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Abstract. Recently Andrews introduced the concept of signed partition: a signed partition
is a finite sequence of integers ak, . . . , a1, a−1, . . . , a−l such that ak ≥ · · · ≥ a1 > 0 > a−1 ≥
· · · ≥ a−l. So far the signed partitions have been studied from an arithmetical point of
view. In this paper we first generalize the concept of signed partition and we next use
such a generalization to introduce a partial order on the set of all the signed partitions.
Furthermore, we show that this order has many remarkable properties and that it generalizes
the classical order on the Young lattice.

0. Introduction

In this paper we generalize the usual order of the classical Young lattice to the case of the
integer signed partitions The concept of signed partition has been recently introduced by
Andrews in [5] : a signed partition is a finite sequence of integers ak, . . . , a1, a−1, . . . , a−l such
that ak ≥ · · · ≥ a1 > 0 > a−1 ≥ · · · ≥ a−l. Also Keith in [32] studies several interesting
combinatorial and arithmetical properties of the signed partitions. However in both [5] and
[32], the signed partitions are not studied from an order point of view and at present there
are no studies in this direction. Therefore in this paper we introduce and study a natural
generalization of the usual component-wise order on the integer partitions with positive sum-
mands. The partial order (denoted in the sequel by v) that we obtain on the set (denoted
in the sequel by P∗) of all the signed partitions is a lattice that contains the Young lattice Y
as its sublattice. We briefly describe the content of this paper. In section 1 we recall some
preliminary definitions that we use in all the other sections. In section 2, we introduce at
first the set P of all the generalized partitions and a quasi-order v on it; next we define the
lattice (P∗,v) of all the signed partitions as a quotient-poset of (P,v). We also show that
P∗ has some properties similar to those of the differential posets introduced by Stanley in
[50], more in detail, we can consider P∗ as a type of 0-differential poset without a minimum
element. If m ∈ Z, the set Par(m) is an infinite subset of P∗ that we can intuitively think as
an horizontal axis. In section 3 we introduce the concept of 1-covering sublattice of P∗ as a
sublattice L that intersects each horizontal axis Par(m), when the integer m runs between
the sums made respectively on the summands of the minimum signed partition and the max-
imum signed partition of L. In section 4 we introduce the finite 1-covering sublattice P (n, r)
and we use such lattice to examine locally some order properties of P∗ and we also exhibit
a sublattice P (n, d, r) of P (n, r) that fails to be 1-covering and for it we determine (section
5) its covering relation identifying P (n, d, r) with an appropriate discrete dynamical model
with three evolution rules. In section 6 we define the signed Young diagrams and we use the
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lattice P (n, r) as a natural environment to extend some classical combinatorial properties of
the standard Young tableaux to the case of the signed partitions. The way to study a lattice
of classical partitions as a discrete dynamical model having some particular evolution rules
was implicit in [14], where Brylawski proposed a dynamical approach to study the lattice
LB(m) of all the partitions of fixed positive integer m with the dominance order. However,
the explicit theoretical association between integer partitions and discrete dynamical model
begins in [25], where Goles and Kiwi introduced the Sand Piles Model SPM(m). If m is a
non negative integer, a configuration of SPM(m) is represented by an ordered partition of m,
i.e. a decreasing sequence a = (a1, ..., am) of non negative integers having sum m, and each
positive entire unit is interpreted as a sand grain whose movement respects the following rule:

Rule 1 (vertical rule): one grain can move from a column to the next one if the difference
of height of these two columns is greater than or equal to 2.

The Sand Piles Model (SPM) is a special case of a discrete dynamical system (see [2], [3],
[4] for very recent studies on this topic). There are a lot of specializations and extensions of
this model which have been introduced and studied under different names, different aspects
and with different approaches. The SPM problem cames from the Self-Organized Criticality
(SOC) problem introduced by Bak, Tang and Wiesenfield in [6]. The study of such systems
have been developed in an algebraic context ([17], [19], [39], [52]), in a combinatorial games
theory context ([8], [11], [12], [25], [27], [28]), in a graph theory context ([16], [40], [41])
and in the context of the cellular automata theory ([15], [26]). In the scope of the discrete
dynamical systems, the Brylawski lattice can be interpreted then as a model LB(m), where
the movement of a sand grain respects the previous Rule 1 and the following Rule 2:

Rule 2 (horizontal rule): if a column containing p + 1 grains, is followed by a sequence of
columns containing p grains and next by one column containing p− 1 grains, then one grain
of the first column can slip to the last column.

In [18], [23], [24], [28], [29], [31], [34], [35], [36], [37], [38], [45], [46], several dynamical models
related to SPM(n) have been studied. Almost all systems studied in the previous works
have a linear topology and they have extended the classical models SPM(n) and LB(n) to
obtain more general models. An excellent survey on these topics is [30].

1. Definitions

For all the classic properties concerning posets and lattices we refer to [20], [47], [48]. For
all the results and definitions concerning the discrete dynamical models of integer partitions
we refer to [30]. In this section we recall only some definitions and fundamental results.
A quasi-order on a set X is a binary reflexive and transitive relation on X. If (X,≤) is a
poset, the dual of X is the poset (X,≤∗), where x ≤∗ y iff y ≤ x, for all x, y ∈ X. We say
that X is a self-dual poset if the identity is an isomorphism between (X,≤) and (X,≤∗).
If X is a finite lattice, then X has a minimum element and a maximum element, that we
denote respectively by 0̂ and 1̂ if X is clear from the context. If X is a poset, a rank
function of X is a function ρ : X → N such that ρ(x) = 0 for some minimal element x of
X (if there exists at least one minimal element) and if y covers x then ρ(y) = ρ(x) + 1.
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A ranked poset is a couple (X, ρ), where ρ is a rank function of X. If (X, ρ) is a ranked
poset such that ρ(x) = 0 for all minimal elements x of X and ρ takes the same value on
all maximal elements of X then ρ is the unique rank function of X with these properties
(in this case we say that such map ρ is the rank function) and we call (X, ρ) a graded
poset. In particular, if X is a finite distributive lattice, then X is graded (see [47]). If
(X, ρ) is a ranked poset, the number rank(X) := sup{ρ(x) : x ∈ X} is called rank of X;
the subset Ni(X) := {x ∈ X : ρ(x) = i} is called i-th rank level of X and the number
Wi(X) := |Ni(X)| is called i-th Whitney number of X, for i = 0, 1, . . . , ρ(X). We say that
X has the Sperner property if some rank level of X is an antichain of X having maximal
length. The set X is called a k-Sperner poset if none union of k antichains has cardinality
greater than the union of the k biggest rank levels (therefore, P has the Sperner property
iff X is a 1-Sperner poset). We say that X is a strongly Sperner poset if X is a k-Sperner
poset for all the values of k. Let xi := Wi(X) and n = ρ(X). X is called rank-symmetric
if xi = xn−i for i = 0, 1, . . . , n, and rank-unimodal if there exists j ∈ {0, 1, . . . , n} such that
x0 ≤ x1 ≤ x2 ≤ · · · ≤ xj ≥ xj+1 ≥ xj+2 ≥ · · · ≥ xn. Therefore, if X is both rank-symmetric
and rank-unimodal, then x0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≥ xm+1 ≥ xm+2 ≥ · · · ≥ xn if n = 2m,
and x0 ≤ x1 ≤ x2 ≤ · · · ≤ xm = xm+1 ≥ xm+2 ≥ · · · ≥ xn if n = 2m+ 1. A graded poset X
is called Peck poset if it is rank-symmetric, rank-unimodal and strongly Sperner.
If (X,≤) and (Y,≤′) are two posets, a map φ : X → Y is said order-reversing if x ≤ x′

implies φ(x′) ≤′ φ(x) for x, x′ ∈ X. If (X,≤) is a poset and x, y ∈ X, we set [x, y]X = {u ∈
X : x ≤ u ≤ y}. If the subset [x, y]X is finite for all x, y ∈ X, the poset (X,≤) is said locally
finite.

2. The Signed Partitions Lattice

The next definition generalizes the concept of signed partition introduced in [5] and studied
in [32] from an arithmetical point of view. The aim of such a generalization is to define a
partial order on the set of all the signed partitions which will be an extension of the classical
order on the Young lattice.

Definition 2.1. Let q and p be two non-negative integers. A generalized partition (briefly a
g-partition) w with balance (q, p) is a finite sequence of integers aq, . . . , a1, b1, . . . , bp, called
parts of w, such that aq ≥ · · · ≥ a1 ≥ 0 ≥ b1 ≥ · · · ≥ bp.

A g-partition w is a g-partition having balance (q, p), for some non-negative integers q and
p. We shall denote by P the set of all the g-partitions. We call aq, . . . , a1 the non-negative
parts of w and b1, . . . , bp the non-positive parts of w; also, we call positive parts of w the
integers ai with ai > 0 and negative parts of w the integers bj with bj < 0. We assume
that q = 0 [p = 0] iff there are no non-negative [non-positive] parts of w; in particular, it
results that p = 0 and q = 0 iff w is the empty g-partition. In the sequel, to describe a
generic g-partition w we shall use two possible notations : w = aq . . . a1|b1 . . . bp or, if it is
not necessary to distinguish which parts of a g-partition w are non-negative integers and
which are non-positive integers, we simply write w = l1 · · · ln, without specifying the sign
of li’s. We denote by (|) the empty g-partition. However, in all the numerical examples
and also in the graphical representation of the Hasse diagrams, we omit the minus sign for
all the parts b1, . . . , bp. This means, for example, that we write w = 44000|0113 instead of
w = 44000|0(−1)(−1)(−3). If w = aq . . . a1|b1 . . . bp we set w+ = aq . . . a1| and w− = |b1 . . . bp,
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moreover we shall call maximal part of w and minimal part of w respectively the non-negative
integers aq and bp and we shall set M+(w) = aq, M

−(w) = |bp|. If m is an integer such that
m = aq + · · · + a1 + b1 + · · · + bp, we say that w is a g-partition of the integer m and we
shall write w ` m. If w is a g-partition, we denote by {w ≥ 0} [{w > 0}] the multi-set of
all the non-negative [positive] parts of w and by {w ≤ 0} [{w < 0}] the multi-set of the
non-positive [negative] parts of w. We denote respectively with |w|≥, |w|≤, |w|>, |w|< the
cardinality of {w ≥ 0}, {w ≤ 0}, {w > 0}, {w < 0}. We call the ordered couple (|w|>, |w|<)
the signature of w and we note that (|w|≥, |w|≤) is exactly the balance of w . Finally, we set
||w|| = |w|> + |w|<. For example, if w = 444221000|011333, then {w ≥ 0} = {43, 22, 11, 03},
{w ≤ 0} = {01,−12,−33}, {w > 0} = {43, 22, 11}, {w < 0} = {−12,−33}, w has balance
(|w|≥, |w|≤) = (9, 6), signature (|w|>, |w|<) = (6, 5) and ||w|| = 11.

Remark 2.2.
We shall consider equals two g-partitions w = aq . . . a1|b1 . . . bp and w′ = a′q′ . . . a

′
1|b′1 . . . b′p′

(and we shall write w = w′) if and only if q = q′, p = p′ and ai = a′i, bj = b′j for i = 1, . . . , q
and j = 1, . . . , p. Therefore, for example, in our context, the two g-partitions 555000|11 and
55500|011 are considered different.

If w = aq . . . aq−t+1aq−t . . . a1|b1 . . . bp−sbp−s+1 . . . bp is a g-partition having signature (t, s)
and balance (q, p), where aq ≥ · · · ≥ aq−t+1 > 0 > bp−s+1 ≥ · · · ≥ bp, aq−t = . . . = a1 = 0
and b1 = . . . = bp−s = 0, then we write w = aq . . . aq−t+10q−t|0p−sbp−s+1 . . . bp and w∗ =
aq . . . aq−t+1|bp−s+1 . . . bp. We call w∗ the reduced g-partition of w. If W is a subset of P , we
set W∗ = {w∗ : w ∈ W}. We note that a signed partition, as introduced in [5], is exactly
the reduced g-partition of some g-partition, therefore the set of all the signed partitions is
exactly P∗. Let us note that {w > 0} = {w∗ > 0} and {w < 0} = {w∗ < 0}. If U is a
subset of g-partitions, we say that U is uniform if all the g-partitions in U have the same
balance; in particular, if all the g-partitions in U have balance (q, p), we also say that U is
(q, p)-uniform. If v1, . . . , vk are g-partitions, we say that they are uniform [(q, p)-uniform] if
the subset U = {v1, . . . , vk} is uniform [(q, p)-uniform]. If F is a finite subset of g-partitions,
we define a way to make uniform all the g-partitions in F : we set qF = max{|v|≥ : v ∈ F},
pF = max{|v|≤ : v ∈ F} and if v = aq . . . a1|b1 . . . bp ∈ F , vF = aq . . . a10qF−q|0pF−pb1 . . . bp
and F = {vF : v ∈ F}. Then F is (qF , pF )-uniform and |F | ≤ |F |. If F is uniform we note
that vF = v for each v ∈ F , hence F = F . We call F the uniform closure of F . When F
is clear from the context we simply write v instead of vF . In particular, if v and w are two
g-partitions, when we write v and w without further specification we always mean vF and
wF , where F = {v, w}. We observe that if v and w are two uniform g-partitions then v = v
and w = w, moreover let us also note that if w ∈ F we have {w > 0} = {wF > 0} and
{w < 0} = {wF < 0}.

If u = l1 · · · ln and u′ = l′1 · · · l′n are two uniform g-partitions in P , we define:

(1) u 0 u′ ⇐⇒ li ≤ l′i

for all i ∈ {1, . . . , n}.
We define then on P the following binary relation: if v, w ∈ P , we set

(2) v v w ⇐⇒ v 0 w
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In particular, if v and w are uniform, then v v w iff v 0 w. With the notation v @ w we
mean v v w with v 6= w.

Proposition 2.3. v is a quasi-order on the set P ; moreover, if v, w ∈ P the following
conditions are equivalent:
(i) v v w;
(ii) vF 0 wF for some particular finite subset F of P that contains v and w;
(iii) vF 0 wF for each finite subset F of P that contains v and w;
(iv) v∗ v w∗.

Proof. The proof is straightforward. �

If v, w ∈ P , we set

(3) v ∼ w ⇐⇒ {v > 0} = {w > 0} and {v < 0} = {w < 0}
Then ∼ is an equivalence relation on P and it results that

(4) v ∼ w ⇐⇒ v v w and w v v

Proposition 2.4. (i) If v and w are two g-partitions, then v = w iff v and w are uniform
and v ∼ w.
(ii) If F is a finite subset of P such that v, w ∈ F , then v ∼ w iff vF = wF .
(iii) If F is a finite subset of P such that v ∈ F then v ∼ vF .
(iv) If v is a g-partition then v ∼ v∗.

Proof. The proof is straightforward. �

By (4) it follows that ∼ is exactly the equivalence relation on P induced by the quasi-order
v, therefore if F is any subset of P , we can consider on the quotient set F/ ∼ the usual
partial order induced by v , that we here denote by v′. We recall that v′ is defined as
follows: if Z,Z ′ ∈ F/ ∼ then

(5) Z v′ Z ′ ⇐⇒ v v v′

for any/all v, w ∈ F such that v ∈ Z and v′ ∈ Z ′.
If w ∈ F, in some case we set [w]F∼ = {v ∈ F : v ∼ w}, that is the equivalence class of w in
F/ ∼.

Remark 2.5. If F ⊆ H ⊆ P we can consider F/ ∼ as a subset of H/ ∼ through the
identification of [v]F∼ with [v]H∼, for each v ∈ F. Therefore, if F ⊆ H ⊆ P we always can
assume that (F/ ∼ ,v′) is a sub-poset of (H/ ∼ ,v′).

Let us observe that we can choose in (5) the representatives of the correspondent equivalence
classes in F/ ∼ in several ways, depending on the choice of the subset F of P on which we
take the quotient. In particular, if v ∈ F, by Proposition 2.4 (iv) we can always choose v∗
as a representative for the equivalence class [v]F∼. In such a way we identify the quotient
set F/ ∼ with the subset F∗ of P , and we shall write F/ ∼≡ F∗. However, when F is a
finite subset of P , we have also another possibility. In fact, if F is finite and v ∈ F, by
Proposition 2.4 (iii) we can also choose vF as a representative for [v]F∼. In such a way we
identify F/ ∼ with the subset F of P , and we shall write F/ ∼≡ F (and F/ ∼≡ F if F is
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finite and uniform). Therefore, if F ⊆ P , Z,Z ′ are any two equivalence classes in F/ ∼ and
v, v′ are any two elements in F such that v ∈ Z, v′ ∈ Z ′, we must distinguish two cases:
(F1) F/ ∼≡ F∗. In this case the order (5) will have the following equivalent form (by
Proposition 2.3 (iv)):

(6) Z v′ Z ′ ⇐⇒ v∗ v v′∗

(F2) F/ ∼≡ F. In this case the order (5) will have the following equivalent form (by
Proposition 2.3 (ii)):

(7) Z v′ Z ′ ⇐⇒ vF v v′
F

Hence, taking into account the conventions established in (6) and (7), we can always think
that on each quotient set F/ ∼ the partial order v′ is identified with v. Therefore, in the
case (F1) we identify the poset (F/ ∼,v′) with (F∗,v); in the case (F2) we identify the
poset (F/ ∼,v′) with (F,v). In particular, if F is a finite uniform subset of P then (F,v)

coincides with (F,v), and in (7) we have that vF = v and v′
F

= v′.
In the sequel, if F coincides with P then we take always P/ ∼≡ P∗. However, if F coincides
with some finite uniform subset of P , then F/ ∼≡ F if we write the g-partitions in F with
all their zeros, otherwise F/ ∼≡ F∗. The question is not only formal when the subset F

is a finite uniform subset of P . In fact, in this case, if we take F/ ∼≡ F, then F is not
a subset of P∗, hence using such an identification we cannot consider F/ ∼ as a sub-poset
of P∗. Therefore, if we want to consider F/ ∼ as a sub-poset of P∗, then it is necessary
to take F/ ∼≡ F∗. On the other side, if we want to isolate some specific properties of
F/ ∼, for example some covering properties of its elements, then it will be convenient to
take F/ ∼≡ F, in order to work with uniform g-partitions. To solve the question without
loading the notations, in the sequel if F is a finite uniform sub-poset of P , we shall write
simply (F,v) or (F∗,v) instead of (F/ ∼,v′), depending on the context. In particular, we
shall always consider (F,v) as sub-poset of (P∗,v). If m is an arbitrary integer, we set
Par(m) = {w ∈ P∗ : w ` m} and we call Par(m) the horizontal axis in P∗ of height m. An
horizontal axis in P∗ is an horizontal axis Par(m), for some integer m. In particular, we call
x-axis of P∗ the horizontal axis Par(0). We call horizontal some type of orders that we shall
consider on the horizontal axes of P∗.

Definition 2.6. We call (P∗,v) the signed partitions poset.

If u = aq . . . a1|b1 . . . bp and u′ = a′q . . . a
′
1|b′1 . . . b′p are two uniform g-partitions, we set:

u4 u′ = min{aq, a′q} . . .min{a1, a′1}|min{b1, b′1} . . .min{bp, b′p}
and

u5 u′ = max{aq, a′q} . . .max{a1, a′1}|max{b1, b′1} . . .min{bp, b′p}
The next definition describes a type of subset of g-partitions which shall permit us to find
several distributive sub-lattices of (P/ ∼ ,v′) ≡ (P∗,v).

Definition 2.7. We say that a subset F ⊆ P is lattice-inductive if for each finite subset
F ⊆ F it results that:
(i) F ⊆ F;
(ii) if v, w ∈ F , then vF 4 wF ∈ F and vF 5 wF ∈ F.
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Let us note that obviously P is lattice-inductive. The relevance of the lattice-inductive
subsets of P is established in the following result.

Proposition 2.8. Let F be a lattice-inductive subset of P . Then (F/ ∼ ,v′) is a distributive
lattice.

Proof. To prove that (F/ ∼) is a lattice, we take two equivalence classes [v]F∼ and [w]F∼ in
(F/ ∼) and we define the following operations: [v]F∼ ∧ [w]F∼ = [v 4 w]F∼ and [v]F∼ ∨ [w]F∼ =
[v 5 w]F∼. It easy to see that the operations ∧ and ∨ are well defined because they do
not depend on the choice of representatives in the respective equivalence classes and that
[v]F∼ ∧ [w]F∼ v′ [v]F∼, [v]F∼ ∧ [w]F∼ v′ [w]F∼. Let now [z]∼ ∈ F/ ∼ such that [z]F∼ v′ [v]F∼ and
[z]F∼ v′ [w]F∼. We set F = {v, w, z}. Then, ([z]F∼ v′ [v]F∼ and [z]F∼ v′ [w]F∼)⇐⇒ (by definition
of v′) (z v v and z v w) ⇐⇒ (by Proposition 2.3 (iii)) zF 0 vF and zF 0 wF ⇐⇒ (by
definition of0 and of4) zF 0 vF4wF ⇐⇒ (since the g-partitions are uniform) zF v vF4wF

⇐⇒ (by definition of v′ and by Proposition 2.4 (iii)) [z]F∼ = [zF ]F∼ v′ [vF4wF ]F∼. Now, since
[vF 4 wF ]F∼ = (by definition of ∧) [vF ]F ∧ [wF ]F = (by Proposition 2.4 (iii)) [v]F∼ ∧ [w]F∼, it
follows that [z]F∼ v′ [v]F∼ ∧ [w]F∼. This proves that the operation ∧ defines effectively the inf
in (F/ ∼,v′). In the same way we can proceed for the operation ∨ in the sup-case. Finally,
let us note that the distributivity holds because the operations 4 and 5 are defined on the
components of the uniform g-partitions. �

Since P is obviously lattice-inductive, it follows that:

Corollary 2.9. (P/ ∼ ,v′) ≡ (P∗,v) is a distributive lattice.

When F is finite and uniform, it is simple to verify if F is lattice-inductive:

Proposition 2.10. Let F be a finite uniform subset of P , then F is lattice-inductive iff
whenever v, w ∈ F also v4 w ∈ F and v5 w ∈ F.

We denote now by P+ the subset of P of all the g-partitions having balance (q, 0) and with P−

the subset of P of all the g-partitions having balance (0, p). It is easy to see that P+ and P−

are both lattice-inductive. Since they are infinite, we identify the lattices (P+/ ∼ ,v′) and
(P−/ ∼ ,v′) respectively with (P+

∗ ,v) and (P−∗ ,v). We denote by Y the classical Young
lattice of the integer partition and by Y∗ its dual lattice. It is clear that (P+

∗ ,v) ∼= Y,
(P−∗ ,v) ∼= Y∗ and (P∗,v) ∼= Y× Y∗.

3. Finite 1-Covering Sub-Lattices of P∗

In our work, a relevant role is played by a class of sub-posets of (P∗,v) that we have called
1-covering posets, therefore in this section we define such posets and we prove some useful
properties for such class.

Definition 3.1. If (U,v) is an induced sub-poset of the quasi-poset (P,v), we say that U is
1-covering if whenever w and w′ are two g-partitions in U with w = l1 · · · ln and w′ = l

′
1 · · · l

′
n,

it results that w′ covers w in U iff w′ and w differ in exactly one place k and in this place,
it holds l′k = lk + 1.

In particular, let us note that if U is uniform, then w = w and w′ = w′. Moreover, we also
observe that P∗ is 1-covering.
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We define now the function ϑ : P → Z such that

(8) ϑ(aq . . . a1|b1 . . . bp) := aq + · · · a1 + b1 · · ·+ bp

Proposition 3.2. Let (U,v) be a finite sub-lattice with minimum 0̂ of the quasi-poset (P,v)
and let ρ : U → N such that ρ(w) := ϑ(w)−ϑ(0̂) for each w ∈ U . Then U is 1-covering if and
only if ρ is the rank function of U . Moreover, in this case, Nk(U) = {w ∈ U : w ` k+ ϑ(0̂)}
for k = 0, 1, . . . , rank(U).

Proof. Let w, w′ be two g-partitions in U such that w = l1 · · · ln and w′ = l
′
1 · · · l

′
n. By

definition of ρ we have ρ(0̂) = 0 and by definition of w and w′, it results that ρ(w) = ρ(w)
and ρ(w′) = ρ(w′). If U is 1-covering and w′ covers w, by definition of 1-covering w and w′

differ between them only in exactly one place k ∈ {1, · · · , n}, where l′k = lk + 1. Therefore
ρ(w′) = ρ(w′) = l′1 + · · · + l′n = l1 · · · + ln + 1 = ρ(w) + 1 = ρ(w) + 1. Hence ρ is the rank
function of U .
If ρ is the rank function of U and w′ covers w, then ρ(w′) = ρ(w) + 1, i.e. ρ(w′) = ρ(w) + 1,
that, in components, becomes

(9) l′1 + · · ·+ l′n = 1 + l1 + · · ·+ ln.

Since w v w′, we also have l1 ≤ l′1, . . . , ln ≤ l′n, and this is compatible with (9) if and only if
there exists k ∈ {1, . . . , n} such that l′k = lk + 1 and l′i = li if i 6= k, because the components
are integer numbers. On the other hand, if there exists k ∈ {1, . . . , n} such that l′k = lk + 1
and l′i = li if i ∈ {1, . . . , n} and i 6= k, we must to show that w′ covers w in U . Let us
suppose on the contrary that there exists w′′ ∈ U such that w @ w′′ @ w′. To compare
between them the three g-partitions w, w′ and w′′, we must consider w, w′ and w′′ with
respect to F = {w,w′, w′′}. Let w = m1 . . .mh, w′ = m′1 . . .m

′
h, w′′ = m′′1 . . .m

′′
h. It is clear

then that it must be h ≥ n and the possible parts mi and m′i that appear different from li
and l′i can only be zeros, therefore there exists j ∈ {1, . . . , h} such that m′j = mj + 1 and

m′i = mi if i ∈ {1, . . . , h} and i 6= j. Since w @ w′′ @ w′, it is also w @ w′′ @ w′, therefore it
must be necessarily mj < m′′j < m′j, that contradicts m′j = mj + 1.
Finally, if k ∈ {0, 1, . . . , rank(U)}, then Nk(U) = {w ∈ U : ρ(w) = k} = {w ∈ U : ϑ(w) =
k + ϑ(0̂)}, and the equality ϑ(w) = k + ϑ(0̂) is equivalent to w ` k + ϑ(0̂). �

We show now that the lattice (P∗,v) has two similar properties to the class of the differential
posets. The class of differential posets was introduced by Stanley [50] and further studied
in [21], [22], [33], [43], [44], [51]. Since P+

∗ coincides with the classical Young lattice, it is
a 1-differential lattice, i.e. if x ∈ P+

∗ covers k elements then (k + 1) elements cover x. By
symmetric reasons, P−∗ is a 1-differential lattice in the opposite sense (−1-differential lattice),
i.e. if y ∈ P−∗ covers k elements then (k − 1) elements cover y : indeed if you draw P+

∗ and
P−∗ the first appears as a cone with a bottom vertex and the second as a cone with an above
vertex.

Proposition 3.3. If x ∈ P∗ is an element that covers exactly k elements of P∗, then there
are exactly k elements of P∗ which cover x.

Proof. If x ∈ P∗ covers exactly k elements, this implies that l elements are covered by x in
the non-negative part of x and (k− l) are covered by x in the non-positive part. Since P+

∗ is
1-differential and P−∗ is 1-differential in the opposite direction, we have that there are (l+ 1)
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elements that cover x because they cover the non- negative part of x, and (k− l−1) elements
that cover x because they cover the non-positive part of x. Hence exactly k elements cover
it. In other words, the covering operation on P∗, by definition, coincides either with the
covering operation on P+

∗ or with the covering operation on P−∗ . �

Proposition 3.4. If x and y are different elements of P∗, and there are k elements of P∗
covered at the same time by x and y, then there are exactly k elements of P∗ that cover both
x and y.

Proof. Let x = axq . . . a
x
1 |bx1 . . . bxp , y = ayq . . . a

y
1|b

y
1 . . . b

y
p and z = azq . . . a

z
1|bz1 . . . bzp be three

uniformized elements of P∗. We assume that x and y both cover z in the non-negative part.
Because P∗ is 1-covering, there exist i > j ≥ 1 such that x and z differ only in place i, where
axi = azi +1 and such that y and z differ only in place j, where ayj = azj +1. Then the element
z′ := azq . . . a

z
i−1a

x
i a

z
i+1 . . . a

z
j+1a

y
ja

z
j−1 . . . a

z
1|bz1 . . . bzp covers x and y; in other words, there is a

(1 : 1) correspondence between the elements covered by x and y in the non-negative part
and the elements that cover both x and y in the non-negative part. The same thing happens
if x and y both cover z in the non-positive part. Suppose now that x covers z in the non-
negative part and that y covers z in the non-positive part, then the element that has the
same non-negative part of x and the same non-positive part of y covers both x, y. Hence
there is also a (1 : 1) correspondence between the elements covered by x in the non-negative
part and by y in the non-positive part and the elements that cover x in the non-positive part
and y in the non-negative part. �

4. The Lattice P (n, r)

In order to study locally the lattice P∗, in the sequel we call filling chain of P∗ a numerable
sequence {Xk}k≥0 of finite sublattices of P∗ such that X0 ⊆ X1 ⊆ X2 ⊆ . . . and

⋃
k≥0Xk =

P∗. If {Xk}k≥0 and {Yk}k≥0 are two filling chains of P∗, we say that {Yk}k≥0 is a refinement
of {Xk}k≥0 if Yk ⊆ Xk, for each k ≥ 0. In this section we introduce the finite 1-covering
sub-lattice P (n, r) of (P∗,v) that will be used to investigate locally the structure of P∗. We
prove several symmetry properties for P (n, r). Using this type of sub-lattices we provide a
filling chain of P∗ that we call square chain of P∗. If n and r are two fixed integers such that
0 ≤ r ≤ n, we set:

(10) P (n, r) = {w ∈ P : |w|≥ = r, |w|≤ = n− r,M+(w) ≤ r,M−(w) ≤ n− r}

Furthermore, if d is an integer with 0 ≤ d ≤ n, we also set:

(11) P (n, d, r) = {w ∈ P (n, r) : ||w|| = d}

Sometime we call (n, r)-partition an element of P (n, r). We recall now the definition of the
classical lattice L(m,n). If m is a non-negative integer, the set L(m,n) is the set of all the
usual partitions with at most m parts and with largest part at most n. Then L(m,n) is a
sublattice of Y that has very remarkable properties. Such lattice was introduced by Stanley
in [49], who showed that L(m,n) is peck. Then it is immediate to observe that P (n, r) and
P (n, d, r) are both uniform, lattice-inductive and that

(12) P (n, r) ∼= L(r, r)× L(n− r, n− r)∗
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We recall now the concept of involution poset (see [1] and [13] for some recent studies on
such class of posets). An involution poset (IP) is a poset (X,≤, c) with a unary operation
c : x ∈ X 7→ xc ∈ X, such that:

I1) (xc)c = x, for all x ∈ X;
I2) if x, y ∈ X and if x ≤ y, then yc ≤ xc.

The map c is called complementation of X and xc the complement of x. Let us observe
that if X is an involution poset, by I1) follows that c is bijective and by I1) and I2) it
holds that if x, y ∈ X are such that x < y, then yc < xc. If (X,≤, c) is an involution
poset and if Z ⊆ X, we will set Zc = {zc : z ∈ Z}. We note that if X is an involution
poset then X is a self-dual poset because from I1) and I2) it follows that if x, y ∈ X we
have that x ≤ y, iff yc ≤ xc, and this is equivalent to say that the complementation is an
isomorphism between X and its dual poset X∗. Now, if w = ar . . . a1|b1 . . . bn−r ∈ P (n, r),
we set wc = (r−a1) . . . (r−ar)|(|bn−r|− (n− r)) . . . (|b1|− (n− r)) and let us note that wc is
still a g-partition in P (n, r), therefore we can define a unary operation c : P (n, r)→ P (n, r)
such that w 7→ wc. Then it is immediate to verify that

Proposition 4.1. (P (n, r),v, c) is an involution poset.

If w = ar . . . a1|b1 . . . bn−r ∈ P (n, r) we also set wt = (−bn−r) . . . (−b1)|(−a1) . . . (−ar) and
we call wt the transposed of w. Let us note that wt ∈ P (n, n− r).

Proposition 4.2.

(i) P (n, d, r) is a sub-lattice of P (n, r).

(ii) P (n, r) =
⋃̇

n≥d≥0P (n, d, r).

(iii) |P (n, r)| =
(
2r
r

)(
2(n−r)
n−r

)
.

(iv) |P (n, d, r)| =
∑

0≤k≤min{r,d}
0≤d−k≤n−r

(
r+k−1

k

)(
n−r+d−k−1

d−k

)
.

(v) P (n, r) ∼= P (n, n− r).

(vi) P (n, r) is peck.

Proof. (i) and (ii) are obvious.
(iii) It follows at once since it is well known that |L(m,n)| =

(
m+n
n

)
, however we give a

rapid proof. It is sufficient to observe that P (n, r) can be identified with the set of all the
ordered pairs (z1, z2), where z1 is a decreasing string of length r on the ordered alphabet
r > · · · > 1 > 0 and z2 is a decreasing string of length n − r on the ordered alphabet
0 > −1 > · · · > −(n− r), therefore |P (n, r)| =

(
(r+1)+r−1

r

)(
(n−r+1)+(n−r)−1

n−r

)
=
(
2r
r

)(
2(n−r)
n−r

)
.

(iv) A generic g-partition w of P (n, d, r) has the form w = ar . . . a1|b1 . . . bn−r, where r ≥ ar,
bn−r ≥ −(n− r) and such that the non-zero parts of w are exactly d. If we take an integer
k such that 0 ≤ k ≤ min{r, d} and 0 ≤ d− k ≤ n− r, we can count at first the g-partitions
of P (n, d, r) that have exactly k positive parts and d− k negative parts. This is equivalent
to count the ordered pairs (z1, z2), where z1 is a decreasing string of length k on the ordered
alphabet r > · · · > 1 and z2 is a decreasing string of length d − k on the ordered alphabet
−1 > · · · > −(n − r). The number of these ordered pairs is

(
r+k−1

k

)(
(n−r)+(d−k)−1

d−k

)
. The
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number of all the g-partitions in P (n, d, r) is then obtained taking the sum on k of all the

numbers
(
r+k−1

k

)(
(n−r)+(d−k)−1

d−k

)
.

(v) We define the map φ : P (n, r)→ P (n, n− r) such that φ(w) = (wt)c, for all w ∈ P (n, r).
We prove then that φ is an isomorphism of posets. By (3) it follows that |P (n, r)| =
|P (n, n−r)|, therefore φ is bijective since it is easy to see that it is injective. If w,w′ ∈ P (n, r),
the condition w v w′ ⇐⇒ φ(w) v φ(w′) follows at once from the conditions I1), I2) and
because the transposed map w 7→ wt is order-reversing and such that (wt)t = w.
(vi) L(r, r) and L(n−r, n−r)∗ are both peck lattices and since the peck-property is preserved
from the direct product operation (see [7]), the result follows by (12).

�

Below we draw the Hasse diagram of P (4, 2) using different colors for the nodes of its
sublattices P (4, d, 2), where d = 0, 1, 2, 3, 4. Specifically, we draw red the unique node
of P (4, 0, 2) (i.e. 00|00), blue the nodes of P (4, 1, 2), green the nodes of P (4, 2, 2), brown the
nodes of P (4, 3, 2) and violet the nodes of P (4, 4, 2).

00|22

10|22 00|12

20|22 11|22 10|12 00|02 00|11

21|22 20|12 11|12 10|02 10|11 00|01

22|22 21|12 20|02 20|11 11|02 11|11 10|01 00|00

22|12 21|02 21|11 20|01 11|01 10|00

22|02 22|11 21|01 20|00 11|00

22|01 21|00

P (4, 2) :
22|00

If n′ ≥ n, r′ ≥ r and n′− r′ ≥ n− r, then we can consider P (n, r) as a sub-lattice of P (n′, r′)
in the following way: we identify a g-partition

ar . . . a1|b1 . . . bn−r ∈ P (n, r)

with the g-partition

ar . . . a10r′−r|0(n′−r′)−(n−r)b1 . . . bn′−r′ ∈ P (n′, r′).

Sometimes we need to specify that (P (n, r),v) is considered a sub-lattice of (P (n′, r′),v),
in such case we will write (P (n, r)(n′,r′),v). Let us note, in particular, that

(13) P (0, 0) ⊂ P (2, 1) ⊂ P (4, 2) ⊂ · · · ⊂ P (2n, n) ⊂ . . .
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and

(14) P∗ =
⋃
n≥0

P (2n, n)

Hence {P (2n, n)}n≥0 is a filling chain of P∗ which we call square chain of P∗. The reason
for such a denomination is clear if we observe the Hasse diagrams respectively of P (0, 0),
P (2, 1) and P (4, 2). Let us note that in all these diagrams the position of (|) is always in
the est corner. The next result concerns the way to generate the elements that cover a fixed
element of the lattice P (n, r).

Proposition 4.3.
(i) P (n, r) is 1-covering.
(ii) The rank function of P (n, r) is ρ : P (n, r)→ N such that

(15) ρ(ar . . . a1|b1 . . . bn−r) = ar + · · · a1 + b1 · · ·+ bn−r + (n− r)2.

(iii) The rank of P (n, r) is r2 + (n− r)2.
(iv) Nk(P (n, r)) = {w ∈ P (n, r) : w ` k − (n− r)2}.

Proof. (i) Let w = l1 . . . ln and w′ = l′1 . . . l
′
n be two g-partitions in P (n, r) such that w′ covers

w. We must show that there exists exactly a place k where w and w′ are different and that
in this place, it hlds l′k = lk + 1. By contradiction, we must distinguish three cases:

1) there exists exactly one place k where w and w′ are different, but l′k 6= lk + 1. Since
by hypothesis w′ covers w, we have w @ w′; therefore it must be lk < l′k. This implies that
lk < lk + 1 < l′k. We consider now the g-partition

u = l1 · · · lk−1(lk + 1)lk+1 · · · ln
Let us observe then that w @ u @ w′ and u ∈ P (n, r) (since r ≥ l1 ≥ · · · ≥ lk−1 = l′k−1 ≥
l′k > lk + 1 > lk ≥ lk+1 ≥ · · · ≥ ln ≥ −(n− r)), and this is a contradiction because w′ covers
w.

2) There exist at least two places k and s, with s > k, where w and w′ differ, with l′k > lk
and l′s > ls. We consider the g-partition

u = l′1 . . . l
′
k−1l

′
klk+1 . . . ls−1lsls+1 . . . ln

Then r ≥ l′1 ≥ · · · ≥ l′k−1 ≥ l′k > lk ≥ lk+1 ≥ · · · ≥ ls−1 ≥ ls ≥ ls+1 ≥ · · · ≥ ln ≥ −(n − r),
therefore u ∈ P (n, r), and since w @ u @ w′ this is against the hypothesis that w′ covers w.

3) w and w′ are equal in all their parts. In this case w = w′, against the hypothesis.
We assume now that w and w′ are different only in a place k and that l′k = lk + 1. It is

obvious then that w @ w′. If w′ doesn’t cover w then there exists a w′′ ∈ P (n, r) such that
w @ w′′ @ w′. Let w′′ = l

′′
1 · · · l

′′
n. By hypothesis it follows that li = l

′′
i = l

′
i if i 6= k, and

lk < l
′′

k < l
′

k, against the hypothesis that l′k = lk + 1.

(ii) Since 0̂ = 0 · · · 0| − (n − r) · · · − (n − r) is the minimum of P (n, r) and 0̂ ` −(n − r)2,
the assertion (ii) follows at once by Proposition 3.2.
(iii) The maximum element of P (n, r) is r . . . r|0 . . . 0, therefore the rank of P (n, r) is
ρ(r . . . r|0 . . . 0)− ρ(0 . . . 0| − (n− r) · · · − (n− r)) = r2 + (n− r)2.

(iv) Since 0̂ ` −(n− r)2 it follows at once by Proposition 3.2.
�
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The following result is the analogue of the Sperner theorem for the Boolean lattice in the
case of P (n, r):

Proposition 4.4.

(i) If n is even, then P (n, r)
⋂
Par(n(2r−n)

2
) is a maximal antichain in P (n, r).

(ii) If n is odd, then P (n, r)
⋂
Par(n(2r−n)−1

2
) and P (n, r)

⋂
Par(n(2r−n)+1

2
) are two maximal

antichains in P (n, r).
(iii) P (2n, n)

⋂
Par(0) is a maximal antichain in P (2n, n).

Proof. By Proposition 4.3 (iii), the rank of P (n, r) is r2 + (n− r)2. We set h = r2 + (n− r)2.
Since h ≡ n mod 2, if n is even also h is even, therefore, by Proposition 4.2(vi) it follows
that the bh

2
c-th rank level of P (n, r) is a maximal chain. Moreover, by Proposition 4.3 (iv)

it results that such rank level is the set {w ∈ P (n, r) : w ` bh
2
c − (n− r)2} = {w ∈ P (n, r) :

w ` r2+(n−r)2
2

− (n− r)2} = {w ∈ P (n, r) : w ` n(2r−n)
2
}.

If n is odd, also h is odd and by Proposition 4.2(vi) it follows that the bh
2
c-th rank level and

the dh
2
e-th rank level of P (n, r) are both maximal chains. By Proposition 4.3 (iv) it results

that such rank levels are respectively the sets {w ∈ P (n, r) : w ` bh
2
c − (n − r)2} = {w ∈

P (n, r) : w ` r2+(n−r)2−1
2

− (n− r)2} = {w ∈ P (n, r) : w ` n(2r−n)−1
2

} and {w ∈ P (n, r) : w `
dh
2
e− (n−r)2} = {w ∈ P (n, r) : w ` r2+(n−r)2+1

2
− (n−r)2} = {w ∈ P (n, r) : w ` n(2r−n)+1

2
}.

This proves (i) and (ii).
(iii) follows by (i). �

Remark 4.5. P (n, d, r) is not 1-covering. For example, in P (4, 2, 2) the g-partition 10|02
covers the g-partition 00|12 in P (4, 2, 2), but they differ in two places. Obviously also the
lattice P (n, d, r) is graded because it is finite and distributive, however we cannot use the
Proposition 3.2 to compute its rank functions.

5. P (n, d, r) as a Sand Piles Model with three Evolution Rules

In this section we describe the covering relation in the lattice P (n, d, r), which is not 1-
covering (a similar description for a particular sub-lattice of P (n, d, r) is given in [10]). We
describe the covering relation in P (n, d, r) using a discrete dynamical model with three
evolution rules. In this context we also call configurations the elements of P (n, d, r). In the
sequel, to comply with the terminology concerning the Sand Piles Models, if w ∈ P (n, d, r),
we represent the sequence of the positive parts of w as a not-increasing sequence of columns
of stacked squares and the sequence of the negative parts of w as a not-decreasing sequence
of columns of stacked squares. We call pile a column of stacked squares and grain each square
of a pile. For example, if n = 10, r = 6, d = 7, the configuration

:

is identified with the partitions (4, 3, 3, 1, 0, 0|0,−1,−1,−3) = 433100|0113 ∈ P (10, 7, 6). In
this section we denote by D(w) := D+(w) : D−(w) the configuration associated to w, where
D+(w) is the Young diagram (represented with not-increasing columns) of the partition
(ar, . . . , a1) and D−(w) is the Young diagram (represented with not-decreasing columns) of



14 C. BISI, G. CHIASELOTTI, G. MARINO, P.A. OLIVERIO

the partition (−b1, . . . ,−bn−r). Our goal is to define some rules of evolution that starting
from the minimum of P (n, d, r) allow us to reconstruct the Hasse diagram of P (n, d, r) (and
therefore to determine the covering relations in P (n, d, r)).
Let w = ar . . . a1|b1 . . . bn−r ∈ P (n, d, r). We formally set a0 = 0, ar+1 = r and b0 = 0. If
0 ≤ i ≤ r + 1 we call ai the ith-plus pile of w, and if 0 ≤ j ≤ n− r we call bj the jth-minus
pile of w. We call ai plus singleton pile if ai = 1 and bj minus singleton pile if bj = −1. If
1 ≤ i ≤ r + 1 we set ∆+

i (w) = ai − ai−1 and we call ∆+
i (w) the plus height difference of w

in i. If 1 ≤ j ≤ n − r we set ∆−j (w) = |bj| − |bj−1| and we call ∆−j (w) the minus height

difference of w in j. If 1 ≤ i ≤ r + 1, we say that w has a plus step at i if ∆+
i (w) ≥ 1. If

1 ≤ j ≤ n− r, we say that w has a minus step at j if ∆−j (w) ≥ 1.

Remark 5.1. The choice to set a0 = 0, ar+1 = r and b0 = 0 is a formal trick for decreasing
the number of rules necessary for our model. This means that when we apply the next rules
to one element w ∈ P (n, d, r) we think that there is an ”invisible” extra pile in the imaginary
place r + 1 having exactly r grains, an ”invisible” extra pile with 0 grains in the imaginary
place to the right of a1 and to the left of | and another ”invisible” extra pile with 0 grains in
the imaginary place to the left of b1 and to the right of |. However the piles corresponding
respectively to a0 = 0, ar+1 = r and b0 = 0 must be not considered as parts of w.

Evolution rules:

Rule 1: If the ith-plus pile has at least one grain and if w has a plus step at i+ 1 then one
grain must be added on the ith-plus pile.

: →

•

:

Rule 2: If there are some minus singleton piles, then the first of them from the left must
be shifted to the side of the lowest not empty plus pile.

: • → • :

Rule 3: One grain must be deleted from the jth-minus pile if w has a minus step at j and
|bj| > 1.

:

•

→ :
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Remark 5.2. (i) In the Rule 2 the lowest not empty plus pile can also be the invisible column
in the place r + 1. In this case all the plus piles are empty and an eventual minus singleton
pile must be shifted in the place r.
(ii) We take implicitly intended for that the shift of one minus singleton pile into a plus
singleton pile can be made if the number of plus piles (excluding ar+1 = r) with at least a
grain is less than r (otherwise we obtain a configuration that does not belong to P (n, d, r)).

We write w →k w′ (or w′ = w →k) to denote that w′ is a n-tuple of integers obtained from
w applying the Rule k, for k = 1, 2, 3. We also set

∇(w) = {w′ : w →k w′, k = 1, 2, 3}

Theorem 5.3. If w ∈ P (n, d, r) then ∇(w) = {w′ ∈ P (n, d, r) : w′ m w}.

Proof. We start to show that∇(w) ⊆ {w′ ∈ P (n, d, r) : w′mw}. Let w = ar . . . a1|b1 . . . bn−r ∈
P (n, d, r) and ar+1 = r the invisible pile in place r + 1. We distinguish the three possible
cases related to the previous rules.
Case 1: Let us assume that r ≥ i ≥ 1, ai 6= 0 and that w has a plus step at i + 1. If
w′ = w →1, then w′ = ar . . . ai+1(ai+1)ai−1 . . . a1|b1 . . . bn−r. It is clear that ||w′|| = d because
ai 6= 0. Since there is a plus step at i+1 we have ai+1−ai ≥ 1, hence ai+1 ≥ ai+1 > ai ≥ ai−1,
and this implies that w′ ∈ P (n, d, r). We must show now that w′ covers w in P (n, d, r). Since
w and w′ differ between them only in the place i for ai and ai + 1 respectively, it is clear
that there does not exist an element z ∈ P (n, d, r) such that w @ z @ w′. Hence w′ m w.
Case 2: Let us assume that in w there is a minus singleton pile bj, for some 1 ≤ j ≤ n− r.
Since ar+1 = r > 0, we can assume that ai+1 > 0, ai = 0, for some 1 ≤ i ≤ r. This means
that w has the following form: w = ar . . . ai+100 . . . 0|0 . . . 0(−1)bj+1 . . . bn−r. Applying the
Rule 2 to w we obtain w′ = w →2, where w′ = ar . . . ai+110 . . . 0|0 . . . 00bj+1 . . . bn−r. It is
clear then that w′ ∈ P (n, r) and ||w′|| = d since w′ is obtained from w with only a shift of
the pile -1 to the left in the place i. Let us note that the only elements z1, z2 ∈ P (n, r) such
that w @ z1 @ w′ and w @ z2 @ w′ are z1 = ar . . . ai+110 . . . 0|0 . . . 0(−1)bj+1 . . . bn−r and
z2 = ar . . . ai+100 . . . 0|0 . . . 00bj+1 . . . bn−r, but ||z1|| = d + 1 and ||z2|| = d − 1, hence z1, z2
are not elements of P (n, d, r). This implies that w′ covers w in P (n, d, r).
Case 3: If 1 ≤ j ≤ n − r and w has a minus step at j, we apply the Rule 3 to w on the
minus pile bj and we obtain w′ = w →3, where w′ = ar . . . a1|b1 . . . bj−1(bj + 1)bj+1 . . . bn−r.
Since w has a minus step at j, we have −bj + bj−1 = |bj| − |bj−1| ≥ 1, therefore w′ ∈ P (n, r)
because 0 ≥ bj−1 ≥ bj + 1 > bj ≥ bj+1 and ||w′|| = d since bj ≤ −2 implies bj + 1 < 0. As in
the case 1, we note that w′ covers w in P (n, d, r) because they differ between them only for
a grain in the place j.
We now must show that {w′ ∈ P (n, d, r) : w′ m w} ⊆ ∇(w). Let w′′ = a′′r . . . a

′′
1|b′′1 . . . b′′n−r

a generic element of P (n, d, r) such that w′′ A w. If we show that there exists an element
w′ = a′r . . . a

′
1|b′1 . . . b′n−r of P (n, d, r) such that w′ ∈ ∇(w) and w′′ w w′ we complete the

proof of the theorem. Since w′′ A w, there is a place where the corresponding component of
w′′ is an integer strictly bigger than the integer component of w corresponding to the same
place. We distinguish several cases.
Case A: We assume that a′′i > ai and ai+1 ≥ ai + 1 for some i ∈ {r− 1, . . . , 1}. In this case
we can apply the Rule 1 in place i to obtain w′ = w →1 such that w′′ w w′.
Case B: We assume that a′′i > ai and ai+1 = ai + 1 for some i ∈ {r− 1, . . . , 1}. In this case
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we have a′′i+1 ≥ a′′ı > ai = ai+1, i.e. a′′i+1 ≥ ai+1 + 1, therefore, if ai+2 ≥ ai+1 + 1 we can
apply the Rule 1 in place i + 1 to obtain w′, otherwise we have ai+2 = ai+1 = ai. Iterating
this procedure, to each step k ≥ 1 we can apply the Rule 1 in place i+ k to obtain w′ or it
necessarily results that ai+k = · · · = ai+1 = ai. Hence, if for no one k we can apply the Rule
1 in place i+k we necessarily arrive to the condition ar = · · · = ai+1 = ai. Since r ≥ a′′i > ai,
it must be ar < r, therefore we can apply the Rule 1 in place r to obtain a′r = ar + 1, with
a′′r ≥ a′r because a′′r ≥ · · · ≥ a′′i > ai = · · · = ar.
Case C: We assume that a′′r > ar. In this case we can apply the Rule 1 in place r.
Case D: We assume that 0 > b′′j > bj, for some j ∈ {1, . . . , n− r}. In this case we can apply
the Rule 3 in place j.
Case E: We assume that 0 = b′′j > bj and bj ≤ −2, for some j ∈ {1, . . . , n− r}. Also in this
case we can apply the Rule 3 in the place j.
Case F: We assume that 0 > b′′j > bj = −1, for some j ∈ {1, . . . , n − r}. In this case the
number of negative parts of w′′ is strictly lower than the number of negative parts of w, and
since ||w|| = ||w′′|| = d, it follows that there exists at least one index i ∈ {1, . . . , r} such that
a′′i > 0 and ai = 0. We choose then such index i maximal, so that we have i = r or i ≤ r− 1
and ai+1 > 0.
We suppose at first that i = r. In this case we have a′′r ≥ 1 and 0 = ar = · · · = a1, there-
fore we can apply the Rule 2 and to move the ”negative” grain from the place j into the
place r, so that the (n, r)-partition w′ = 100 . . . 0|0 . . . 0bj+1 · · ·n−r is such that ||w′|| = d and
w′′ w w′.
If i ≤ r − 1 and ai+1 > 0 we apply again the Rule 2 to move the ”negative” grain from the
place j into the place i, so that the (n, r)-partition w′ = ar . . . ai+11 . . . 0|0 . . . 0bj+1 · · ·n−r is
such that ||w′|| = d and w′′ w w′. �

Below we draw the Hasse diagram of the lattice P (4, 3, 2) by using the evolution rules 1,2,3
starting from the minimum element of this lattice, which is 10|22. We label a generic edge
of the next diagram with the symbol k if it leads to a production that uses the Rule k, for
k ∈ {1, 2, 3}.
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:

: :

: : :

: : :

: :

:

1 3
3 1 2 3

2 3
1 3

1 2

1 3 2 1
3 1

6. Signed Young Diagrams

To study the order properties in P∗ we need now to compare between them two generic
elements in P∗; to such aim we use the ”minimal” lattice P (n, r) that contains them. At
first we set P = {P (n, r) : n ≥ r ≥ 0} and let us note that we can see the couple (P,�) as
an infinite lattice, where the relation P (n, r) � P (n′, r′) means that P (n, r) is a sub-lattice
of P (n′, r′). A part of the Hasse diagram of the lattice (P,�) is the following:

P (0, 0)

P (1, 0) P (1, 1)

P (2, 0) P (2, 1) P (2, 2)

(P,�) : P (3, 0) P (3, 1) P (3, 2) P (3, 3)

. . . . . .

Let w = at . . . a1|b1 . . . bs ∈ P∗ have signature (t, s). Then we set w+ = at − t, w− = |bs| − s
and also
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(16) w∗ =


at . . . a1|b1 . . . bs if w+ ≤ 0 and w− ≤ 0
at . . . a10w+|b1 . . . bs if w+ > 0 and w− ≤ 0
at . . . a1|0w−b1 . . . bs if w+ ≤ 0 and w− > 0
at . . . a10w+|0w−b1 . . . bs if w+ > 0 and w− > 0

(17) r =

{
t if w+ ≤ 0
t+ w+ if w+ > 0

(18) n =

{
r + s if w− ≤ 0
r + s+ w− if w− > 0

It is immediate to verify then that w∗ ∈ P (n, r) and also:

Proposition 6.1. With the previous notation, it results that w∗ ∈ P (n′, r′), for some non-
negative integers n′, r′, if and only if P (n, r) � P (n′, r′). Equivalently, {P (n′, r′) ∈ P : w∗ ∈
P (n′, r′)} is the principal up-set in P generated by P (n, r).

The result of the previous proposition justifies the following definition. If w ∈ P∗ has
signature (t, s) and w∗, r, n are respectively as in (16), (17), (18), we call the integers n and
r the minimal parameters of w and the g-partition w∗ ∈ P (n, r) the minimal regularized of
w. Let w1, w2 ∈ P∗ and let (ni, ri) be the minimal parameters of wi for i = 1, 2, so that
w∗i ∈ P (ni, ri) for i = 1, 2. Then we consider w∗1 and w∗2 as elements of P (n′, r′), where
n′ = max{r1, r2} + max{n1 − r1, n2 − r2} and r′ = max{r1, r2}, and we can compare them
with respect to the partial order v of P (n′, r′). It is easy to observe that the previous P (n′, r′)
is exactly the sup between the elements P (n1, r1) and P (n2, r2) in the lattice (P,�); we call
it the minimal square lattice of w1 and w2 and we denote it by the symbol ML(w1, w2). Let
us note that if w1, w2 ∈ P∗ then

(19) w1 v w2 ⇐⇒ w∗1 v w∗2 in ML(w1, w2)

Therefore, by (19) we can identify wi with w∗i , for i = 1, 2. For example, if we take w1 =
331|45 ∈ P∗ and w2 = 621|3 ∈ P∗, we have (with the previous notations) w∗1 = 331|00045,
w∗2 = 621000|003, therefore n1 = 8 and r1 = 3, n2 = 9 and r2 = 6. Then we have
ML(w1, w2) = P (11, 6) and the elements w∗1 and w∗2 will be identified respectively with the
following two elements of P (11, 6) : w1 = 331000|00045 and w2 = 621000|00003. Since in
P (11, 6) we have w1 ∧ w2 = 321000|00045, it follows that w1 and w2 are not comparable
in P (11, 6), therefore by (19) this means that w1 and w2 are not comparable in P∗. The
following proposition shows that locally there is no loss of information if we work in the
minimal square lattice of two signed partitions:

Proposition 6.2. If w1, w2 ∈ P∗ and X = ML(w1, w2), then [w∗1, w
∗
2]X = [w1, w2]P∗. In

particular, w2 covers w1 in P∗ if and only if w2 covers w1 in X.

Proof. Immediate by (19). �

If n ≥ r ≥ 0, we call (n, r)-signed Young diagram (briefly (n, r)-SYD) an ordered couple
T = T1 : T2, where T1 is a r × r colored table whose green squares form a classical Young
diagram and the remaining squares are colored red and T2 is a (n− r)× (n− r) colored table
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whose orange squares form a classical Young diagram and the remaining squares are colored
blue. For example, a (7, 3)-SYD is the following:

(20) :

If we think each green row with k boxes as the positive integer k and each blue row with
l boxes as the negative integer −l, we can identify each (n, r)-SYD with an unique (n, r)-
partition in P (n, r) and viceversa. For example, if T is the (7, 3)-SYD in (20), we obviously
can identify it with the (7, 3)-partition 320|0114. When a (n, r)-partition w ∈ P (n, r) is
identified with a (n, r)-SYD T = T1 : T2, we write T n,r(w) := T , T n,r

+ (w) := T1, T
n,r
− (w) := T2

and pn,r(T ) := w, moreover, we denote respectively by Gn,r(w) and Rn,r(w) the sub-tables of
T n,r
+ (w) with green and red squares and respectively by On,r(w) and Bn,r(w) the sub-tables

of T n,r
− (w) with orange and blue squares. Sometimes we call Gn,r(w), Rn,r(w), On,r(w),

Bn,r(w) respectively the green, red, orange, blue diagrams of w. From our definitions, if w =
ar . . . a1|b1 . . . bn−r ∈ P (n, r), it follows that Gn,r(w) is the Young diagram of the partition
ar, . . . , a1 and On,r(w) is the Young diagram of the partition (n− r) + b1, . . . , (n− r) + bn−r.
By (15) it results then that the sum of the number of boxes in Gn,r(w) and of the number
of the boxes in On,r(w) is ar + · · · + a1 + b1 + · · · + bn−r + (n − r)2 = ρ(w), where ρ is the
rank function of P (n, r). In the sequel, when we have to represent someone of the green, red,
orange, or blue diagrams of w outside of its corresponding square table, we draw the diagram
without colors. For example, if T is the (7, 3)-SYD in (20) and w = p7,3(T ) = 320|0114, then

G7,3(w) = R7,3(w) = O7,3(w) = B7,3(w) =

If H and H ′ are sub-tables of some rectangular table (in particular, they can be usual
Young diagrams), we write H ⊆ H ′ to denote that H is a sub-table of H ′. For example,

⊆ and ⊆

Proposition 6.3. If w1, w2 ∈ P (n, r), then:
(i) w1 v w2 ⇐⇒ Gn,r(w1) ⊆ Gn,r(w2) and On,r(w1) ⊆ On,r(w2);
(ii) w2 covers w1 if and only if exactly one of the following two conditions is verified: Gn,r(w2)
has only one square more w.r.t. Gn,r(w1) or On,r(w2) has only one square more w.r.t.
On,r(w1).
If w1, w2 ∈ P∗ and ML(w1, w2) = P (n, r), then:
(iii) w1 v w2 iff Gn,r(w∗1) ⊆ Gn,r(w∗2) and On,r(w∗1) ⊆ On,r(w∗2).

Proof. (i) Straightforward from the definitions.
(ii) It is equivalent to say that P (n, r) is 1-covering.
(iii) It follows by (19) and by (i). �

If w ∈ P∗ has minimal parameters n, r, we set T (w) := T n,r(w∗), T+(w) := T n,r
+ (w∗),

T−(w) := T n,r
− (w∗), G(w) := Gn,r(w∗), R(w) := Rn,r(w∗), O(w) := On,r(w∗), B(w) :=

Bn,r(w∗), and we call T (w) the signed Young diagram (briefly SYD) of shape w. If T = T1 : T2



20 C. BISI, G. CHIASELOTTI, G. MARINO, P.A. OLIVERIO

is a (n, r)-SYD, we denote by T t = T t
1 : T t

2 the (n, r)-SYD such that T t
i is obtained from

a reflection of Ti around the principal diagonal, for i = 1, 2. We call T t the transposed
of T . If w ∈ P (n, r) and T = T n,r(w), we call (n, r)-conjugate of w the (n, r)-partition
pn,r(T t), and we denote it by conjn,r(w). For example, if w = 7222100|01225 ∈ P (12, 7), then
conj12,7(w) = 5411111|11134. If w ∈ P∗ has minimal parameters n, r and v = conjn,r(w), we
set conj(w) := v∗ and we call conj(w) the conjugate of w.
If w = aq . . . a1|c1 . . . cp ∈ P and i is a non-negative integer we set m+

i (w) = |{j ∈ {1, . . . , r} :
aj = i}| and m−i (w) = |{j ∈ {1, . . . , n− r} : cj = i}|. In particular, if w is a usual partition
aq, . . . , a1, then the multiplicity of the integer i in w is exactly m+

i (w).

Proposition 6.4. Let n ≥ r be fixed, T = T1 : T2 a (n, r)-SYD and w = pn,r(T ). If R1

and C1 are respectively the numbers of rows and of columns of Gn,r(w) and R2 and C2 are
respectively the numbers of rows and of columns of On,r(w), then

m+
0 (w) = max{0, r −R1} and m−0 (w) =

{
m+

n−r(w2) if C2 ≥ R2

0 otherwise
,

where w2 = pn,r(D2 : ∅).

Proof. It is a straightforward consequence of the definition of (n, r)-SYD and of the definition
of pn,r(T ). �

Proposition 6.5. Let w = ar . . . a1|c1 . . . cn−r ∈ P (n, r) and w′ = conjn,r(w), then:
i) w′ ∈ P (n, r);
ii) if w has rank k in P (n, r), also w′ has rank k in P (n, r);
iii) if w′ = a′r . . . a

′
1|c′1 . . . c′n−r, then

m+
0 (w) = r − a′r, m+

i (w) = a′r−i+1 − a′r−i for i = 1, . . . , r − 1, m+
r (w) = a′1 − 0 and

m−0 (w) = n−r−c′n−r, m−j (w) = c′n−r−j+1−c′n−r−j, for j = 1, . . . , n−r−1, m−n−r(w) = c′1−0.

Proof. i) If w ∈ P (n, r), then ar ≤ r, ar ≥ ar−1 ≥ · · · ≥ a1, c1 ≤ c2 · · · ≤ cn−r and
cn−r ≤ (n− r). From the definition of conjn,r, it follows that a′i = number of elements of w
greater or equal to (r + 1− i) (analogously for c′j). Hence the a′is of w′ appear obviously in
a decreasing order and a′r ≤ r (similarly for c′j), therefore w′ ∈ P (n, r).
ii) The rank of w is the number of squares of w∗ in its Young Diagramm, hence it stays
constant under transposition of the Young Diagram.
iii) Without loss of generality, we prove that m+

i (w) = a′r−i+1 − a′r−i. Since a′i = number of
elements of w greater or equal to (r + 1 − i), it follows that a′r−i+1 − a′r−i is the number of
elements of w greater or equal than i, but not greater or equal to i+ 1, which means that it
is exactly the number of elements equal to i and the statement follows. �

In the sequel, any way of putting a positive integer in each box of some sub-table H will be
called a filling of H. If H and H ′ are two sub-tables (not necessarily of the same table), we
call filling of H : H ′ a filling of H and a filling of H ′. If w ∈ P∗, we call signed Young tableau
(briefly SYT) of shape w a filling of G(w) : O(w) that is weakly increasing across each row
and strictly increasing down each column. For example, if w = 32|114 ∈ P∗, then w has
minimal parameters 7, 4, w∗ = 320|0114 and

2 3 3
3 4 :

1 1 2 2
5 5 6
6 7 7
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is a (7, 3)-SYT of shape w.
If w ∈ P∗ has minimal parameters n, r, a standard signed Young tableau (briefly SSYT) of
shape w is a SYT of shape w whose entries are filled with all the integers from 1 to ρ(w∗),
each occurring once (where ρ(w∗) is the rank of the minimal regularized w∗ in the lattice
P (n, r)). Since the total number of boxes in both G(w) and O(w) is exactly ρ(w∗), when we
have a SSYT of shape w, the integers across each row of G(w) and of O(w) must appear in
strictly increasing order. For example, if w = 32|114 then

5 7 9
6 8 :

1 3 12 15
2 4 13
10 11 14

is a (7, 3)-SSYT of shape w.
If D is a classical Young diagram, the square of D located on the i-th row and on the j-th
column is called extremal if it is the last square of the row i and also the last square of the
column j.

Proposition 6.6. Let w ∈ P∗ be with minimal parameters n, r and minimal regularized w∗.
Then there is a natural bijection between saturated chains in P (n, r) starting in 0̂ and ending
in w∗ and SSYT’s of shape w.

Proof. We apply the same technique described in [42] for the case of the Young lattice. Let
w0 = 0̂, w1, . . . , wh−1, wh = w∗ be a saturated chain starting in 0̂ and ending in w∗, where
h = ρ(w∗). When we consider wi and wi−1, by proposition 6.3 ii) it results that one and
only one of the two following conditions is realized : Gn,r(wi) \Gn,r(wi−1) is a unique square
or On,r(wi) \ On,r(wi−1) is a unique square. Then, in such square we place the integer i.
Now, also if the placement of the integers h, . . . , 1 can occur in an alternating way between
Gn,r(w∗) and On,r(w∗), however, this leads always to an increasing placement of the previous
integers on the rows and on the columns of Gn,r(w∗) and of On,r(w∗). �
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