − 1

2π

∫
S

J
∫ 2π

0
f (a + bJ + reJθ ))dθdμ(J )

and therefore

f (a + bI ) = F1(a + bi)+ I F2(a + bi)

= 1

2π

∫
S

∫ 2π

0
(1− I J ) f (a + bJ + reJθ )dθdμ(J )

Proof This follows from combining the complex mean value theorem with the formu-
lae relating slice and stem functions. ��

Corollary 4.2 Let f be a regular function, r > 0, a ∈ R

Then

f (a) = 1

2π

∫
S

∫ 2π

0
f (a + r cos θ + r sin θ I )dθdμ(I )

for any probability measure μ on S which is invariant under the involution J 	→ −J .

Proof This a special case of Proposition 4.1 with b = 0. ��

Remark 4.3 Note that in Corollary 4.2 we integrate over the sphere with radius r and
center a, but not with respect to the euclidean volume element dV on the 3-sphere.

This is crucial.
For example,

∫
||q||=1 q

2dV < 0, hence
∫
||q||=1 f (q)dV �= f (0) for f (q) = q2.
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4.1 Characterization of Harmonicity

A continuous function on C is harmonic if and only if it satisfies the mean value
property.

We derive a similar criterion in the quaternionic setup.

Theorem 4.4 Let μ be a probability measure on S which is invariant under the invo-
lution J 	→ −J . Let f : H→ H be a continuous function and for p = a + bI ∈ H

and r > 0 define

Mp,r = 1

2π

∫
S

∫ 2π

0
(1− I J ) f (a + bJ + reJθ )dθdμ(J ).

Then f is harmonic (in the sense of being the sum of a regular and an anti-regular
function) if and only if

Mp,r = f (p) ∀p ∈ H, r > 0. (6)

Proof We assume that (6) holds.
The function f is a slice function if and only if it satisfies the representation formula.

Hence f is a slice function iff

f (a + bH) = 1− H I

2
Mp,r + 1+ H I

2
Mpc,r

for all a, b ∈ R, H , I ∈ S, and p = a + bI .
This can be verified by explicit calculation:

1− H I

2
Mp,r + 1+ H I

2
Mpc,r

= 1

4π

∫
S

∫ 2π

0
((1− H I )(1− I J )+ (1+ H I )(1+ I J )) f (a + bJ + reJθ )dθdμ(J )

= 1

2π

∫
S

∫ 2π

0
(1− H J ) f (a + bJ + reJθ )dθdμ(J )

= Ma+bH ,r = f (a + bH).

Thus f is a slice function induced by some stem function F . This stem function
can be easily determined as F = F1 + F2 ⊗ i with

F1(a + bi) = 1

2π

∫
S

∫ 2π

0
f (a + bJ + reJθ )dθdμ(J )

F2(a + bi) = − 1

2π

∫
S

∫ 2π

0
J f (a + bJ + reJθ )dθdμ(J )
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Since μ is invariant under J 	→ −J , we have

F1(a + bi) = 1

4π

∫
S

∫ 2π

0
f (a + bJ + reJθ )+ f (a − bJ + re−Jθ )dθdμ(J )

= 1

2π

∫ 2π

0
F1(a + bi + reiθ )dθ.

Thus F1 satisfies the ordinary mean value property for functions defined on C and
therefore must be harmonic. Similar arguments apply to F2. As a result we see that F
is the sum of a holomorphic and an anti-holomorphic function from C to H⊗R C and
consequently f : H→ H is the sum of a regular and an anti-regular function.

For the opposite direction, assume that f is the sum of a regular function and an
anti-regular function. Then (6) follows immediately from Proposition 4.1. ��

5 Generalized Representation Formula

For slice regular functions, the formula below already appeared in [15]: see Theorem
3.2. Here we give a new proof and we deduce some consequences.

Proposition 5.1 Let f be a slice function (not necessarily regular) and let I , J , H ∈ S

(not necessarily orthogonal). Assume that J �= I , H �= I . Then the following equality
holds:

(
1+ J I

2

)−1
f (x + y J )−

(
1+ H I

2

)−1
f (x + yH)

=
((

1+ J I

2

)−1 (
1− J I

2

)
−

(
1+ H I

2

)−1 (
1− H I

2

))
f (x + y I )

Proof We have

f (x + y J ) = 1− J I

2
f (x + y I )+ 1+ J I

2
f (x − y I )

and

f (x + yH) = 1− H I

2
f (x + y I )+ 1+ H I

2
f (x − y I ).

A linear combination of both equations yields

(
1+ H I

2

) (
1+ J I

2

)−1
f (x + y J )− f (x + yH)

=
((

1+ H I

2

)(
1+ J I

2

)−1 (
1− J I

2

)
−

(
1− H I

2

))
f (x + y I )
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and

(
1+ J I

2

)−1
f (x + y J )−

(
1+ H I

2

)−1
f (x + yH)

=
((

1+ J I

2

)−1 (
1− J I

2

)
−

(
1+ H I

2

)−1 (
1− H I

2

))
f (x + y I )

��
Lemma 5.2 Fix I ∈ S. For J �= I we define

R(J ) =
(
1+ J I

2

)−1 (
1− J I

2

)

Then R : S \ {I } → H is injective, and R(J ) = 0 iff J = −I .
Furthermore limJ→I |R(J )| = +∞.

Proof Since I , J are purely imaginary, we have J I = I J . Therefore

(
1+ J I

2

)−1
= 2

1+ I J

|1+ J I |2

and therefore

R(J ) = (1+ I J )(1− J I )

|1+ J I |2 = I J − J I

|1+ J I |2

Since I J = J I , I J−J I
2 = I J−I J

2 denotes the vector part of I J . Define r = � (I J ).
Observe that r ∈] − 1,+1]. Using |I J | = 1 we know that the vector part of I J has
norm

√
1− r2. Therefore

|R(J )|2 = 4
1− r2

|1+ J I |4

Now |1 + J I |2 = |1 + � (J I )|2 + |� (J I )|2 and therefore |1 + J I |4 = (2 + 2r)2

implying

|R(J )|2 = 4
1− r2

(2+ 2r)2
= (1+ r)(1− r)

(1+ r)2
= 1− r

(1+ r)
=

(
−1+ 2

1+ r

)
.

We observe that the map

r 	→
(
−1+ 2

1+ r

)

is evidently an injective map from (−1,+1] to R
+.
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As a consequence, we obtain: If |R(J )| = |R(H)| for some J , H ∈ S \ {I }, then
� (I J ) = � (H I ). On the other hand, the vector part of I J equals

1

2

(
I J − I J

) = 1

2
R(J )|1+ J I |2 = R(J )(1+ r)

because |1+ J I |2 = (2+2r).Hence also the vector parts of J I and H I have to agree
as soon as R(J ) = R(H). Finally observe that J = H if J I = H I . ��
Proposition 5.3 Fix I ∈ S. Then there exists a continuous map M = (M1, M2) :
S× S \ DS → H×H (where DS denotes the diagonal, i.e., DS = {(q, q) : q ∈ S})
such that

f (x + y I ) = M1(J , H) f (x + y J )+ M2(J , H) f (x + yH) ∀J , H ∈ S (7)

for every regular function f .

Proof First assume that I , J , H are pairwise distinct.
Then the statement follows from Proposition 5.1 with

M1(J , H) = (R(J )− R(H))−1
(
1+ J I

2

)−1

and

M2(J , H) = − (R(J )− R(H))−1
(
1+ H I

2

)−1
.

(Note that 1+ J I �= 0, resp. 1+H I �= 0, because of our assumptions J �= I , H �= I .
Note further that R(J ) − R(H) �= 0 due to J �= H and the injectivity statement of
Lemma 5.2.)

Next we claim that the functions Mi do extend continuously to the points where
J = I or H = I , i.e., extend continuously to all of S× S \ DS.

Consider the case where J approaches I . Since we excluded the diagonal DS, we
may fix H �= I .

Now

M1(J , H) = (R(J )− R(H))−1
(
1+ J I

2

)−1

=
(
1+ J I

2
(R(J )− R(H))

)−1

=
(
1+ J I

2
R(J )− 1+ J I

2
R(H)

)−1

=
(
1− J I

2
− 1+ J I

2
R(H)

)−1
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implying

lim
J→I

M1(J , H) =
(
2

2
− 0 · R(H)

)−1
= 1

In a similar way one proves

lim
J→I

M2(J , H) = 0

and the analog statement for H → I . ��
Remark 5.4 We observe that our formula (7) coincides with the Representation For-
mula of Proposition 6 in [23], whenM1(J , H) = (I−H)(J−H)−1 andM2(J , H) =
−(I − J )(J − H)−1.

6 Rotations

For every w ∈ H
∗ let Sw : H → H denote the map given by Sw(q) = w−1qw.

This is an orthogonal transformation of R
4 which fixes R pointwise. Observe that

S−1w = Sw−1 .

Lemma 6.1 Let I , J , K be orthogonal imaginary units.
Then SI : H → H is a linear map acting as id on CI = 〈1, I 〉R and as −id on

C
⊥
I = 〈J , K 〉R.

Proof Follows easily from explicit calculations. ��
The following lemma is a well-known result, see for example [28] Prop. 2.22, page

28), but for the reader convenience we prefer to give here our own proof.

Lemma 6.2 The group of all orientation preserving orthogonal transformations of
〈I , J , K 〉R is generated by the transformations Sw with w ∈ S.

Proof The group is SO(3, R). For each k ∈ N, let 
k denote the set of all Sw1 ◦
. . . ◦ Sw2k . Then 
 = ∪k
k is the group generated by all the Sw. (
 is evidently a
semigroup and in fact a group, because (Sw)−1 = Sw−1 .) 
 is connected, because
each 
k is connected and 
k ⊆ 
k+1. On the other hand, it is not commutative, since
e.g., SI and S(I+J )/

√
2 do not commute. However, by standard Lie theory, SO(3, R)

has no non-commutative connected subgroups except SO(3, R) itself. ��
Lemma 6.3 Let q ∈ H. Let μ denote the (unique) probability measure on S which is
invariant under all rotations.

Then

� (q) =
∫
S

Sw(q)dμ(w)
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Proof The map H : q 	→ ∫
S
Sw(q)dμ(w) is R-linear.

Let v ∈ S. Then Sv is an orthogonal transformation. Due to the invariance of the
measure μ, we have

Sv(H(q)) =
∫
S

Sv (Sw(q)) dμ(w) =
∫
S

Sw(q)S∗vdμ(w) =
∫
S

Sw(q)dμ(w) = H(q).

(Here S∗v denotes the pull-back by the map Sv .)
It follows that

H(q) ∈ {x ∈ H : Sw(x) = x, ∀w ∈ S} = R , ∀q ∈ H.

We observe that
∫
S
Sw(q)dμ(w) = q, ∀q ∈ R, because Sw(q) = q, ∀q ∈ R, w ∈ S.

Now let q be in the orthogonal complement of R, i.e., in the real vector subspace
V of H spanned by I , J , K . Since the integral is linear, and V is stabilized by every
Sw (w ∈ S) it follows that

H(q) =
∫
S

Sw(q)dμ(w) ∈ V , ∀q ∈ V .

Combined with the fact H(q) ∈ R, ∀q ∈ H, we obtain

H(q) =
∫
S

Sw(q)dμ(w) ∈ V ∩ R = {0}, ∀q ∈ V .

Thus

� (q) =
∫
S

Sw(q)dμ(w)

for every q ∈ R and every q ∈ V . By R-linearity of the map H , it follows that this
equality holds for all q ∈ H. ��
Definition 6.4 A function f : H→ H is called “rotationally invariant” if it is invari-
ant under all orthogonal transformations of the space of imaginary elements.

Remark 6.5 This class of functions has been studied in [26] where they are called
“circular” functions.

Lemma 6.6 For a function f : H→ H the following properties are equivalent:

(1) f is rotationally invariant.
(2) f (q) = f (Swq) for all q ∈ H, w ∈ S.
(3) f (x + y I ) = f (x + y J ) for all x, y ∈ R, I , J ∈ S.
(4) f is induced by a stem function F with F(C) ⊂ H ⊗ R, i.e., F2 = 0 for F =

F1 + F2ı .
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Proof First we show (3)⇒ (4): Given such a function f , we define F : C→ H⊗C

as F(x + iy) = f (x + y I ) ⊗ 1 for any I ∈ S. Since (3) implies f (x + y I ) =
f (x + y(−I )), we have F(z) = F(z̄). Combined with F(C) ⊂ H⊗R it follows that
F(z) = F(z) = F(z̄). Consequently F fulfills F(z̄) = F(z) and is a stem function.

The implications (4) ⇒ (3) ⇐⇒ (1) ⇒ (2) are obvious. The implication
(2)⇒ (1) follows from Lemma 6.2. ��
Definition 6.7 Let � be a circular1 subset of H and let f : �→ H be a function. Let
w ∈ S.

Then we define a function Rw f : �→ H as

(Rw f )(q) = S−1w ( f (Sw(q))).

Lemma 6.8 Let �D be a slice domain, and let f : �D → H be a slice function
induced by a stem function F : D→ H⊗ C.

Then Rw f is induced by Sw−1(F) with Sw−1 acting via the first factor of the tensor
product H⊗ C.

Proof We have

f (x + y I ) = F1(x + yi)+ I F2(x + yi) (x, y ∈ R, I ∈ S, x + yi ∈ D)

and

Rw f (q) = w
(
f (w−1qw)

)
w−1.

Now w−1qw = x + yw−1 Iw for q = x + y I . Furthermore w−1 Iw ∈ S and
consequently

f (x + yw−1 Iw) = F1(x + yi)+ w−1 IwF2(x + yi).

Therefore

(Rw f )(x + y I ) = w
(
f
(
x + yw−1 Iw

))
w−1

= w
(
F1(x + yi)+ w−1 IwF2(x + yi)

)
w−1

= wF1(x + iy)w−1 + IwF2(x + yi)w−1

Therefore (using Lemma 2.3) Rw f is induced by the stem function

Sw−1F =
(
Sw−1F1

)⊗ 1+ (
Sw−1F2

)⊗ i

��
1 in the sense of Definition 2.1

123



C. Bisi, J. Winkelmann

Corollary 6.9 Let f denote a slice regular function on a slice domain �D and let
w ∈ S.

Then Rw f : �D → H is a slice regular function, too.

Proof As a slice regular function, f is induced by a holomorphic stem function F :
D→ H⊗ C. Holomorphicity of F implies that

z 	→ (SwF) (z) = w−1(F(z))w

is likewise holomorphic. Hence Rw f is slice regular. ��
Corollary 6.10 Under the assumptions of the Lemma 6.8,

g =
∫
S

Rw( f )dμ(w)

is induced by the stem function R(F) where R denotes the real part in the first factor
of the tensor product, i.e., R(a ⊗ b) = (� a)⊗ b, for a ∈ H, b ∈ C.

Proof By the Lemma 6.8, g is induced by
∫
w
Sw−1Fdμ(w). Aided by Lemma 2.3,

this implies the assertion, because

∫
S

Sw−1(q)dμ(w) = � (q)

for every q ∈ H (Lemma 6.3). ��
Lemma 6.11 Let f be a slice regular function given by a convergent power series
f =∑+∞

k=0 qkak.
Then the following holds:

∫
S

Rw f dμ(w) =
∑
k

qk� (ak) = 1

2
( f + f c) = 1

2
Tr( f ).

We observe that Rvw = Rv ◦ Rw and Svw = Sw ◦ Sv for v,w ∈ H
∗.

Definition 6.12 For v ∈ H let ∂v denote the directional derivative in the direction of
v, i.e.,

(∂v)( f )(q) = lim
t→0,t∈R∗

f (q + vt)− f (q)

t
.

Next we discuss differential operators ∂∗, ∂̄∗ for differentiable functions on H \R.
These operators were first introduced by Ghiloni and Perotti in [25] as ϑ resp. ϑ̄ . For
slice functions, they coincide with the operators ∂/∂x and ∂/∂xc introduced in [23].
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Definition 6.13 Let � be a domain in H and let f : � → H be a C1-function. Let
I ∈ S and q ∈ (CI \ R) ∩�.

We define

(∂∗ f ) (q) =
(
1

2
(∂1 − I∂I ) f

)
(q)

(
∂̄∗ f

)
(q) =

(
1

2
(∂1 + I∂I ) f

)
(q).

(with ∂1, ∂I being directional derivatives, cf. 6.12).

Remark 6.14 Let� be a domain. Let I , J be orthogonal imaginary units, f : �→ H,
g, h : �→ CI be C1-functions with f = g + h J .

Then ∂̄∗ f vanishes on�∩CI if and only if the restrictions of g, h are holomorphic
functions from � ∩ CI to CI .

Next we define a Laplacian:

Definition 6.15 Let � a domain in H, f be a C2-function on � and q ∈ � \ R.
We define

(�∗ f )(q) = (
4∂∗∂̄∗ f

)
(q).

Remark 6.16 (1) �∗ = 4∂∗∂̄∗ = 4∂̄∗∂∗.
(2) For orthogonal imaginary units I , J ∈ S the restriction of�∗ f to�∩CI vanishes

if and only if f |CI = g + h J with g, h : CI → CI harmonic in the sense of
complex analysis.

Lemma 6.17 Let I ∈ S. Then �∗( f ) vanishes along CI for (slice) regular functions
f (and anti-regular functions f ).

Proof This is clear, because the restriction of a regular function f to a complex line
CI can be written as f (z) = f1(z)+ f2(z)J where fi : CI → CI , for i = 1, 2, are
entire functions with respect to the complex structure on CI and J orthogonal to I ,
by the splitting Lemma 2.6. ��

Let us now discuss the case where f is a slice function, i.e., induced by a stem
function F .

Proposition 6.18 Let�D be circular domain, arising as circularization of a symmetric
domain D in C.

Let f : �D → H be a slice function which is induced by a stem function F : D→
H⊗ C. Then ∂∗ f , ∂̄∗ f , and �∗ f are slice functions on �D \ R induced by the stem
functions ∂F

∂z ,
∂F
∂ z̄ resp. �F.

Proof This may be deduced from the definitions of the respective operators using the
representation formula for slice functions. See [25], Theorem 2.2. ��

123



C. Bisi, J. Winkelmann

In particular, for slice functions these operators ∂∗, ∂̄∗, and �∗ are well-defined
everywhere, including at the real points, whereas for arbitrary C1-functions they are
defined only outside R.

Corollary 6.19 A slice function f is annihilated by �∗ if and only if its stem function
F is harmonic.

Corollary 6.20 Let f be a C2 slice function on a circular domain �D. If �∗ f ≡ 0,
then f is real-analytic.

Corollary 6.21 Let f : H → H be a C2 slice function. If f is bounded and �∗ f
vanishes identically, then f is constant.

Proof �∗ f ≡ 0 implies the harmonicity of the stem function F . Now boundedness
of f implies boundedness of F which leads to a contradiction unless F (and therefore
also f ) is constant. ��
Theorem 6.22 Let �D be a slice domain. Let f : �D → H be a C2 slice function.
Assume that D is simply connected.

(1) �∗ f is vanishing identically if and only if f can be written as a sum of a regular
function g and an anti-regular function h.

(2) Assume �∗ f ≡ 0. Let DR = D ∩ R.
Then f can be written as a sum of a slice-preserving regular function g and a
slice-preserving anti-regular function h if and only if

f (x) ∈ R, ∀x ∈ DR and (∂∗ f )(x) ∈ R, ∀x ∈ DR,

which in turn holds if and only if

f (x) ∈ R, ∀x ∈ DR and (∂̄∗ f )(x) ∈ R, ∀x ∈ DR,

or if and only if

∃ p ∈ D ∩ R : f (p) ∈ R, (∂̄∗ f )(x) ∈ R, ∀x ∈ DR

and (∂∗ f )(x) ∈ R, ∀x ∈ DR.

Proof Let F be the stem function inducing f . Then �∗ f is a slice function induced
by the stem function�F . Now F is a map from D to the complex vector spaceH⊗C.
Hence �F vanishes iff F is harmonic iff F = G + H for a holomorphic function
G : D→ H⊗ C and an anti-holomorphic function H : D→ H⊗ C.

We have to verify that G, H may be taken to be stem functions. To state it more
precisely, we have to show: If F : D → H⊗ C is a map such that F(z̄) = F(z) and
such that F = G + H for a holomorphic map G and an anti-holomorphic map H ,
then G and H may be chosen in such a way that G(z̄) = G(z) and H(z̄) = H(z).
Now G(z)− G(z̄) is holomorphic, H(z)− H(z̄) is anti-holomorphic, and

(
G(z)− G(z̄)

)
+

(
H(z)− H(z̄)

)
= 0
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because of F = G + H and F(z̄) = F(z). It follows that there is a constant c such
that

(
G(z)− G(z̄)

)
= c = −

(
H(z)− H(z̄)

)
.

We observe that c is totally imaginary and that

G(z̄)− c/2 = G(z̄)+ c/2 = G(z)− c/2

Thus, by replacing G with G − c/2 we may turn G into a stem function. Correspond-
ingly we replace H by H + c/2.

Finally we let g, resp. h, be the slice functions induced by the stem functions G,
resp. H , and observe that g is regular, because G is holomorphic and h is anti-regular,
because H is anti-holomorphic.

Now we demonstrate (2).
First we observe that

∂∗ f + ∂̄∗ f = ∂1 f

Hence, if two of these values are zero, so is the third.
Next we claim:
f (�D ∩ R) ⊂ R if and only if (∂1 f ) is real on �D ∩ R and ∃ p ∈ �D ∩ R such

that f (p) ∈ R.
The direction “ "⇒ ” is obvious. To verify the converse, let I denote a connected

component ot �D ∩ R. Then f (I ) ⊂ R. This implies that the stem function F maps
I into R ⊗ C ⊂ H ⊗ C. Because F : D → H ⊗ C is a holomorphic map, we may
now conclude with the identity principle that F(D) ⊂ R ⊗ C. Using F(z̄) = F(z),
this implies that F(R ∩ D) ⊂ R which in turn (via representation formula) implies
f (R) ⊂ R.
This completes the proof, because a slice function f on a slice domain �D is slice

preserving if and only if the stem function F satisfies F(D∩R) ⊂ R⊗R R ⊂ H⊗C.
��

Remark 6.23 We observe that in [29] a function in the kernel of �∗ is called slice-
harmonic.

Definition 6.24

(�′ f )(q) =
(

�∗
∫
S

Rw f dμ(w)

)
(q)

We observe that (�′ f )(q) = 1
2�∗(Tr( f ))(q) = 1

2�∗( f + f c)(q) for all I ∈ S.

Analogously we can introduce another second-order operator in the following way:

(�′′ f )(q) = (�∗N ( f ))(q) = (�∗( f · f c))(q)

for all I ∈ S.
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On one side �′ and �∗ are linear operators, on the other hand, �′′ is not a linear
operator.

By the way, for �′′ a product formula holds:

Proposition 6.25 Let f , g be slice functions. Then

�′′( f ∗ g) = ( f s) ∗�′′g + (�′′ f ) ∗ (gs)+ (
∂∗( f s) ∗ ∂̄∗(gs)

)+ (
∂̄∗( f s) ∗ ∂∗(gs)

)

Proof First we note that

�′′( f ∗ g) = �∗(N ( f ∗ g)) = �∗(( f ∗ g)s) = �∗( f ∗ g ∗ gc ∗ f c)

Next we recall that (with respect to the slice product ∗) a slice-preserving function
commutes with every other slice function. Since g ∗ gc is always slice preserving, we
obtain

�∗( f ∗ g ∗ gc ∗ f c) = �∗( f ∗ f c ∗ g ∗ gc)
= �∗( f s ∗ gs) = ∂∗∂̄∗( f s · gs)
= ∂∗

(
(∂̄∗ f s) · gs + f s · (∂̄∗gs)

)
= (∂∗∂̄∗ f s) · gs + (∂̄∗ f s) · (∂∗gs)+ (∂∗ f s) · (∂̄∗gs)+ f s · (∂∗∂̄∗gs)
= f s ∗ (�′′g)+ (�′′ f ) ∗ gs + (∂̄∗ f s) · (∂∗gs)+ (∂∗ f s) · (∂̄∗gs)

��
Remark 6.26 In [17] the following global first-order differential operator was intro-
duced:

G(x) = (x21 + x22 + x23 )
∂

∂x0
+ (x1i + x2 j + x3k) ·

3∑
j=1

x j
∂

∂x j

where x = x0 + x1i + x2 j + x3k. Direct calculations verify readily that G = y2∂̄∗
where

y = |�(x)| =
√√√√ 3∑

k=1
|xi |2.

Whereas the operator �∗ is defined everywhere only if applied to slice functions, G
is everywhere defined for any C1-function.

Still, we believe that the additional factor y2 (which guarantees the applicability of
the operator even to non-slice functions) is somewhat unnatural.
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In particular, if we try to construct a second-order differential operator, we see that

ḠG = y4�∗ − 2I y3∂̄∗.

Thus ḠG even applied to slice functions on a complex slice CI is not merely the mul-
tiple of the ordinary complex Laplacian. Moreover, ḠG annihilates regular functions,
but not anti-regular functions.

We observe that in [25] a global operator related to G was studied.

Remark 6.27 Itmayhappen that a function f : H→ H satisfies both ∂̄∗Tr( f ) = 0 and
∂̄∗N ( f ) = 0, but nevertheless is not regular. For example, let I , J ∈ S be orthogonal
(i.e., I J = −J I ), and consider the function

f : q 	→ I cos(�q)+ J sin(�q).

This is a slice function (inducedby the stem function z 	→ I⊗cos(�z)+J⊗sin(�(z)).)
It is not regular because it is not open, although both Tr( f ) = f + f c = 0 and
N ( f ) = f f c = 1 are regular (in fact constant) functions.

Definition 6.28 A function f : H→ H is rotationally equivariant if RI ( f ) = f for
all I ∈ S. 2

Lemma 6.29 For a function f : H→ H, the following conditions are equivalent:

(1) f is rotationally equivariant.
(2) RI ( f ) = f for all I ∈ S.
(3) SI ( f (q)) = f (SI (q)) for all I ∈ S and q ∈ H.
(4) If g : q → g · q denotes the R-linear action of SO(3, R) on H which is trivial

on R and which is the natural orthogonal transformations on 〈I , J , K 〉 = R
3,

then f : H → H is equivariant for this action, i.e., g · f (q) = f (g · q) for all
g ∈ SO(3, R), q ∈ H.

(5) f is induced by a stem function F : C→ H⊗ C with F(C) ⊂ R⊗ C, i.e., both
F1 and F2 are real valued for F = F1 + F2ı .

(6) f is induced by a stem function F and f is slice preserving, i.e., f (CI ) ⊂ CI ,
∀I ∈ S.

Proof The equivalence (5) ⇐⇒ (6) is well known. (1) ⇐⇒ (2) ⇐⇒ (3) follow
directly from the respective definitions. Lemma 6.2 implies (3) ⇐⇒ (4). (5)⇒ (2)
is easy. Finally, assume (3). Fix I ∈ S. Then (3) implies SI ( f (q)) = f (SI (q)).
For q ∈ CI we have SI (q) = q and therefore SI ( f (q)) = f (q), which implies
f (q) ∈ CI . Thus f (CI ) ⊂ CI . We define functions g, h : C→ R such that

f (x + y I ) = g(x + yi)+ h(x + yi)I (x, y ∈ R)

Now, for every J ∈ S, there is an orthogonal transformation φ fixingRwith φ(I ) = J .
Using (4), we have

2 see definition 6.7 for the notion RI ( f ).
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f (x + y J ) = f (φ(x + y I )) = φ( f (x + y I ))

= φ (g(x + yi)+ h(x + yi)I ) = g(x + yi)+ h(x + yi)J

Thus f : H → H is induced by the stem function F given as F(x + yi) =
g(x, y) ⊗ 1 + h(x, y) ⊗ i . (The fact F(z) = F(z̄) follows from Lemma 2.3.) This
completes the proof of (3)⇒ (5). ��
Lemma 6.30 Let h : H→ R. Then the following conditions are equivalent:

(1) h is induced by a stem function.
(2) h obeys the representation formula.
(3) h is rotationally equivariant.
(4) h is rotationally invariant.

Moreover, in this case the stem function H can be defined as

H(x + yi) = h(x + y I )⊗ 1

for all x, y ∈ R, I ∈ S.

Proof Assume that h is induced by a stem function H . The formula

h(x + y I ) = F1(x + yi)+ I F2(x + yi) ∀x, y ∈ R, I ∈ S

combinedwith h(q) ∈ R, ∀q ∈ H, implies that F2 vanishes and that F1(C) ⊂ R. Then
h is rotationally equivariant (by Lemma 6.29 (5) ⇒ (1)) and rotationally invariant
(by Lemma 6.6 (5)⇒ (1)).

Conversely, by Lemma 6.29 (1) ⇒ (5), (resp. by Lemma 6.6 (1) ⇒ (5)), imply
that h admits a stem function if h is rotationally equivariant, resp. rotationally invariant.

��
Proposition 6.31 Let h : H→ R be a slice function with �′h = 0.

Then there exists a slice-preserving regular function f such that h = � ( f ).

Proof Since h is real valued and a slice function, it is also rotationally equivariant
and rotationally invariant (due to Lemma 6.30). Being rotationally equivariant implies
�′h = �∗h. Being rotationally invariant implies

h(x + y I ) = h(x − y I ) ∀x, y ∈ R, ∀I ∈ S

which in turn implies that

∂I h

vanishes on the real line. It follows that (∂∗ f )(x) = 1
2 (∂1 f )(x) ∈ R for all x ∈ R.

Hence all the assumptions of Theorem 6.22 (2) are fulfilled, and we may deduce that
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h = g + k where g is regular, k is anti-regular, and both g and k are slice preserving.
The condition h(q) ∈ R is equivalent to h(q)− h(q) = 0. Therefore

g(q)− k(q) = g(q)− k(q) ∀q ∈ H.

The left-hand side of this equation is a regular function, while the right-hand side is
anti-regular. Thus both must be constant. That the right-hand side is constant, implies:

k(q) = g(q)− g(0)+ k(0) ∀q ∈ H.

Hence

h(q) = g(q)+ k(q) = g(q)+ g(q)− g(0)+ k(0) = 2� (g(q))− g(0)+ k(0) ∀q ∈ H.

Finally, h(H) ⊂ R implies −g(0)+ k(0) ∈ R. This proves the assertion for

f (q) = 2g(q)− g(0)+ k(0).

��
Proposition 6.32 Let u be real valued and rotationally invariant (in the sense of Def-
inition 6.4) C2-function. Let f be regular.

Then

�′(u ◦ f ) =
∫
S

((�∗u) ◦ (Rw f )) |(∂∗ f )(Swq)|2dμ(w)

Proof Note that a real-valued rotationally invariant function u : H→ R is automati-
cally a slice function. (Lemma 6.30) Hence �′u is well defined.

The claim of the proposition is a consequence of the complex computation
�(u ◦ f ) = ((�u) ◦ f ) |(∂∗ f )(z)|2 (applied on CI ) and of the definition of �′. For
more details, see the proof of the next proposition. ��
Proposition 6.33 Let u : H→ R be a rotationally invariant C2-function with �′u =
0. Let f : H → H be a slice-preserving regular function, then u ◦ f is such that
�′(u ◦ f ) = 0.

Proof First observe that u is a slice function, because it is real valued and rotationally
invariant (Lemma 6.30). Next we prove that, under the hypotheses of the proposition,

Rw(u ◦ f ) = u ◦ (Rw( f )) ∀ w ∈ S. (8)

Indeed ∀ w ∈ S:

Rw(u ◦ f ) = w(u( f (w−1qw)))w−1 = w(u(Rw( f ))w−1

= S−1w (u ◦ Rw( f )) = u(Rw( f )).
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Then, by definition, �′(u ◦ f ) = �∗
∫

w∈S
Rw(u ◦ f )dμ. By (8),

�∗
∫

S

Rw(u ◦ f )dμ(w) = �∗
∫

S

u ◦ Rw( f )dμ(w) =
∫

S

(�∗(u ◦ Rw f )dμ(w)

=
∫

S

(�∗u) ◦ (Rw( f ))|(Rw( f ))′|2dμ(w)

=
∫

S

(�∗u) ◦ (Rw( f ))|( f )′(Sw(q))|2dμ(w) = 0

where g′ := ∂∗g. ��

Proposition 6.34 Let u : H→ R be a C2-function such that �′u ≡ 0 on H \R. Then
u admits no real isolated zero.

Remark 6.35 At a real point �′u is defined only if u is a slice function. But in the
proposition �′u is only considered for points outside R. Hence one does not need to
require u to be a slice function.

Proof Assume the contrary, i.e., assume that u has an isolated zero in a point a ∈ R.
Then there exists an open neighborhood W of a such that u has no zero on W \ {a}.
For dimension reasons, W \ {a} is connected. Thus u is either everywhere positive or
everywhere negative on W \ {a}. Without loss of generality, assume that u > 0 on
W \ {a}.

Define

ũ(q) =
∫
S

(Rwu)(q)dμ(w).

For q sufficiently close to a (but q �= a) we have Sq ⊂ W \ {a}. For such q we have

(Rwu)(q) > 0 ∀w ∈ S

and therefore ũ(q) > 0. On the other hand, ũ(a) = u(a) = 0, because a ∈ R. Thus ũ
has a strict local minimum in a.

By construction �′u = �∗ũ on H\R. Fix I ∈ S. By definition, on CI the operator
�∗ agrees with the ordinary complex Laplacian, if we identify CI � C as usual. Thus
ũ restricts to a C2-function on CI which is harmonic on CI \R. By continuity of �ũ,
the function ũ is harmonic on the whole of CI . Thus we obtain a harmonic function
on CI � C with a strict local minimum in a. This is impossible. ��
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7 A Kind of Poisson Formula

7.1 H-ValuedMeasures

Theorem 7.1 Let p ∈ H and let S ⊂ H be a 3-dimensional sphere such that p is in
its interior. Let � denote a circular domain containing both S and its interior.

Then there exists an H-valued measure μ on S which is absolutely continuous with
respect to the euclidean measure such that

f (p) =
∫
S
f (q)dμ(q)

for every regular function f defined on �.

Proof We first discuss the special case where p ∈ R. In this case for each I ∈ S the
restriction of f toCI is holomorphic, andCI and S intersect in a 1-dimensional sphere
which contains p in its interior. We thus may construct dμ first taking the measure on
S ∩ CI given by the classical Poisson formula, and then averaging over I ∈ S with
respect to any probability measure of S.

Now assume p /∈ R. Fix I ∈ S such that p ∈ CI . Let c = s + v J (s, v ∈ R, v >

0, J ∈ S) denote the center of the sphere S and ρ its radius. Define Ḡ = {t + yi ∈
C : t, y ∈ R, y ≥ 0, ∃ H ∈ S : t + yH ∈ S}.

Then

Ḡ = {(t + yi) : ∃ H ∈ S : (t − s)2 + |yH − v J |2 = ρ2}.

We observe that S is connected and that H 	→ |yH −v J |2 (for fixed y, v > 0, J ∈ S)
defines a continuous map which evidently takes its maximum in H = −J (with
(y + v)2 as its value) and its minimum in H = J (with value |y − v|2).

From this we may deduce :

Ḡ = {(t + yi) : |t − s| ≤ ρ, |y − v| ≤
√

ρ2 − |t − s|2 ≤ |y + v|}.

Let us now fix t ∈ R and investigate for which y > 0 we have t + iy ∈ Ḡ. We
define K = √

ρ2 − |t − s|2 and obtain the following condition:

|y − v| ≤
√

ρ2 − |t − s|2 = K ≤ |y + v|
⇐⇒ |y − v| ≤ K ≤ |y + v|
⇐⇒ v − K ≤ y ≤ v + K and − v + K ≤ y

⇐⇒ |v − K | ≤ y ≤ v + K .

It follows that the interior G of Ḡ is simply connected and therefore biholomorphic
to the unit disc.

Let p̃ = x + yi ∈ C such that x, y ∈ R, y ≥ 0 and p = x + yH for some H ∈ S.
Then p̃ is in the interior of G.

123



C. Bisi, J. Winkelmann

We fix such a biholomorphic map ψ : G → � and recall that it extends continu-
ously to the respective boundaries. We may and do require ψ( p̃) = 0.

By the classical mean value theorem

F(0) =
∫ 1

0

∫ 2π

0
F(reiθ )

dθ

2π
dσ

for every holomorphic function F : C → C, every r > 0 and every probability
measure σ on [0, 1].

Pulling-back with ψ yields a probability measure dξ on G such that

F(p) =
∫
G
F(w)dξ(w) (9)

for every holomorphic function F . The measure dξ constructed in this way is abso-
lutely continuous, if the measure σ on [0, 1] used in the construction is taken to be
absolutely continuous.

For each point t + yi ∈ G we have a 2-sphere t + yS in H. Let V denote the
“imaginary subspace” of H, i.e., the R−vector subspace of H generated by yS. The
intersection of the 3-sphere S with real affine subspace t+V is a sphere (of dimension
≤ 2). Thus S ∩ (t + yS) is an intersection of two spheres in a three-dimensional real
affine space and therefore again a sphere.

We let η denote the involution defined by sending each element of 
t,y = S ∩ (t +
yS) to its antipodal element.

Since 
t,y ⊂ (t+ yS), for every q ∈ 
t,y there are J , H ∈ S such that q = t+ y J
and η(q) = t + yH .

By the generalized representation formula (Proposition 5.3) we have

f (t + y I ) = M1(J , H) f (q)+ M2(J , H) f (η(q)) ∀q ∈ 
t,y

for every regular function f .
Withm1(q) := M1(J , H) andm2(q) = M2(J , H)we obtain continuous functions

mi : 
t,y → H, for i = 1, 2, such that

f (t + y I ) = m1(q) f (q)+ m2(q) f (η(q)) ∀q ∈ 
t,y

for every regular function f .
In particular

f (t + y I ) =
∫
q∈
t,y

m1(q) f (q)+ m2(q) f (η(q))dα(q)

for every probability measure α on 
t,y . Hence we may choose an absolutely contin-
uous probability measure βt,y on 
t,y such that
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f (t + y I ) =
∫


t,y

f (q)dβ(q) ∀ f (10)

We recall that regular functions restrict to holomorphic ones on CI .
We may therefore combine the above constructions (see equations (9),(10)) to

obtain

f (p) =
∫
t+yi∈G

∫
q∈
t,y

f (q)dβ(q)dξ(t + yi)

(with 
t,y = S ∩ (t + yS)). ��

7.2 Poisson’s Formula

Proposition 7.2 (Poisson’s formula) Let μ denote a probability measure on S. Let
u : BR → R be a rotationally invariant C2- function. Assume that �′u ≡ 0. 3 Let
a ∈ R. Then the following formula holds:

u(a) = 1

2π

∫

S

2π∫

0

R2 − a2

|R · eIθ − a|2 u(R · eIθ )dθdμ(I )

Proof Due to Lemma 6.30 the function u is a slice function. Thus we may conclude
from Proposition 6.31 that u is the real part of a slice-preserving regular function f .
Therefore for each I ∈ S, the restriction of u to CI is the real part of a holomorphic
function from CI to CI and the above formula follows from the complex Poisson
formula. ��
Remark 7.3 As in Proposition 4.1, it is possible to generalize the above Poisson For-
mula at any a ∈ H with an integration on the circularization of ∂�(a, r) ∪ ∂�(a, r)
instead of an integration on ∂BR .

8 A Jensen’s Formula

The goal of this section is to prove a quaternionic version of Jensen’s formula. For
this purpose we need Blaschke factors.

8.1 Quaternionic�-Blaschke Factors

In this subsection we are going to reproduce some results proved in [2,3] for a modi-
fication of quaternionic Blaschke factors.

3 �′u is defined on R for slice functions only. This is no problem, because every rotationally invariant
function is a slice function.
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Definition 8.1 Given ρ > 0 and a ∈ H such that |a| < ρ. We define the ρ-Blaschke
factor at a as the following semi-regular function on H:

Ba,ρ : H→ Ĥ, Ba,ρ(x) := (ρ2 − xā) ∗ (ρ(x − a))−∗.

We observe that

Ba,ρ = (ρ2 − qā) ∗ (q − ā)
(
ρ(q2 − q(a + ā)+ |a|2)

)−∗

= (q2(−ā)+ q(ρ2 + ā2)− ρ2ā)
(
ρ(q2 − q(a + ā)+ |a|2)

)−1

(using that g(q)−∗ = (g(q))−1 for any slice-preserving function g, hence in particular
for g(q) = ρ(q2 − q(a + ā)+ |a|2)).

In particular,

|Ba,ρ(0)| =
∣∣∣ρ
a

∣∣∣ , if a �= 0

and

|B−∗a,ρ(0)| =
∣∣∣∣aρ

∣∣∣∣ .

Remark 8.2 We observe that (Ba,ρ)−∗ has a zero of multiplicity one at a and no other
zeros or poles in Bρ .

The following is a consequence of Theorem 5.5 of [2].

Theorem 8.3 Given ρ > 0 and a ∈ H. The ρ-Blaschke factors Ba,ρ have the following
properties:

• they satisfy Ba,ρ(H \ Bρ) ⊂ B1 and Ba,ρ(Bρ) ⊂ H \ B1.
• they send the boundary of the ball ∂Bρ in the boundary of the ball ∂B1.

8.2 Jensen’s Formula

First we prove a variant of Jensen’s formula for the special case where there are neither
zeros nor poles.

Proposition 8.4 Let ρ > 0 and let f be a regular function defined in a neighbourhood
of Bρ . Assume that f has no zeros in Bρ .

Let μ be a probability measure on S.
Then

log | f (0)| ≤ 1

2π

∫ 2π

0

∫
S

log | f (ρ cos θ + ρ sin θ I )|dμ(I )dθ

with equality if f is slice preserving.
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Proof Fix an imaginary unit I . Choose another imaginary unit J such that I J = −J I
(i.e., I and J are supposed to be orthogonal). Thus, using the “Splitting Lemma” 2.6,
there are two holomorphic functions g, h with values inCI defined on a neighborhood
of �̄ρ = {z ∈ CI : |z| ≤ ρ} such that

f (q) = g(q)+ h(q)J , ∀q ∈ �ρ = Bρ ∩ CI .

Then | f (q)|2 = |g(q)|2+|h(q)|2. Now, log (|g|2 + |h|2) is subharmonic for any two
holomorphic functions g, h : C→ C. Thus we have subharmonicity of log | f |2 and
consequently

log | f (0)| ≤ 1

2π

∫ 2π

0
log | f (ρeI t )|dt

Finally, by integration over the sphere of imaginary units we obtain the assertion.
��

In order to deal with the general case (where the function f is allowed to have zeros
or poles) we need some preparations.

Lemma 8.5 Let f , g be regular functions on an open neighborhood of ∂Bρ = {q ∈
H : |q| = ρ}.

Assume that |g(q)| = 1 for all q ∈ ∂Bρ .
Then | f (q)| = |( f ∗ g)(q)| and |g−∗(q)| = 1 for all q ∈ ∂Bρ .

Proof The formula

|p−1qp| = |q|, ∀p ∈ H
∗, q ∈ H

implies that f (q)−1q f (q) ∈ ∂Bρ whenever q ∈ ∂Bρ . Combined with

( f ∗ g)(q) = f (q)g
(
f (q)−1q f (q)

)
for q with f (q) �= 0

and |g(q)| = 1 ∀q ∈ ∂Bρ we obtain

|( f ∗ g)(q)| = | f (q)| ∀q ∈ ∂Bρ.

If we apply this equation to f = g−∗, we obtain

1 = |(g−∗ ∗ g)(q)| = |(g−∗)(q)| ∀q ∈ ∂Bρ.

��
Proposition 8.6 Let f be a semi-regular function on a neighborhood of B̄ρ , with
neither zeros nor poles on ∂Bρ .
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Then there exist “ρ-Blaschke factors” B1, . . . , Br and a regular function without
zeros f0 such that:

f = f0 ∗ B1 ∗ . . . ∗ Br .

Here a function B is called ρ-Blaschke factor, if B = Ba,ρ or B = B−∗a,ρ for an
element a ∈ Bρ .

Proof Let g, h be regular functions such that f = g−∗ ∗ h. First we claim that there
exist ρ-Blaschke factors B1, . . . , Bs and a regular function h̃ without zeros such that
f = g−∗ ∗ h̃ ∗ B1 ∗ . . . ∗ Bs . We proceed recursively. If h admits a zero in a point
a ∈ Bρ , then there exists an element b ∈ Sa such that h = h0 ∗ (q − b). Recall that

Bb,ρ = (ρ2 − qb̄) ∗ (ρ(q − b))−∗ = (ρ(q − b))−∗ ∗ (ρ2 − qb̄)

and therefore

(q − b) = 1

ρ

(
ρ2 − qb̄

)
∗ B−∗b,ρ .

Thus f = g−∗ ∗ h1 ∗ B−∗b,ρ with

h1(q) = h0(q)
1

ρ
∗

(
ρ2 − qb̄

)

being regular. Repeating this procedure recursively, we obtain a regular function h̃
without zeros in B̄ρ and ρ-Blaschke factors B1, . . . , Bs such that

f = g−∗ ∗ h̃ ∗ B1 ∗ . . . ∗ Bs

Define

f1 = gc ∗ (h̃−∗)c

Then f1 is regular and

f = ( f −∗1 )c ∗ B1 ∗ . . . ∗ Bs

Repeating the above process, we obtain a regular function φ without zeros and ρ-
Blaschke factors B ′1, . . . B ′t such that

f1 = φ ∗ (B ′1 ∗ . . . ∗ B ′t )
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Consequently

f =
((

φ ∗ (B ′1 ∗ . . . ∗ B ′t )
)−∗)c ∗ B1 ∗ . . . ∗ Bs

= (φ−∗)c ∗ (
((B ′1)−∗)c

) ∗ . . . (((B ′t )−∗)c) ∗ (B1 ∗ . . . ∗ Bs)

��
Proposition 8.7 (Jensen’s Formula) Let � = �D be a circular domain of H and let
f : �→ H ∪ {∞} be a semi-regular function. Let ρ > 0 such that the ball Bρ ⊂ �,
f (0) �= 0,∞ and such that f (y) �= 0,∞, for any y ∈ ∂Bρ .
Assume that (for the function f )

• {rk}k=1,2,.. are the punctual zeros,
• {wn}n=1,2,... are the punctual real poles,
• {Sai }i=1,2,.. are the spherical zeros,
• {Sb j } j=1,2,.. are the spherical poles,

everything repeated accordingly to their multiplicity. Let μ be a probability measure
on S.

Then:

log | f (0)| ≤ 1

2π

∫ 2π

0

∫
S

log | f (ρ cos θ + ρ sin θ I )|dμ(I )dθ

−
∑
|rk |<ρ

(
log

ρ

|rk |
)
+

∑
|wn |<ρ

(
log

ρ

|wn|
)

− 2
∑
|a j |<ρ

(
log

ρ

|a j |
)
+ 2

∑
|b j |<ρ

(
log

ρ

|b j |
)

.

Using the language of divisors as explained in Sect. 3 we may reformulate this as
follows:

Proposition 8.8 (Jensen’s Formula) Let � = �D be a circular domain of H and let
f : �→ H ∪ {∞} be a semi-regular function. Let ρ > 0 such that the ball Bρ ⊂ �,
f (0) �= 0,∞ and such that f (y) �= 0,∞, for any y ∈ ∂Bρ . Let μ be a probability
measure on S.

Then:

log | f (0)| ≤ 1

2π

∫ 2π

0

∫
S

log | f (ρ cos θ + ρ sin θ I )|dμ(I )dθ +

−
∑
|pk |<ρ

mk log
ρ

|pk | (11)

for div( f ) =∑
mk{pk}.
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Proof If f has neither zeros, nor poles, this is Proposition 8.4.
For the general case, we consider div( f ) =∑

k mk{pk}. First of all, sinceBρ ⊂ �,
it follows from Corollary 2.14 that there are only finitely many k with mk �= 0, hence
the sums in the statement are finite and

∑
k |mk | <∞.

From Proposition 8.6 we deduce that f may be represented in the form

f = f0 ∗ B1 ∗ . . . ∗ Br
where f0 is regular on a neighborhood of B̄ρ with neither zeros nor poles and each Bi
equals Bεi∗

pi ,ρ for some pi ∈ Bρ and εi ∈ {+1,−1}.
Now

log | f (0)| = log | f0(0)| +
∑
i

log |Bi (0)| = log | f0(0)| −
∑
i

εi log
ρ

|pi |

On the other hand

| f (q)| = | f0(q)| ∀q ∈ ∂Bρ

because |Bi (q)| = 1 for all i ∈ {1, . . . , r} and all q ∈ ∂Bρ .
Furthermore,

log | f0(0)| ≤ 1

2π

∫ 2π

0

∫
S

log | f0(ρ cos θ + ρ sin θ I )|dμ(I )dθ

(with equality if f is slice preserving) due to Proposition 8.4.
Combining these facts, we obtain the assertion. ��

Remark 8.9 For every semi-regular function f , its symmetrization f s = N ( f ) =
f ∗ f c is slice preserving. Therefore:

log | f s(0)| = 1

2π

∫ 2π

0

∫
S

log | f s(ρ cos θ + ρ sin θ I )|dμ(I )dθ +

−2
∑
|pk |<ρ

mk log
ρ

|pk | (12)

for div( f ) =∑
mk{pk}.

However, there is no similar formula for Tr( f ) = f + f c, because div( f + f c)
is not completely determined by div( f ), whereas div( f s) = 2 · div( f ).

Definition 8.10 Let f be a slice regular function on BR . For all 0 < r < R we define:

M f (r) = sup
|q|=r
| f (q)| ;

Pf (r) = number of punctual zeros of f with multiplicities ;
S f (r) = number of spherical zeros of f with multiplicities;
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n f (r) = Pf (r)+ 2S f (r).

Then

n f (r) =
∑
|ak |≤r

mk

for a regular function f with divisor div( f ) =∑
mk{ak}.

Corollary 8.11 Let f be a slice regular function defined in a neighborhood of BR and
such that f (0) �= 0. Then

n f (r) = Pf (r)+ 2S f (r) ≤ logM f (R)− log | f (0)|
log R − log r

(13)

for any 0 < r < R.

Proof First we observe that

logM f (R) ≥ 1

2π

∫ 2π

0

∫
S

log | f (R cos θ + R sin θ I )|dμ(I )dθ.

Therefore the Jensen’s inequality (11) implies:

logM f (R)− log | f (0)| ≥
∑
|pk |<R

mk log
R

|pk |

=
⎛
⎝ ∑
|pk |<R

mk log R

⎞
⎠− ∑

|pk |<R

mk log |pk |

= n f (R) log R −
∑
|pk |<R

mk log |pk |

= n f (R) log R −
∑
|pk |≤r

mk log |pk | −
∑

r<|pk |<R

mk log |pk |

≥ n f (R) log R −
∑
|pk |≤r

mk log r −
∑

r<|pk |<R

mk log R

= n f (R) log R − n f (r) log r − (n f (R)− n f (r)) log R

= n f (r) (log R − log r) .

Thus

logM f (R)− log | f (0)| ≥ n f (r) (log R − log r) (14)
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for all 0 < r < R such that f has no zeros on ∂BR . By continuity (in R) it follows
that (14) holds without any assumption whether there are zeros on ∂BR or not.

This yields the assertion. ��
Corollary 8.12 Let f : B1→ B1 be a regular function with f (0) �= 0.

Then there is no zero of f in Br for any r < | f (0)|.
Proof Assume the contrary. Then n f (r) ≥ 1 while

lim
R→1

logM f (R)− log | f (0)|
log R − log r

≤ − log | f (0)|
− log r

< 1

leading to a contradiction. ��
The interested reader can find in [4] and in [30] other results about Jensen’s Formula
but in a slightly different context.
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