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Abstract. In 1973 Brylawski introduced and studied in detail the dominance partial order on
the set Par(m) of all the integer partitions of a fixed positive integer m. As it is well known, the
dominance order is one of the most important partial orders on the finite set Par(m). Therefore
it is very natural to ask how it changes if we allow the summands of an integer partition to
take also negative values. In such a case, m can be an arbitrary integer and Par(m) becomes
an infinite set. In this paper we extend the classical dominance order in this more general case.
In particular, we consider the resulting lattice Par(m) as an infinite increasing union on n of
a sequence of finite lattices O(m,n). The lattice O(m,n) can be considered a generalization of
the Brylawski lattice. We study in detail the lattice structure of O(m,n).

1. Introduction

The dominance order for the integer partitions of a fixed positive integer m was introduced and
studied by Brylawski in [11]. This partial order is very important in the symmetric functions
theory (see [22]) and in symmetric group representation theory (see [26]). Up to now the
dominance order has been studied only for integer partitions with positive summands. In this
case, the set of all the integer partitions having fixed sum m is a finite set. What happens if we
try to extend this order in the event that the summands of the partitions can also have negative
value?
In [6] and [20], the authors have been recently studied some arithmetical properties of the
signed integer partitions. If m is a fixed integer, a signed partition with sum m is a finite se-
quence of integers ak, . . . , a1, a−1, . . . , a−l such that ak ≥ · · · ≥ a1 ≥ 0 ≥ a−1 ≥ · · · ≥ a−l and
ak + · · ·+a1 +a−1 + · · ·+a−l = m. In [11] Brylawski introduced and studied the lattice LB(m)
of the classical integer partitions having sum m ≥ 0 with respect to the dominance order. At
present, however, an explicit study of the signed integer partitions from the order point of view
has not been started yet. A poset S(n, r), depending on two non negative integers n ≥ r ≥ 0,
which can be considered a lattice of a particular type of signed partitions, has been introduced
in [8] in order to study some extremal combinatorial sum problems. S(n, r) is isomorphic to
the direct product M(r) ×M(n − r)∗, where M(n) is the lattice of all the integer partitions
with distinct parts and maximum part not exceeding n, introduced by Stanley in [28]. In this
paper we introduce the concept of dominance order E for signed integer partitions having sum
m, where now m can be any integer. The main novelty in this new context is that the set of
the signed partitions with sum m and order E is a infinite poset, that we denote by Par(m).
Therefore, in order to use finite methods, we introduce another integer n ≥ 0 and we consider
the sub-poset O(m,n) of Par(m) with exactly n non negative summands and exactly n non
positive summands whose absolute value of the extremal summands is at most n. In this way
we obtain an increasing chain O(m, 0) ⊆ O(m, 1) ⊆ O(m, 2) ⊆ · · · of sub-posets of Par(m)
such that Par(m) =

⋃
n≥0O(m,n) and we study the poset O(m,n) as a local model of Par(m).

At first we determine the not obvious covering relation in the poset O(m,n). The better way
to describe with precision the covering relation in O(m,n) is to consider O(m,n) as a discrete
dynamical model with some evolution rules. The way to study a lattice of classical partitions as
a discrete dynamic model having some particular evolution rules begins implicitly in [11], where
Brylawski proposed a dynamical approach to study the lattice LB(m). However, the explicit
theoretical association between integer partitions and discrete dynamical model begins in [15],
where Goles and Kiwi introduced the Sand Piles Model SPM(m). If m is a non negative inte-
ger, a configuration of SPM(m) is represented by an ordered partition of m, i.e. a decreasing
sequence a = (a1, ..., am) of non negative integers having sum m, and each positive entire unit
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is interpreted as a sand grain whose movement respects the following rule:

Rule 1 (vertical rule): one grain can move from a column to the next column if the difference
of height of these two columns is greater than or equal to 2.

The discrete dynamical model SPM(m) is a very interesting graded sub-lattice of LB(m) (see
[15]) that has inspired a wide literature on topics related to it (see for example [12], [13], [14],
[16], [17], [19], [21], [24]).
In the scope of the discrete dynamical systems (see [1], [2], [3], [4], [5], [7], [18], [23]), the Bry-
lawski lattice can be interpreted then as the model LB(m), where the movement of a sand grain
respects the previous Rule 1 and the following Rule 2:

Rule 2 (horizontal rule): If a column containing p + 1 grains, is followed by a sequence of
columns containing p grains and next by one column containing p− 1 grains, then one grain of
the first column can slip to the last column.

The previous rules in our model O(m,n) become more complicated because we have the necessity
to establish a balancing between positive and negative summands of the signed partitions.
We give now a brief description of the several sections of this paper. In section 2 we introduce
the infinite set P (m) of all the signed partitions of a fixed integer m. On P (m) we define at
first a quasi-order E (i.e. a binary reflexive and transitive relation) and next we define the
signed dominance order poset Par(m) as a quotient poset of the quasi-poset (P (m),E). We
prove that Par(m) has a lattice-structure by means of the increasing chain {O(m,n)}n≥0 of its
finite sub-posets whose union is Par(m). In section 3 we study the lattice O(m,n) as a discrete
dynamical model by means of some evolution rules that generalize the classical evolution rules
of the Brylawski model. We prove that these rules completely characterize the covering relations
of O(m,n). In section 4 we use the results established in section 3 in order to determine the
maximum number of elements that an element of O(m,n) can cover in O(m,n). In section 5
we extend the classical duality concept in the case of signed partitions and we show that this
duality is an anti-automorphism in the lattice O(m,n). As a consequence of the duality we also
deduce some structural properties of O(m,n). In section 6 we describe in detail the structure
of the local intervals in O(m,n). This description is particularly useful if someone want to
study the sequential and parallel dynamics of our model. For example, the characterization of
the local intervals given in [11] is widely used in order to find non-trivial properties in all the
discrete dynamical models that are extracted from the Brylawski lattice (see [17]). Finally, in
section 7 we use all the results established in the previous sections in order to determine the
Möbius function of the lattice O(m,n).

2. The Signed Dominance Order Lattice

We begin with the definition of a signed partition, which was introduced in [6] and studied in
[20] from an arithmetical point of view.

Definition 2.1. Let p and q be two non-negative integers. A signed partition (briefly s-partition)
with balance (p, q) is a finite sequence w of integers w1, . . . , wp, wp+1, . . . , wp+q, called parts of
w, such that w1 ≥ · · · ≥ wp ≥ 0 ≥ wp+1 ≥ · · · ≥ wp+q. A s-partition is a s-partition with
balance (p, q), for some non-negative integers p and q.

In what follows we write w in the following form w = (w1, . . . , wp|wp+1, . . . , wp+q), however
in the numerical examples we write w = w1 . . . wp | |wp+1| . . . |wp+q|, where |wj | is the absolute
value of wj . If it is not necessary to distinguish which parts of a s-partition w are non-negative
integers and which are non-positive integers, we simply write w = l1 · · · ln, with li integer for
i = 1, . . . , n. We shall denote by P the set of all the s-partitions. We call w1, . . . , wp the non-
negative parts of w and wp+1, . . . , wp+q the non-positive parts of w; also, we call positive parts of
w the integers wi with wi > 0 and negative parts of w the integers wj with wj < 0. We denote
by (|) the empty s-partition, i.e. the s-partition without parts. If w ∈ P and m is an integer
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such that m = w1 + · · ·+ wp + wp+1 + · · ·+ wp+q, we say that w is a s-partition of the integer
m and we shall write w ` m. We set then P (m) := {w ∈ P : w ` m}.

Remark on Notation 2.2. If w is a s-partition, we denote by {w ≥ 0} [{w > 0}] the multi-
set of all the non-negative [positive] parts of w and by {w ≤ 0} [{w < 0}] the multi-set of the
absolute values of all the non-positive [negative] parts of w. We denote respectively with |w|≥,
|w|≤, |w|>, |w|< the cardinality of {w ≥ 0}, {w ≤ 0}, {w > 0}, {w < 0}. We call the ordered
couple (|w|>, |w|<) the signature of w and we note that (|w|≥, |w|≤) is exactly the balance of w.
Finally, we set ||w|| = |w|> + |w|<.

For example, if w = 444221000|011333, then {w ≥ 0} = {43, 22, 11, 03}, {w ≤ 0} = {01, 12, 33},
{w > 0} = {43, 22, 11}, {w < 0} = {12, 33}, w has balance (|w|≥, |w|≤) = (9, 6) and signature
(|w|>, |w|<) = (6, 5).
If w is a s-partition having signature (t, s) and balance (p, q), then w has the form

(1) w = (w1, . . . , wt, wt+1, . . . , wp|wp+1, . . . , wp+q−s, wp+q−s+1, . . . , wp+q)

where w1 ≥ · · · ≥ wt > 0 > wp+q−s+1 ≥ · · · ≥ wp+q, wt = . . . = wp = 0 and wp+1 = . . . =
wp+q−s = 0. We also write the s-partition in (1) in the following form:

(2) w = (w1, . . . , wt, 0p−t|0q−s, wp+q−s+1, . . . , wp+q)

If w is a s-partition as in (2), we call reduced s-partition of w the following s-partition:

(3) wr = (w1, . . . , wt|wp+q−s+1, . . . , wp+q)

Let now m be a fixed integer. If v = l1 · · · ln and w = l′1 · · · l′n′ are two s-partitions in P (m) with
the same balance we define:

(4) w E w′ if and only if l1 + l2 + · · ·+ li ≤ l′1 + l′2 + · · ·+ l′i

for all i ∈ {1, . . . , n}.
If w is a s-partition having signature (s, t) and N is an integer satisfying N ≥ max{s, t} then
we define a s-partition wN = (W1, . . . , W2N ), having balance (N,N), as follows:

Wi :=

 wri if 1 ≤ i ≤ s
0 if s < i ≤ 2N − t
wri−2N+t+s if 2N − t < i ≤ 2N

where wr is the reduced s-partition of w.
For example if w = (32100|014) and N = 5, then wr = (321|14) and wN = (32100|00014).
We define then on P (m) the following binary relation: if v, w ∈ P (m), with signatures (s, t)
and (i, j) respectively, we set

(5) v E w if and only if vN E wN ,

where the integer N needs to satisfy N ≥ max{s, t, i, j}. The following proposition is directly
derived.

Proposition 2.3. E is a quasi-order on the set P (m); moreover, if v, w are two s-partition in
P (m) with signatures (s, t) and (i, j) respectively, then the following conditions are equivalent:
(i) v E w;
(ii) vN E wN for any N ≥ max{s, t, i, j}.

If v, w ∈ P (m), we set

(6) v ∼ w if and only if {v > 0} = {w > 0} and {v < 0} = {w < 0}
Then ∼ is an equivalence relation on P (m) and it results that

(7) v ∼ w if and only if v E w and w E v

Notice that if v and w are two s-partitions in P (m), then v = w iff v and w are uniform and
v ∼ w.
By (7) it follows that ∼ is exactly the equivalence relation on P (m) induced from the quasi-order
E, therefore if F is any subset of P (m), we can consider on the quotient set F/ ∼ the usual
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partial order induced by E, that we here denote E′. We recall that E′ is defined as follows: if
[v], [w] ∈ F/ ∼ then

(8) [v]E′ [w] if and only if v E w

for any/all v, w ∈ F. In the next definition we introduce our principal object of study.

Definition 2.4. We call signed dominance order poset of the integer m the partially ordered
set Par(m) := (P (m)/ ∼,E′).

If w ∈ F, in some case we set [w]F∼ = {v ∈ F : v ∼ w}, that is the equivalence class of w in
F/ ∼.

Remark 2.5. If F ⊆ H ⊆ P we can consider F/ ∼ as a subset of H/ ∼ through the identification
of [v]F∼ with [v]H∼ , for each v ∈ F. Therefore, if F ⊆ H ⊆ P we can always assume that (F/ ∼ E′)
is a sub-poset of (H/ ∼ ,E′).

Let now n be a fixed non-negative integer and let O(m,n) be the subset of Par(m) with at
most n positive summands, at most n negative summands, and no summands ai with |ai| > n.

In what follows, by the previous discussion, we shall use w rather than W
n

whenever working
in O(m,n), and thus it results:

O(m,n) := {(w1, . . . , wn|wn+1, . . . , w2n) ∈ P (m) : n ≥ w1, w2n ≥ −n}
Moreover, we continue to denote the partial order E′ with the symbol E. With the notation
vCw we mean vEw with v 6= w. We also write wlw′ if w′ covers w with respect to the partial
order E.
Let us note that O(m,n) is non empty if and only if −n2 ≤ m ≤ n2, therefore we shall assume
−n2 ≤ m ≤ n2. We set now

1̂m,n :=

 (n, . . . , n, r, 0, . . . , 0| − n, . . . ,−n) if m < 0
(n, . . . , n|0, . . . , 0,−r,−n, . . . ,−n) if m > 0
(n, . . . , n| − n, . . . ,−n) if m = 0,

with n and −n repeated exactly k times respectively when m < 0 and m > 0, where k and r
are the unique non-negative integers such that n2 − |m| = kn+ r, with r < n. We also set

0̂m,n :=

 (0, . . . , 0| − h, . . . ,−h,−(h+ 1), . . . ,−(h+ 1)) if m < 0
(h+ 1, . . . , h+ 1, h, . . . , h|0, . . . , 0) if m > 0
(0, . . . , 0|0, . . . , 0) if m = 0,

with −(h + 1) and h + 1 repeated exactly s times respectively when m < 0 and m > 0, where
h and s are the unique non-negative integers such that |m| = hn + s, with s < n. Let us note
that s > 0 implies h+ 1 ≤ n because |m| ≤ n2.

Theorem 2.6. O(m,n) is a lattice with maximum 1̂m,n and minimum 0̂m,n.

Proof. We prove at first that 0̂m,n E w E 1̂m,n for all w ∈ O(m,n). We consider only the
case m > 0, because with a similar argument we can also prove the other cases. Let w =

(w1, . . . , wn|wn+1, . . . , w2n) ∈ O(m,n). Since n ≥ w1 ≥ · · · ≥ wn ≥ 0, we have
∑j

i=1wi ≤ jn for
each j ∈ {1, . . . , n} and the same inequality obviously still holds for each j ∈ {n+1, . . . , 2n−k−
1}. Moreover, for each j ∈ {2n−k, . . . , 2n}, we have

∑2n
i=j+1wj ≥ (2n−j)(−n), which is equal to

the sum of the last 2n−j entries in 1̂m,n. Hence wE1̂m,n. On the other hand, since
∑n

i=1wi ≥ m,

we have
∑j−1

i=1 wi ≥ j(h+ 1) for each j in {1, . . . , s} and
∑j

i=1wi ≥ s(h+ 1) + (j − s)h = s+ jh
for each j in {s + 1, . . . , n}. Note that the members on the right-hand side in the previous
inequalities are equal to the sums of the first j integers in 0̂m,n. Because wn+1, . . . , w2n are

non-positive, the inequality
∑j

i=1wi ≥ m holds for each j ∈ n+ 1, · · · 2n. Hence 0̂m,n E w.
We denote now by H(m,n) the set of all the (2n + 1)-ples of integers T = (t0, t1, . . . , tn :
tn+1, . . . , t2n) having the following properties:

(H1): 0 = t0 ≤ t1 ≤ · · · ≤ tn ≥ tn+1 ≥ · · · ≥ t2n = m (unimodality).
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(H2): 2ti ≥ ti−1 + ti+1 for i = 1, . . . , 2n− 1 (concavity).

(H3): t1 − t0 ≤ n and t2n − t2n−1 ≥ −n.

If w = (w1, . . . , wn|wn+1, . . . , w2n) ∈ O(m,n), we set

ŵ = (s0, s1, . . . , sn : sn+1, . . . , s2n),

where s0 := 0, sk :=
∑k

i=1wi for k = 1, . . . , 2n. It is immediate to verify that ŵ ∈ H(m,n).
Therefore we can consider the application Λ : O(m,n) → H(m,n) such that Λ(w) = ŵ. The
map Λ is bijective. It follows immediately from the definition of ŵ and simple arithmetic that
Λ is injective, so it remains to show that Λ is surjective. If T = (t0, t1, . . . , tn : tn+1, . . . , t2n) ∈
H(m,n), we take wi := ti− ti−1 for i = 1, . . . , 2n. By (H1), (H2) and (H3) we deduce then that
w = (w1, . . . , wn|wn+1, . . . , w2n) is an element of O(m,n) such that ŵ = T .
If T ′ = (t′0, t

′
1, . . . , t

′
n : t′n+1, . . . , t

′
2n) and T ′′ = (t′′0, t

′′
1, . . . , t

′′
n : t′′n+1, . . . , t

′′
2n) are two elements

of H(m,n), we set ω(T ′, T ′′) := (t0, t1, . . . , tn : tn+1, . . . , t2n), where ti = min{t′i, t′′i } for i =
0, 1, . . . , 2n. It is easy then to verify that ω(T ′, T ′′) ∈ H(m,n). Let now w′, w′′ ∈ O(m,n) and
T = ω(Λ(w′),Λ(w′′)). Since T ∈ H(m,n) and Λ is bijective, there exists a unique element
w ∈ O(m,n) such that ŵ = T . From the definitions of ŵ and of dominance order it follows that
w is exactly the maximal lower bound of the elements w′ and w′′ with respect to the partial
order D. Hence w = w′ ∧ w′′. Thus O(m,n) has always a maximum element 1̂m,n.
Finally, if w,w′ ∈ O(m,n) the set of the upper bounds of w and w′ is not-empty because it
always contains 1̂m,n, therefore we take u =

∧
{z ∈ O(m,n) : z w w, z w w′} in order to have

u = w′ ∨ w′′. �

Example 2.7. Let m = −7 and n = 8. If we take w′ = 75444220|44444555 and w′′ =
85433220|33334468 as elements of O(−7, 8), then

Λ(w′) = (0, 7, 12, 16, 20, 24, 26, 28, 28 : 24, 20, 16, 12, 8, 3,−2,−7)

and

Λ(w′′) = (0, 8, 13, 17, 20, 23, 25, 27, 27 : 24, 21, 18, 15, 11, 7, 1,−7).

So that, if T = ω(Λ(w′),Λ(w′′)), then

T = (0, 7, 12, 16, 20, 23, 25, 27, 27 : 24, 20, 16, 12, 8, 3,−2,−7).

The signed partition w ∈ O(−7, 8) such that ŵ = T is w = 75443220|34444555. Hence w =
w′ ∧ w′′.

Below we draw the Hasse diagram of the lattice O(−4, 3):
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Fig.1 000|112

000|022

000|013 100|122

100|113

100|023 110|222

110|123 200|222

110|033 111|223 200|123

111|133 200|033 210|223

210|133 300|223

211|233 300|133

220|233

221|333 310|233

311|333

O(−4, 3) :
320|333

As a direct consequence of the previous theorem we obtain the following result.

Corollary 2.8. Par(m) is a lattice.

Proof. It suffices to note that the poset Par(m) can be identified with the increasing union of
its sub-posets O(m,n), for n = 0, 1, 2, . . . . �

3. O(m,n) as a Discrete Dynamical Model

In order to describe better the covering rules of the lattice O(m,n), in this section we consider
O(m,n) as a particular type of discrete dynamical model. A discrete dynamical model is a
system whose elements (called configurations) evolve in discrete time under certain evolution
rules (see [1], [2], [3], [4], [5], [7], [17], [18], [23] for several interesting studies concerning such
models). In our case a configuration is an element of O(m,n). We describe now the evolution
rules of our model. In order to illustrate how such rules act in O(m,n), we represent any signed
partition w ∈ O(m,n) by using two square-boxes, one for the non negative parts (on the left)
and the other for the non positive parts (on the right). Each positive unit is represented as
a black ball in the left square-box and each negative unit as a black ball in the right square-
box. Therefore, in the following pictures, when we sum +1 [−1] over a negative part, the
corresponding negative column of black balls (in the right square-box) loses [gains] a ball. For
example if w = 53210|00245 ∈ O(0, 5), then we represent w as in the next picture:
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|

If i ∈ {1, 2, . . . , 2n− 1} we define ci : O(m,n)→ O(m,n), where ci(w) = v (w, v ∈ O(m,n)), as
follows:

- if i 6= n, then:

when it happens that wi−wi+1 ≥ 2, we put vi = wi−1, vi+1 = wi+1+1, vk = wk if k /∈ {i, i+1};

- if i = n, then:

when it happens that wn > 0 > wn+1, we put vn = wn − 1, vn+1 = wn+1 + 1, vk = wk if
k /∈ {n, n+ 1};

in all the other cases we put v = w.

Example 3.1. In O(−3, 5), if w = 43331|22445 then c4(w) = 43322|22445 and c5(w) =
43330|12445. In pictures:

|

c47−→
|

|

c57−→
|

If i ∈ {1, 2, . . . , 2n − 2} and j ∈ {i + 2, . . . , 2n}, we define sij : O(m,n) → O(m,n), where
sij(w) = v (w, v ∈ O(m,n)), as follows:

- if i ∈ {1, 2, . . . , n−2} and j ∈ {i+2, . . . , n}, or if i ∈ {n+1, . . . , 2n−2} and j ∈ {i+2, . . . , 2n},
then:

when it happens that wi − 1 = wi+1 = · · · = wj−1 = wj + 1, we put vi = wi − 1, vj = wj + 1,
vk = wk if k /∈ {i, j};

- if i ∈ {1, 2, . . . , n} and j ∈ {max{i+ 2, n+ 1}, . . . , 2n}, then:

when it happens that wi − 1 = wi+1 = · · · = wj−1 = wj + 1 = 0, we put vi = vj = 0, vk = wk if
k /∈ {i, j}.

in all the other cases we put v = w.

Example 3.2. In O(−3, 5), if w = 31100|01223 then s37(w) = 31000|00223 and s7(10)(w) =
31100|02222. In pictures:

|

s377−−→
|
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|

s7(10)7−−−→
|

If i = n and j ∈ {n + 2, . . . , 2n}, we define csij : O(m,n) → O(m,n), where csij(w) = v
(w, v ∈ O(m,n)), as follows:
when it happens that wn ≥ 2 and wn+1 = · · · = wj−1 = wj + 1 = 0, we put vn = wn− 1, vj = 0,
vk = wk if k /∈ {n, j};

in all the other cases we put v = w.

Example 3.3. In O(15, 5), if w = 54433|00013 then cs59(w) = 54432|00003. In picture:

|

cs597−−→
|

If i ∈ {1, 2, . . . , n − 1} and j = n + 1, we define scij : O(m,n) → O(m,n), where scij(w) = v
(w, v ∈ O(m,n)), as follows:
when it happens that wi − 1 = wi+1 = · · · = wn = 0 and wn+1 ≤ −2, we put vi = 0,
vn+1 = wn+1 + 1, vk = wk if k /∈ {i, n+ 1};

in all the other cases we put v = w.

Example 3.4. In O(−6, 5), if w = 43100|22235 then sc36(w) = 43000|12235. In picture:

|

sc367−−→
|

If w 6= v ∈ O(m,n) we write w ↓ v if v can be obtained from w by applying one of the previous
evolution rules.
In the next result we prove that the previous evolution rules are exactly the covering relations
in O(m,n) with respect to the dominance partial order.

Theorem 3.5. If v, w ∈ O(m,n) then

w m v if and only if w ↓ v

Proof. Take w = (w1, . . . , wn|wn+1, . . . , w2n) and v = (v1, . . . , vn|vn+1, . . . , v2n). We assume
at first that w ↓ v. In this case w and v differ between them in exactly two places h and
k, with h < k, where vh = wh − 1 and vk = wk + 1. Hence w B v. Let u ∈ O(m,n) such
that w D u D v. We must show that u = v or u = w. For all t ∈ {1, 2, . . . , 2n} with t < h,
from the conditions w D u D v and wt = vt we obtain ut = wt = vt. In a similar way it also
results ut = wt = vt for all t ∈ {1, 2, . . . , 2n} with t > k because v1 + · · · + vh + · · · + vk =
w1 + · · ·+ (wh − 1) + · · ·+ (wk + 1) = w1 + · · ·+wh + · · ·+wk. Let us observe that uh = vh or
uh = wh because vh = wh − 1 and w D u D v. We distinguish now several cases. If k = h + 1,
from the conditions wh + wk = uh + uk = vh + vk we deduce respectively that u = v or u = w.
Let k > h + 1 with h 6= n and k 6= n + 1. If uh = vh, then vh+1 = vh = uh ≥ uh+1 ≥ vh+1,
therefore uh+1 = vh+1; iterating this procedure we find ut = vt for all 0 ≤ t ≤ 2n − 1, with

t 6= k. Hence also uk = vk because
∑2n

s=1 us =
∑2n

s=1 vs. This proves that u = v. We assume now
uh = wh. Since vh + vh+1 ≤ uh + uh+1 ≤ wh + wh+1, it follows that wh+1 − 1 ≤ uh+1 ≤ wh+1.
If uh+1 = wh+1 − 1 take t ∈ {h+ 2, . . . , k} and we obtain ut ≤ ut−1 ≤ · · · ≤ uh+1 = wh+1 − 1 =
wt − 1 ≤ wt+1. Therefore wh + wh+1 + wh+2 + · · · + wk = uh + uh+1 + uh+2 · · · + uk ≤
wh+ (wh+1−1) +wh+2 + · · ·+wk < wh+wh+1 +wh+2 + · · ·+wk, that is absurd. Hence it must
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be necessarily uh+1 = wh+1. Iterating this procedure we deduce that ut = wt for 1 ≤ t ≤ 2n
with t 6= k. Hence, as before, uk = wk. This proves that u = w.
We consider now k > h + 1 and h = n. As before let u ∈ O(m,n) such that w D u D v and so
uh = vh or uh = wh. If uh = vh, since w ↓ v E u and ut ≤ 0 for all h + 1 ≤ t ≤ k − 1, we have
uh+1 = · · · = uk−1 = 0 = vh+1 = · · · = uk−1. Hence uk = vk and this prove that u = v. We
assume now uh = wh. Since vh+vh+1 ≤ uh+uh+1 ≤ wh+wh+1, it follows that −1 ≤ uh+1 ≤ 0. If
uh+1 = −1 take t ∈ {h+ 2, . . . , k} and we obtain ut ≤ ut−1 ≤ · · · ≤ uh+1 = −1 ≤ wt. Therefore
wh+wh+1 +wh+2 + · · ·+wk = uh+uh+1 +uh+2 · · ·+uk ≤ wh+ (wh+1− 1) +wh+2 + · · ·+wk <
wh + wh+1 + wh+2 + · · · + wk, that is absurd. Hence it must be necessarily uh+1 = wh+1 = 0.
Iterating this procedure we deduce that ut = 0 for n ≤ t ≤ k − 1 with t 6= k. Hence, as before,
uk = wk. This proves that u = w.
Finally we assume k > h+ 1 and k = n+ 1. If uh = vh = 0 then obviously uh+1 = · · · = un = 0
and so ut = vt for all 1 ≤ t ≤ 2n, with t 6= k. Hence also uk = vk and finally u = v.
If uh = wh = 1 then 0 = wh+1 ≥ uh+1 = · · · = un ≥ 0. It follows ut = wt+1 for all
t ∈ {1, · · · , 2n} \ {k}. Therefore also uk = wk. This proves that u = w.
We must prove now that

w m v =⇒ w ↓ v.
More generally, we prove that if w B v then there exists u ∈ O(m,n) such that w ↓ u D v. In
fact, if this holds, then w m v implies w B v and so there exists u with w ↓ uD v. Hence w 6= u
and, since we assume w m v, we obtain u = v and w ↓ v. We divide the proof in four cases.
Case 1. Assume that there exists i ∈ {1, · · · , 2n} such that wi − wi+1 ≥ 2, v1 + · · · + vi <
w1 + · · ·+ wi. Assume also that either i 6= n or wi+1 6= 0. Then u := ci(w) satisfies w ↓ uD v.
In fact all partial sums of the ut are trivially equal to the correspondent partial sums of the wt,
except for t = i. But in this case v1 + · · ·+ vi ≤ w1 + · · ·+wi − 1 = u1 + · · ·+ ui and so uD v.
Case 2. Alternatively, assume that wn ≥ 2, wn+1 = 0 and v1 + · · ·+ vn < w1 + · · ·+ wn. Let
us note that in such a case there exists j > n+ 1 such that wj < 0 since necessarily there exists
j > n+ 1 such that vj > wj and this is impossible if each wj with j > n+ 1 is equal to 0. Let
wj the first negative part of w. Then we set

u :=

{
cj−1(w) if wj ≤ −2,
csij(w) if wj = −1.

In both cases u satisfies w ↓ uD v.
Case 3. Assume that there exists i ∈ {1, · · · , 2n} such that wi − wi+1 = 1, v1 + · · · + vi <
w1 + · · ·+ wi and wi 6= 1. Let j ∈ {i+ 2, i+ 3, · · · , 2n} such that wj−1 > wj . Then we set

u :=

{
cj−1(w) if wj−1 − wj ≥ 2,
sij(w) if wj−1 − wj = 1.

We have that u satisfies w ↓ uD v.
Case 4. Assume that there exists i ∈ {1, · · · , 2n} such that wi − wi+1 = 1, v1 + · · · + vi <
w1 + · · ·+ wi and wi = 1. Let j ∈ {i+ 2, i+ 3, · · · , 2n} such that wj−1 > wj . Then we set

u :=

 cj−1(w) if wj−1 − wj ≥ 2 and j > n,
scj−1(w) if wj−1 − wj ≥ 2 and j = n,
sij(w) if wj−1 − wj = 1.

In each case w ↓ uD v. This completes the proof. �

The result of the previous theorem tell us that O(m,n) is also a discrete dynamical model whose
local evolution rules are described by means of the operators ci, for i = 1, 2, . . . , 2n− 1 and sij ,
csij and scij for i = 1, 2, . . . , 2n − 2 and j = i + 2, i + 3, . . . , 2n − 2. Since O(m,n) is a finite

lattice, when we see it as a discrete dynamical model, its starting configuration is 1̂m,n and its
unique fixed point is 0̂m,n.
If w = (w1, . . . , wn|wn+1, . . . , w2n) ∈ O(m,n), we set w := (−w2n, . . . ,−wn+1| − wn, . . . ,−w0).
Then w is an element of O(−m,n) which we will call symmetric of w.
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Remark 3.6. It is easy to verify that the map

ψ : w ∈ O(m,n) 7→ w ∈ O(−m,n)

is a lattice isomorphism which transforms each covering rule in O(m,n) into a corresponding
”symmetric” rule in O(−m,n). For example, if v = csij(w) in O(m,n) then v = scji(w) in
O(−m,n). Analogously for all the other covering rules. Therefore, we restrict ourselves to the
case 0 ≤ m ≤ n2.

Now let:

Q(n) := {(w1, . . . , wn|wn+1, . . . , w2n) ∈ P : n ≥ w1, w2n ≥ −n}.
On the subset Q(n) we consider the following partial order v :

(w1, . . . , wn|wn+1, . . . , w2n) v (w′1, . . . , w
′
n|w′n+1, . . . , w

′
2n)

if and only if

wk ≤ w′k, for k = 1, . . . , 2n.

In the following result we give the basic properties of the poset (Q(n),v). We recall at first the
definition of the classical lattice L(l, n). If l is a non-negative integer, the set L(l, n) is the set
of all the usual partitions with at most l parts and with largest part at most n. Such lattice was
introduced by Stanley in [28], who showed that L(l, n) is Peck (a graded poset is called Peck
poset if it is rank-symmetric, rank-unimodal and strongly Sperner (see [29])).

Proposition 3.7. (i) (Q(n),v) is a finite distributive (hence also graded) lattice.
(ii) The rank function of Q(n) is ρ : Q(n)→ N such that

(9) ρ((w1, . . . , wn|wn+1, . . . , w2n)) = w1 + · · ·wn + wn+1 · · ·+ w2n + n2.

(iii) The rank of Q(n) is 2n2.
(iv) If −n2 ≤ m ≤ n2, then O(m,n) is exactly the (m+ n2)-th rank level (i.e. the subset of the
elements having rank m+ n2) of Q(n).
(v) Q(n) is isomorphic to L(n, n)× L(n, n)∗.
(vi) Q(n) is Peck.

(vii) |Q(n)| =
(
2n
n

)2
.

Proof. (i) Immediate.
(ii) Let w = l1 . . . ln and w′ = l′1 . . . l

′
n be two elements in Q(n) such that w′ covers w. Then there

exists exactly a place k where w and w′ are different and that in this place results l′k = lk + 1.
In fact, by contradiction, we must distinguish three cases:
1) there exists exactly one place k where w and w′ are different, but l′k 6= lk + 1. Since by
hypothesis w′ covers w, we have w @ w′; therefore it must be lk < l′k. This implies that
lk < lk + 1 < l′k. But if we take u = l1 · · · lk−1(lk + 1)lk+1 · · · ln, then w @ u @ w′ and u ∈ Q(n).
This contradicts our assumption because w′ covers w.
2) There exist at least two places k and s, with s > k, where w and w′ differ, with l′k > lk
and l′s > ls. We take then u = l′1 . . . l

′
k−1l

′
klk+1 . . . ls−1lsls+1 . . . ln and we obtain r ≥ l′1 ≥ · · · ≥

l′k−1 ≥ l′k > lk ≥ lk+1 ≥ · · · ≥ ls−1 ≥ ls ≥ ls+1 ≥ · · · ≥ ln ≥ −(n − r), therefore u ∈ Q(n), and
since w @ u @ w′ contradicting the hypothesis that w′ covers w.
3) w and w′ are equal in all their parts. In this case w = w′, against the hypothesis.
We assume now that w and w′ are different only in a place k and that l′k = lk + 1. It is obvious
then that w′ covers w in Q(n).
Hence: w′ covers w in Q(n) iff there exists exactly a place k where w and w′ are different and
that in this place results l′k = lk + 1. Finally, since 0̂ = 0 · · · 0| − n · · · − n is the minimum of

Q(n) and 0̂ ` −n2, the (ii) follows.
(iii) and (iv) are both direct consequences of (ii).
(v) It follows at once from the definitions of Q(n) and L(l, n).
(vi) L(l, n) and L(l, n)∗ are in general both Peck lattices and the Peck-property is preserved
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from the direct product operation, hence the result follows by (v).

(vii) Since |L(l, n)| =
(
l+n
n

)
, (vii) follows from (v). �

As a direct consequence of the previous proposition we obtain the following properties of the
lattices O(m,n) when n is fixed:

Corollary 3.8. If n ≥ 0 is fixed, the sequence {|O(m,n)|}−n2≤m≤n2 is symmetric, unimodal
and moreover∑n2

m=−n2 |O(m,n)| =
(
2n
n

)2
.

4. Covering Properties in O(m,n)

We denote by c(m,n) the maximum number of elements that a configuration of O(m,n) can
cover in O(m,n). In this section we use the results of the previous section in order to compute
explicitly the number c(m,n). Let p be an integer such that 0 ≤ p ≤ n2. If we start from the

maximum 1̂p−n
2,n of O(p − n2, n) and we apply only ci and sij where 0 ≤ i < j ≤ n − 1, we

obtain a sub-poset of O(p − n2, n) that we denote by B+(p, n). Analogously, if we start from

the maximum 1̂n
2−p,n of O(n2 − p, n) and we apply only ci and sij where n ≤ i < j ≤ 2n − 1,

we obtain a sub-poset of O(n2 − p, n) that we denote by B−(p, n).

Proposition 4.1. B+(n, n) is a lattice isomorphic to the classical Brylawski lattice LB(n).

Proof. The starting configuration of B+(n, n) is (n, 0, . . . , 0| − n, . . . ,−n). Each configuration
w ∈ B(n, n) has the form w = (w1, . . . , wn|−n, . . . ,−n), where w1 ≥ w1 ≥ · · · wn ≥ 0 is a usual
partition of the non-negative integer n obtained from the starting configuration (n, 0, . . . , 0) with
the two Brylawski’s evolution rules described in Proposition 2.3 of [11]. It is clear then that
B+(n, n) is a sub-poset of O(n− n2, n) isomorphic to LB(n), hence it is also a lattice. �

In order to establish the main result of this section, we define at first the two following param-
eters:
- if 0 ≤ p ≤ n2 we set

α(p, n) :=



0 if p ∈ {0, 1, n2 − 1, n2}
1 if p = 2 or p = n2 − 2
2 if n = 4 and p = 8

b12(−3 +
√

8p+ 1)c if 1 ≤ p ≤ n2−n+2
2

n− 3 if n2−n+2
2 < p < n2+n−2

2 and n 6= 4

b12(−3 +
√

8(n2 − p) + 1)c if n2+n−2
2 ≤ p ≤ n2;

- if 0 ≤ m ≤ n2, we set

δ(m,n) :=

{
0 if m = n2 or m = n2 − 4 or m = n− 2
1 otherwise .

Then our main result of this section is the following:

Theorem 4.2. If 0 ≤ m ≤ n2 then

c(m,n) =



3 if n = 3 and m = 4
2n− 4 + δ(m,n) if 0 ≤ m ≤ 1 or n− 2 ≤ m ≤ n

2n− 5 + δ(m,n) if

 2 ≤ m ≤ n− 3
or

n+ 1 ≤ m ≤ 2n− 1

 and

 n 6= 3
or

m 6= 4


α(m1, n) + α(m2, n) + δ(m,n) otherwise,

where m1 = n2 −
(
α(dn

2+m
2
e,n)+1

)(
α(dn

2+m
2
e,n)+2

)
2 and m2 = m1 −m.

In order to prove the previous theorem we introduce some new lattices and we divide the proof
in several steps.
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Lemma 4.3. Let 0 ≤ p ≤ n2. The map φ : B+(p, n)→ B+(n2 − p, n) given by

w = (w1, . . . , wn| − n, . . . ,−n) 7→ w̃ = (n− wn, . . . , n− w1| − n, . . . ,−n)

is such that:

i If v = ci(w) in B+(p, n), then ṽ = cn−i(w̃);
ii if v = sij(w) in B+(p, n), then ṽ = s(n+1−j)(n+1−i)(w̃).

In particular, φ is a lattice-isomorphism.

Proof. Let us note that B+(p, n) ⊂ O(p−n2, n) and B+(n2− p, n) ⊂ O(−p, n). Let us suppose
that v = ci(w) in B+(p, n). In this case we have wi−wi+1 ≥ 2, vi = wi−1, vi+1 = wi+1 +1 and
vk = wk if k /∈ {i, i+ 1} and so w̃n−2−i − w̃n−1−i = n−wi+1 − n+wi ≥ 2, ṽn−2−i = n− vi+1 =
n− wi+1 − 1 = w̃n−2−i − 1, ṽn−1−i = n− vi = n− wi + 1 = w̃n−1−i + 1 and obviously ṽk = w̃k
if k /∈ {n− 2− i, n− 1− i}. Hence ṽ = cn−2−i(w̃). The inverse implication is exactly identical.
In a similar way we can prove ii. �

If 0 ≤ p ≤ n2, we denote now by c+(p, n) [c−(p, n)] the maximum number of elements that an
element of B+(p, n) [B−(p, n)] can cover in B+(p, n) [B−(p, n)].

Lemma 4.4. If 0 ≤ p ≤ n2 then c+(p, n) = c−(p, n) = α(p, n).

Proof. The number of elements that a given w ∈ B+(p, n) can cover is less than the number of
times wi ≥ wi+1 and they are equal if and only if wi − wi+1 ≥ 2 for all wi 6= wi+1.
If n = 4 then as noted before c+(p, n) ≤ 2 (c−(p, n) ≤ 2). The element w = (4220|4444) ∈
B+(8, 4) (w = (4444|0224) ∈ B−(8, 4)) can cover 2 elements, so in this case c+(8, 4) = c−(8, 4) =
α(8, 4). In what follows we consider thus n 6= 4 or p 6= 8.

If p = 0 or p = n2 the result is obvious. Let us suppose now 1 ≤ p ≤ n2−n+2
2 . As noted

by Brylawski in [11], if (m+1)(m+2)
2 ≤ p ≤ (m+1)(m+2)

2 + m + 1 = (m+1)(m+4)
2 , with m positive

integer, then c+(p, n) = m. The first inequality gives 0 ≤ m ≤ 1
2(−3+

√
8p+ 1) and since m ∈ Z,

m ≤ b12(−3+
√

8p+ 1)c. An element in B+(p, n) which covers such a number of elements is given
by (m+1+ε(p,m, 0),m+ε(p,m,m+1),m−1+ε(p,m,m), . . . , 1+ε(p,m, 2), ε(p,m, 1), 0, . . . , 0|−
n, . . . ,−n), where ε(p,m, k) is defined by

ε(p,m, k) =

{
1 if k + 1 ≤ p− (m+1)(m+2)

2
0 elsewhere .

If n2−n+2
2 < p ≤ n2

2 , then it is easy to see that the maximal number of elements that an element
w ∈ B+(p, n) can cover is equal to n− 3. The other claims follow directly by Lemma 4.3. �

Given an element w = (w1, . . . , wn|wn+1, . . . , w2n) ∈ O(m,n), let p1 := w1 + · · · + wn, p2 :=
−wn+1−· · ·−w2n and let us consider the elements w+ = (w1, . . . , wn|−n, . . . ,−n) ∈ B+(p1, n)
and w− = (n, . . . , n|wn+1, . . . , w2n) ∈ B−(p2, n).

Lemma 4.5. Let w ∈ O(m,n), w+, and w− as before such that the numbers of elements that
w+ ∈ B+(p1, n) and w− ∈ B−(p2, n) can cover are exactly c+(p1, n) and c−(p2, n). Then
cn(w) = sij(w) = csnj(w) = sci(n+1)(w) = w for each i ∈ {1, . . . , n−1} and j ∈ {n+2, . . . , 2n}
if and only if p1, p2 ∈ {0, 2, n

2+n−2
2 }.

Proof. If p1 = 0 (p2 = 0), c+(p1, n) = 0 (c−(p2, n) = 0) and obviously the claim holds in this
case. If p1 = 2 (p2 = 2), c+(p1, n) = 1 (c−(p2, n) = 1) and w+ = (2, 0, . . . , 0| − n, . . . ,−n)

(w− = (n, . . . , n|0, . . . , 0,−2)), so the claim holds again. If p1 = n2+n−2
2 (p2 = n2+n−2

2 ) then
c+(p1, n) = n−2 (c−(p2, n) = n−2) and the element in B+(p1, n) (B−(p2, n)) which covers such
a number of elements is w+ = (n, n − 1, . . . , 2, 0| − n, . . . ,−n) (w− = (n, . . . , n|0,−2, · · · − n))
and thus the first implication is proved.
One between cn(w), sij(w), csnj(w) and sci(n+1)(w) is different from w if and only if wn 6= 0 or
wn = 0 and the last entry greater than zero is equal to 1 and at the same time wn+1 6= 0 or
wn+1 = 0 and the first entry lesser than zero is equal to −1. If p1 = 1 (p2 = 1) then obviously

the assertion holds. If 3 ≤ p1 ≤ n2−n+2
2 (3 ≤ p2 ≤ n2−n+2

2 ) then by taking w ∈ O(m,n) such
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that w+
(
w−
)

is equal to (c++1+ε(p1, c
+, 0), c++ε(p1, c

+, 1), . . . , 1+ε(p1, c
+,m), ε(p1, c

+, c++

1), 0, . . . , 0| − n, . . . ,−n), where c+ = c+(p1, n) and ε is defined as in the Lemma 4.4, we have
that w+ (w−) covers exactly c+ (c−) elements, wn = 0 (wn+1 = 0) and the last (first) entry

greater (lesser) than zero in w is equal to 1 (−1). If n2+n−2
2 ≤ p1 ≤ n2 (n

2+n−2
2 < p2 ≤ n2)

then the element v = w̃, where w is defined as before, is such that v+ (v−) covers c+(p1, n)

(c−(p2, n)) elements and vn−1 6= 0 (vn 6= 0). Finally if n2−n+2
2 < p1 <

n2+n−2
2 then if w+

(
w−
)

is equal to (n, n− 2 + ξ(p1, n, 1), . . . , 1 + ξ(p1, n, n− 2), ξ(p1, n, n− 1)| − n, . . . ,−n), where ξ is
defined by

ξ(p, n, k) =

{
1 if p− n2−n+2

2 ≥ k
0 elsewhere ,

clearly satisfies all our requests and the lemma is proved. �

Lemma 4.6. If 0 ≤ m ≤ n2 then

c(m,n) = max{c+(m1, n) + c−(m2, n) + δ(m,n) : 0 ≤ m2 ≤ m1 ≤ n2,m1 −m2 = m}.
Proof. Let w ∈ O(m,n), w+ ∈ B+(p1, n) and w− ∈ B−(p2, n) as before. Obviously the number
of elements that w covers is less than or equal to c+(p1, n) + c−(p2, n) + 1. Thus

c(m,n) ≤ max{c+(m1, n) + c−(m2, n) + 1 : 0 ≤ m2 ≤ m1 ≤ n2,m1 −m2 = m}.
By Lemma 4.5 the equality holds if and only if there exists p1 and p2, with 0 ≤ p2 ≤ p1 ≤ n2,
p1 − p2 = m such that c+(p1, n) + c−(p2, n) = max{c+(m1, n) + c−(m2, n) : 0 ≤ m2 ≤ m1 ≤
n2,m1 − m2 = m} and p1, p2 are different from 0, 2 and n2+n−2

2 . This is the case when

m ∈ {0, . . . n2} \ {n2, n2 − 4, n− 2}. �

Proof of the Theorem 4.2
By Lemma 4.6 we have to find for each m ∈ {0, . . . , n2} the values of m1 and m2, with m1−m2 =
m that maximize the quantity {c+(m1, n) + c−(m2, n) + δ(m,n)}.
If n = 3 and m = 4 then by Lemma 4.4 the value of c+(7, 3) and c−(3, 3) is maximum and it
holds that c+(7, 3) = c−(3, 3) = 1 and moreover δ(4, 3) = 1. Thus by Lemma 4.6 c(m,n) = 3.
In what follows we can consider thus n 6= 3 or m 6= 4.
If m ∈ {0, 1, n − 2, n − 1, n} then we can choose m1 and m2 such that m1 − m2 = m and
c+(m1, n) and c−(m2, n) are maximum. By Lemma 4.4 they are equal to n−2 and so c(m,n) =
2n− 4 + δ(m,n).
If 2 ≤ m ≤ n − 3 or n + 1 ≤ m ≤ 2n − 1 then we can choose m1 and m2 such that c+(m1, n)
and c−(m2, n) are equal, one to n− 2, the other to n− 3 and so c(m,n) = 2n− 5 + δ(m,n).
If 2n ≤ m ≤ n2 then a value close to the searched maximum can be found by taking values of

m1 and m2 symmetric by respect to n2

2 . Therefore we consider

m1 =

⌈
n2 +m

2

⌉
and m2 = m1 −m.

We set now

m1 = n2 − (c1 + 1)(c1 + 2)

2
and m2 = m1 −m,

where c1 := c+(m1) =
⌊
1
2

(
−3 +

√
8(n2 −m1) + 1

)⌋
.

Let’s note that

c+(m1, n) = c+
(

(c1 + 1)(c1 + 2)

2
, n

)
=

=

⌊
1

2

(
−3 +

√
4(c1 + 1)(c1 + 2) + 1

)⌋
=

=

⌊
1

2

(
−3 +

√
4c21 + 12c1 + 9

)⌋
=

=

⌊
1

2
(−3 + 2c1 + 3)

⌋
= c1.
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while since m2 = m1 −m ≥ m2 and m2 ≤ n2−n+2
2 we have

c−(m2, n) ≥ c−(m2, n).

This completes the proof of Theorem 4.2.

Example 4.7. Let us consider for example n = 6 and m = 19. In such case m1 =
⌈
36+19

2

⌉
= 28,

m2 = 28− 19 = 9. It follows c1 = 2, m1 = 30 and m2 = 11.
Thus c(m,n) = 2 + 3 + 1 = 6.

p

α(p, 6)

m1 m1m2

m2

5. Duality in O(m,n)

In this section we extend the concept of Brylawski duality to the lattice O(m,n). Also in
our case we show that the duality is an anti-automorphism of O(m,n) and we deduce some
important structural properties of the lattice O(m,n).

Definition 5.1. Let w ∈ O(m,n). For each 1 ≤ k ≤ n let d−(w, k) be the number of wi such
that wi+k ≤ 0 and let d+(w, k) be the number of wi such that wi−k ≥ 0. The dual or conjugate
of w, that we denote by w∗, is the signed partition (−d−(w, n)+n, . . . ,−d−(w, 1)+n|d+(w, 1)−
n, . . . , d+(w, n)− n). If W ⊆ O(m,n) we set W ∗ := {w∗ : w ∈W}.

If w ∈ O(m,n), let M+(w) be the n × n 0-1 matrix with rows sum equal to the vector of the
nonnegative part of w, (w1, . . . , wn) and no 0 lying left to a 1 and let M−(w) be the n × n
0-1 matrix with rows sum equal to the opposite of the vector of the non-positive part of w,
−(wn+1, . . . , w2n) and no 0 lying left to a 1. Note that M+(w∗) = tM−(w) and M−(w∗) =
tM+(w). Hence M+(w∗∗) = tM−(w∗) =

t(tM+(w)
)

= M+(w), M−(w∗∗) = tM+(w∗) =
t(tM−(w)

)
= M−(w) and thus w∗∗ = w.

Proposition 5.2. Let v, w ∈ O(m,n). Then w covers v if and only if v∗ covers w∗. Hence
duality is an anti-automorphism of O(m,n).

Proof. Let u ∈ O(m,n) such that u E v∗ and u covers w∗. By the claim and the transitive
property it follows w = w∗∗ C u∗ E v∗∗ = v and since v covers w, we have u∗ = v and thus
u = u∗∗ = v∗, so v∗ covers u∗. The reverse implication follows directly from the identity
w∗∗ = w.
Let v, w in O(m,n) such that w covers v. In each case there exist two indices i and j such that
i < j, wi = vi + 1 and wj = vj − 1.
Let us suppose 0 ≤ i < j ≤ n − 1. Since wi = vi + 1, wj = vj − 1 and wk = vk for each
k ∈ {0, . . . , 2n− 1} \ {i, j} we have d+(w,wi) > d+(v, wi), d

+(w,wj) < d+(v, wj), d
+(w,wk) =

d+(v, wk) for each k ∈ {0, . . . , n−1}\{i, j} and d−(w,wk) = d−(v, wk) for each k ∈ {n, . . . , 2n−
1}. Thus w∗n−1+wi

= d+(w,wi) − n > d+(v, wi) − n = vn−1+wi , wn−1+wj = d+(w,wj) − n <
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d+(v, wj)− n = vn−1+wj , and w∗k = v∗k for each k ∈ {0, . . . , 2n− 1} \ {n− 1 + wi, n− 1 + wj}.
Moreover i < j implies wi > wj . Hence w C v. In a similar way we prove the same result when
0 ≤ i ≤ n− 1 < j ≤ 2n− 1 or n ≤ i < j ≤ 2n− 1. The proposition is proved. �

Corollary 5.3. v ∨ w = (v∗ ∧ w∗)∗.

In [11] (Proposition 2.11) a class of particular types of sublattices is examined by virtue of their
specific symmetry properties. In our context we can describe a similar situation as follows.
If 0 ≤ k ≤ n we set

kO(m,n) := {w ∈ O(m,n) : w1 = k},

k1̂(m,n) :=

{
(k, . . . , k, r1, 0, . . . , 0| − n, . . . ,−n) if k − n2 ≤ m ≤ kn− n2
(k, . . . , k|0, . . . , 0,−r2,−n, . . . ,−n) if kn− n2 ≤ m ≤ kn ,

where r1 = m+ n2 −
⌊
m+n2

k

⌋
k, r2 = −(kn−m) +

⌊
kn−m
n

⌋
n,

k0̂(m,n) :=

{
(k, 0, . . . , 0| − h1, . . . ,−h1,−(h1 + 1), . . . ,−(h1 + 1)) if k − n2 ≤ m ≤ k
(k, h2 + 1, . . . , h2 + 1, h2, . . . , h2|0, . . . , 0) if k ≤ m ≤ kn

where h1 =
⌊
k−m
n

⌋
, h2 =

⌊
m−k
n−1

⌋
, and also

kO(m,n) := {w ∈ O(m,n) : w2n = −k},

k1̂
(m,n) :=

{
(n, . . . , n,R1, 0, . . . , 0| − k, . . . ,−k) if −kn ≤ m ≤ n2 − kn
(n, . . . , n|0, . . . , 0,−R2,−k, . . . ,−k) if n2 − kn ≤ m ≤ n2 − k ,

where R1 = m+ kn−
⌊
m+kn
n

⌋
n, R2 = n2 −m+

⌊
n2−m
k

⌋
k,

k0̂
(m,n) :=

{
(0, . . . , 0| −H1, . . . ,−H1,−(H1 + 1), . . . ,−(H1 + 1),−k) if −kn ≤ m ≤ −k
(H2 + 1, . . . ,H2 + 1, H2, . . . ,H2|0, . . . , 0,−k) if −k ≤ m ≤ n2 − k

where H1 =
⌊
−k−m
n−1

⌋
, H2 =

⌊
m+k
n

⌋
.

Proposition 5.4. (i) kO(m,n) is a sublattice of O(m,n) having maximum k1̂(m,n) and min-

imum k0̂(m,n).
(ii) kO(m,n) is a sublattice of O(m,n) having maximum k1̂

(m,n) and minimum k0̂
(m,n).

Proof. It is easy to see that if w ∈ kO(m,n) (w ∈ kO(m,n)) then k0̂(m,n) E w E k1̂(m,n)

( k0̂
(m,n) E w E k1̂

(m,n)). Now by definition of infimum and supremum, if w,w′ ∈ kO(m,n)

(w,w′ ∈ kO(m,n)), then k0̂(m,n)Ew∧w′Ew ( k0̂
(m,n)Ew∧w′Ew) and wEw∨w′E k1̂(m,n)

(w E w ∨ w′ E k1̂
(m,n)). Thus both w ∧ w′ and w ∨ w′ are in kO(m,n) ( kO(m,n)). �

In order to determine the dual of the previous sublattices, we set

Ok(m,n) := {w ∈ O(m,n) : wn+k−1 > wn+k = −n},

1̂k, (m,n) :=

{
(n, . . . , n, s1, 0, . . . , 0|1− n, . . . , 1− n,−n, . . . ,−n) if k − n2 ≤ m ≤ k
(n, . . . , n|0, . . . , 0,−s2, 1− n, . . . , 1− n,−n, . . . ,−n) if k ≤ m ≤ kn ,

where s1 is the remainder of the division between m− k + n2 and n, while s2 is the remainder
of the division between kn−m and n− 1,

0̂k, (m,n) :=

{
(0, . . . , 0| − q1, . . . ,−q1,−q1 − 1, . . . ,−q1 − 1,−n, . . . ,−n) if k − n2 ≤ m ≤ kn− n2
(q2 + 1, . . . , q2 + 1, q2, q2|k − n, . . . , k − n) if kn− n2 ≤ m ≤ kn ,

where q1 =
⌊
kn−n2−m

n−k

⌋
and q2 =

⌊
m−kn+n2

n

⌋
, and also

Ok(m,n) := {w ∈ O(m,n) : n = wn−k−1 > wn−k},

1̂
(m,n)
k :=

{
(n, . . . , n, n− 1, . . . , n− 1, S1, 0, . . . , 0| − n, . . . ,−n) if −kn ≤ m ≤ −k
(n, . . . , n, n− 1, . . . , n− 1|0, . . . , 0,−S2,−n, . . . ,−n) if −k ≤ m ≤ n2 − k ,
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where S1 is the remainder of the division between m+ kn and n− 1 and S2 is the remainder of
the division between n2 − k +m and n,

0̂
(m,n)
k :=

{
(n− k, . . . , n− k|Q1, . . . , Q1, Q1 + 1, . . . , Q1 + 1) if −kn ≤ m ≤ n2 − kn
(n, . . . , n,Q2 + 1, . . . , Q2 + 1, Q2, . . . , Q2|0, . . . , 0) if n2 − kn ≤ m ≤ n2 − k ,

where Q1 =
⌊
n2−kn−m

n

⌋
and Q2 =

⌊
m−n2+kn

n−k

⌋
.

Let us note that if −n2 ≤ m < k or kn < m ≤ n2 the subsets kO(m,n) and Ok(m,n) are
empty, while if −n2 ≤ m < −kn or n2 − k < m ≤ n2 the subsets kO(m,n) and Ok(m,n) are
empty.

Proposition 5.5. (i) Ok(m,n) is a sublattice of O(m,n) having maximum 1̂k, (m,n) and mini-

mum 0̂k, (m,n).
(ii)Ok(m,n) is a sublattice of O(m,n) having maximum 1̂

(m,n)
k and minimum 0̂

(m,n)
k .

(iii) Ok(m,n) = ( kO(m,n))∗ and Ok(m,n) = ( kO(m,n))∗.
(iv) The following identities hold: k

pO(m,n) = kO(m,n)∩ pO(m,n), kOp(m,n) = kO(m,n)∩
Op(m,n), kOp(m,n) = kO(m,n)∩Op(m,n), kO

p(m,n) = kO(m,n)∩ Op(m,n), kOp(m,n) =

kO(m,n) ∩Op(m,n) and Okp(m,n) = Ok(m,n) ∩Op(m,n).

Proof. Let us note that 1̂k, (m,n) =
(
k0̂(m,n)

)∗
, 0̂k, (m,n) =

(
k1̂(m,n)

)∗
, 1̂

(m,n)
k =

(
k0̂

(m,n)
)∗

and

0̂k(m,n) =
(
k1̂

(m,n)
)∗

. Now let us observe that w ∈ ( kO(m,n))∗ if and only if w1 = k, that is
d+(w, j) = 0 ∀j > k and d+(w, k) > 0. This is equivalent to w∗n+k−1 > w∗n+k = −n, and thus to

w∗ ∈ Ok(m,n). This proves (iii).
Parts (i) and (ii) follow directly by part (iii) and Proposition 5.2. The identities in part (iv) are
a direct consequence of the definitions. �

The following lemma is necessary in order to describe a fundamental structural property of the
lattice O(m,n).

Lemma 5.6. Let A = {w1, . . . , wr} ⊂ O(m,n) be a set of signed partitions. Then the following
are equivalent:

(i) A has a common pairwise infimum;
(ii) for each l ∈ {1, . . . , 2n} there exists s ∈ {1, . . . r} such that

(10)
l∑

k=0

wi,k =
l∑

k=1

wj,k ≤
l∑

k=1

ws,k for each i, j ∈ {1, . . . r} \ {s};

(iii) for each l ∈ {1, . . . , 2n} there exists s ∈ {1, . . . r} such that

(11)
2n−1∑
k=l

wi,k =
2n∑
k=l

wj,k ≥
2n∑
k=l

ws,k for each i, j ∈ {1, . . . r} \ {s}.

Proof. The equivalence of (ii) and (iii) is obvious since
∑2n

k=1wi,k = m, for each i ∈ {1, . . . , r}.
Let us prove now (i)=⇒(ii). Let us assume (ii) false. Let l be the minimum number in {1, . . . , 2n}
such that (10) is false. So there exist s0, s1 and s2 in {1, . . . , r} such that

l∑
k=1

ws0,k <

l∑
k=1

ws1,k ≤
l∑

k=1

ws2,k.

It is easy to see that β := ws1 ∧ ws2 5 ws0 , so that A has not a common pairwise infimum.
Finally we prove (ii) =⇒(i). Let i, j two different integers in {1, . . . , r}. Condition (ii) implies
ω (Λ(wi),Λ(wj)) := ω (Λ(w1),Λ(w2)), so wi ∧wj = w1 ∧w2 and thus A has a common pairwise
infimum. �

The following result generalizes in our case the classical Proposition 2.13 of [11].

Proposition 5.7. In O(m,n) there are not sublattices of the form:
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Proof. Let w1, w2 and w3 be distinct signed partitions with a common pairwise infimum and
let l ∈ {0, . . . , 2n − 1} be the largest integer such that

∑2n−1
k=l wi,k are not all equal. Hence by

the previous lemma we may assume that

2n−1∑
k=l

w1,k <
2n−1∑
k=l

w2,k ≤
2n−1∑
k=l

w3,k

and
2n−1∑
k=j

w1,k <
2n−1∑
k=j

w2,k ≤
2n−1∑
k=j

w3,k for all j > l.

Thus w1,l < w2,l ≤ w3,l, while w1,j = w2,j = w3,j for all j > l.
If l ≤ n− 1, then we have

d−(w1, k) = d−(w2, k) = d−(w3, k) ∀k ∈ {1, . . . , n},
d+(w1, k) = d+(w2, k) = d+(w3, k) ∀k < w1,l,

and if w1,l ≥ 1,

d+(w1, w1,l) < d+(w2, w1,l) = d+(w3, w1,l) = l + 1.

So w∗1,j = w∗2,j = w∗3,j ∀j ∈ {0, . . . , h}, where h := max{n − 1, n + w1,l − 2}, while w∗1,h+1 <
w∗2,h+1 = w∗3,h+1 = l+ 1− n. Hence by lemma 5.6 w∗1, w∗2, w∗3 have not a common infimum and
so w1, w2, w3 have not a common supremum.
If n ≤ l ≤ 2n− 1, then we have

d−(w1, k) = d−(w2, k) = d−(w3, k) ∀k > −w1,l,

d−(w1,−w1,l) > d−(w2,−w1,l) ≥ d−(w3,−w1,l) = 2n− l − 1,

so
n− d−(w1,−w1,l) < n− d−(w2,−w1,l) ≤ n− d−(w3,−w1,l).

Thus w∗1,j = w∗2,j = w∗3,j ∀j ∈ {0, . . . , h}, where h := n + w1,l − 1, while w∗1,h+1 < w∗2,h+1 =
w∗3,h+1 = n + l + 1. Hence by lemma 5.6 w∗1, w∗2, w∗3 have not a common infimum and so w1,
w2, w3 have not a common supremum. This completes the proof. �

6. Local Structure of O(m,n)

Let w, w′ and w′′ be three signed partitions in O(m,n) such that w′ lw, w′′ lw and w′ 6= w′′.
Let v = w′ ∧ w′′. We call [v, w] a local interval in O(m,n). In this section we completely
characterize the structure of the local intervals in O(m,n). Moreover, for each given structure of
a local interval, we also describe all the possible evolution rules that determine such a structure.
We call form of the local interval [v, w], the complete description of its structure and of the
evolution rules which determine such a structure.
If I is any local interval in O(m,n), we will prove that the possible structures for I are of four
types (as in the Brylawski case), but the different possible forms for I are 61 (whereas in the
Brylawski case are 9).
By virtue of Theorem 3.5, when w,w′ ∈ O(m,n) and w covers w′ we can put ∆(w′, w) = (i, j),
where i and j are exactly the two indexes in {0, 1, . . . , 2n − 1} such that either j = i + 1 and
w′ = ci(w) or j − i ≥ 2 and it holds exactly one of the following: w′ = sij(w), w′ = csij(w),
w′ = scij(w). When w′ l w we say that w′ is a cocover of w.
In what follows we take w′ and w′′ two distinct cocovers of w in O(m,n), where ∆(w′, w) = (i, j)
and ∆(w′′, w) = (k, l). Since w′ and w′′ are two different cocovers of w we have i 6= k, so we
can suppose i < k. There are three possible cases:

j < k: w′ and w′′ are called nonoverlapping cocovers of w;
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j > k: w′ and w′′ are called fully overlapping cocovers of w;
j = k: w′ and w′′ are called partially overlapping cocovers of w.

We will study now the interval I = [v, w] in O(m,n) where v = w′ ∧ w′′.

Proposition 6.1. If w′ and w′′ are nonoverlapping cocovers of w then I has the following form:

v

w′ w′′

w

g f

f g

where f (g) is one evolution rule between ci, sij, csij, scij (ck, skl, cskl, sckl). Thus there are
16 possibles cases.

Proof. Since j < k we can write:

w = . . . , wi, . . . , wj , . . . , wk, . . . , wl, . . .
w′ = . . . , wi − 1, . . . , wj + 1, . . . , wk, . . . , wl, . . .
w′′ = . . . , wi, . . . , wj , . . . , wk − 1, . . . , wl + 1, . . .

and by Theorem 2.6, it is easy to see that

v = . . . , wi − 1, . . . , wj + 1, . . . , wk − 1, . . . , wl + 1, . . . .

We note first that w′ and w′′ cover v and second that the evolution rule between w and w′′ is
the same of that between w′ and v. We have a similar situation for the other pairs (w,w′) and
(w′′, v). �

Lemma 6.2. If w′ and w′′ are fully overlapping cocovers of w, i.e. j > k, then necessarily
l > j = k + 1 and j 6= n.

Proof. Since i < k < j then j − i ≥ 2. So the case w′ = ci(w) cannot happen. Therefore we
have the following situation:

(12) wi − 1 ≥ wi+1 = · · · = wk = wk+1 = · · · = wj−1 ≥ wj + 1.

Since ∆(w′′, w) = (k, l) it holds wk > wk+1. Thus k = j − 1. For the second part we note
that if j = n we have wk = 0 and this is in contradiction with the assumption that ∆(w′′, w) =
(k, l). �

Proposition 6.3. If w′ and w′′ are fully overlapping cocovers of w then the form of the interval
I is exactly one of the types listed in the table (f.o. table).

Proof. By lemma 6.2, we can write:

w = . . . , wi, . . . , wk, wj , . . . , wl, . . .
w′ = . . . , wi − 1, . . . , wk, wj + 1, . . . , wl, . . .
w′′ = . . . , wi, . . . , wk − 1, wj , . . . , wl + 1, . . .

and it holds that j − i ≥ 2, l − k ≥ 2. Thus we have

v = . . . , wi − 1, . . . , wk, wj , . . . , wl + 1, . . . .

By assumption that w covers both w′ and w′′ and since j 6= n (equivalently k 6= n−1), we have:

wi − 1 ≥ wi+1 = · · · = wj−1 = wj + 1

and
wk − 1 = wk+1 = · · · = wl−1 ≥ wl + 1.

If wi − 1 = wi+1 then w′ = sij(w), while if wi − 1 > wi+1 then i = n − 1 and w′ = csij(w).
Similarly if wl−1 = wl+1 then w′′ = skl(w), while if wl−1 > wl+1 then l = n and w′′ = sckl(w).
It is obvious that w′ = csij(w) and w′′ = sckl(w) cannot happen at the same time.
Let us compare now w′ and w′′ with v. First note that w′ and v are different only in the
positions j and l, while w′′ and v in the positions i and k. It holds that:

w′j − 1 = wj = w′j+1 = · · · = w′l−1 ≥ w′l + 1
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and

w′′i − 1 = wi − 1 ≥ w′′i+1 = · · · = w′′k−1 = w′′k + 1.

Note now that vj = w′j − 1, vl = w′l + 1, vi = w′′i − 1 and vk = w′′k + 1, so w′ and w′′ cover v. All
the possible forms are listed in the Fully Overlapping Table. �

Fully Overlapping Table

v

w′ w′′

w

cj ci

sij skl

j−i=l−k=2

wi−1=wi+1, wl−1=wl+1

v

w′ w′′

w

sjl ci

sij skl

j−i=2, l−k>2

wi−1=wi+1, wl−1=wl+1

v

w′ w′′

w

cj sik

sij skl

j−i>2, l−k=2

wi−1=wi+1, wl−1=wl+1

v

w′ w′′

w

sjl sik

sij skl

j−i>2, l−k>2

wi−1=wi+1, wl−1=wl+1

v

w′ w′′

w

cj ci

csij skl

i=n−1, j−i=l−k=2

wi−1>wi+1, wl−1=wl+1

v

w′ w′′

w

sjl ci

csij skl

i=n−1, j−i=2, l−k>2

wi−1>wi+1, wl−1=wl+1

v

w′ w′′

w

cj sik

csij skl

i=n−1, j−i>2, l−k=2

wi−1>wi+1, wl−1=wl+1

v

w′ w′′

w

sjl sik

csij skl

i=n−1, j−i>2, l−k>2

wi−1>wi+1, wl−1=wl+1

v

w′ w′′

w

cj ci

sij sckl

j−i=l−k=2, l=n

wi−1=wi+1, wl−1>wl+1

v

w′ w′′

w

sjl ci

sij sckl

j−i=2, l−k>2, l=n

wi−1=wi+1, wl−1>wl+1

v

w′ w′′

w

cj sik

sij sckl

j−i>2, l−k=2, l=n

wi−1=wi+1, wl−1>wl+1

v

w′ w′′

w

sjl sik

sij sckl

j−i>2, l−k>2, l=n

wi−1=wi+1, wl−1>wl+1

Proposition 6.4. If w′ and w′′ are partially overlapping cocovers of w then the form of the
interval I is exactly one of the types listed in the table (Partially Overlapping Table).

Proof. In this case j = k and

w = . . . , wi, . . . , wj−1, wj , wj+1 . . . , wl, . . .
w′ = . . . , wi − 1, . . . , wj−1, wj + 1, wj+1 . . . , wl, . . .
w′′ = . . . , wi, . . . , wj−1, wj − 1, wj+1 . . . , wl + 1, . . .

Thus we have

v = . . . , wi − 1, . . . , wj−1, wj , wj+1 . . . , wl + 1, . . .

By assumption that w covers both w′ and w′′ it holds:

(13) wi − 1 ≥ wi+1 = · · · = wj−1 ≥ wj + 1

and

(14) wj − 1 ≥ wj+1 = · · · = wl−1 ≥ wl + 1.

Let us note that, if j = i + 1 then (13) becomes wi − wj ≥ 2 and w′ = ci(w). Similarly if
l = j + 1 then (14) becomes wl − wj ≥ 2 and w′′ = cj(w). Moreover we have w′ = sij(w),
w′ = csij(w) or w′ = scij(w) when j− i ≥ 2 and in (13) the inequalities are respectively (=,=),
(>,=) or (=, >) and likewise for the covering w′′ lw. It is obvious that the cases w′ = csij(w)
and w′ = scij(w) are incompatible with cases w′′ = csjl(w) and w′′ = scjl(w).
Let us compare now w′ and w′′ with v. First note that w′ and v are different only in the
positions j and l, while w′′ and v in the positions i and j. It holds that:

(15) w′j − 1 = wj > w′j+1 = · · · = w′l−1 ≥ wl + 1 = w′l + 1
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and

(16) w′′i − 1 = wi − 1 ≥ w′′i+1 = · · · = w′′j−1 ≥ wj + 1 > w′′j + 1.

The presence of strict inequalities in (15) and (16) implies that it is possible that w′ and w′′ do
not cover v. For example if w′j − 1 = wj > w′j+1 = · · · = w′l−1 = wl + 1 = w′l + 1, with j 6= n− 1,

then sjl(w) = w′′, w′ m u′ := cj(w
′) = . . . , wi − 1, . . . , wj−1, wj , wj+1 + 1, . . . , wl, . . . . Therefore

u′ . v. Note that u′ and v are different only in the positions j + 1 and l and we have w′ covers
v, in particular if l− j = 2 then v = cj+1(u

′), while if l− j > 2 then v = s(j+1)l(u
′). In a similar

way we have that either w′ covers v or there exists u′′ in O(m,n) such that v l u′′ l w′′, with
u′′ = cj−1(w

′′). So there are 4 possible structures of I:

v

w′ w′′

w

(A)

v

u′
w′′

w′

w

(B)

v

w′

u′′
w′′

w

(C)
v

u′ u′′

w′ w′′

w

(D)

In case (D) by taking u = s(j−1)(j+1)(w) it is easy to see that u covers both u′ and u′′, so (D)
becomes

v

u′ u′′

w′

u
w′′

w

(D′)

All the possible forms are listed in the Partially Overlapping Table, where ϕ = s(j−1)(j+1),
φ = si(j−1), ψ = csi(j−1), θ = s(j+1)l and σ = sc(j+1)l. �

Partially Overlapping Table

v

w′ w′′

w

cj ci

ci cj

j+1=j=l−1

v

w′ w′′

w

csjl ci

ci sjl

i+1=j=n−1,l−j≥2

wj−1=wj+1=wl−1=wl+1

v

u′
w′′

w′

w

cj+1
ci

cj

sjlci

i+1=j 6=n−1, l−j=2

wj−1=wj+1=wl−1=wl+1

v

u′
w′′

w′

w

θ
ci

cj

sjlci

i+1=j 6=n−1, l−j>2

wj−1=wj+1=wl−1=wl+1

v

w′ w′′

w

csjl ci

ci csjl

i+1=j=n−1, l−j≥2

wj−1>wj+1=wl−1=wl+1

v

u′
w′′

w′

w

cj+1
ci

cj

scjlci

i+1=j, l=n, l−j=2

wj−1=wj+1=wl−1>wl+1

v

u′
w′′

w′

w

σ
ci

cj

scjlci

i+1=j, l=n, l−j>2

wj−1=wj+1=wl−1>wl+1

v

w′

u′′
w′′

w

cj ci

sij cj

cj−1

j−i=2, j 6=n, j+1=l

wi−1=wi+1=wj−1=wj+1

v

w′

u′′
w′′

w

cj
φ

sij cj

cj−1

j−i>2, j 6=n, j+1=l

wi−1=wi+1=wj−1=wj+1

v

w′ w′′

w

cj scij

sij cj

j−i≥2, j=n, j+1=l

wi−1=wi+1=wj−1=wj+1

v

u′
w′′

w′

w

cj+1
scij

cj

sjlsij

j−i≥2, j=n, l−j=2

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′
w′′

w′

w

θ
scij

cj

sjlsij

j−i≥2, j=n, l−j>2

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1
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v

w′

u′′
w′′

w

csjl ci

sij sjl

cj−1

j−i=2, j=n−1, l−j≥2

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

w′

u′′
w′′

w

csjl
φ

sij sjl

cj−1

j−i>2, j=n−1, l−j≥2

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

cj+1 ci

ci
cj+1

cj cj−1

sij ϕ sjl

j−i=l−j=2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

θ ci

ci
θ

cj cj−1

sij ϕ sjl

j−i=2, l−j>2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

cj+1 φ

φ
cj+1cj

cj−1

sij ϕ sjl

j−i>2, l−j=2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

θ φ

φ
θ

cj cj−1

sij ϕ sjl

j−i>2, l−j>2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

w′

u′′
w′′

w

csjl ci

sij csjl

cj−1

j−i=2, j=n−1, l−j≤l

wi−1=wi+1=wj−1=wj+1

wj−1>wj+1=wl−1=wl+1

v

w′

u′′
w′′

w

csjl
φ

sij csjl

cj−1

j−i>2, j=n−1, l−j≤l

wi−1=wi+1=wj−1=wj+1

wj−1>wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

cj+1 ci

ci
cj+1

cj cj−1

sij ϕ scjl

j−i=l−j=2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1>wl+1

v

u′ u′′

w′

u
w′′

w

σ ci

ci
σcj cj−1

sij ϕ scjl

j−i=2, l−j>2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1>wl+1

v

u′ u′′

w′

u
w′′

w

cj+1 φ

φ
cj+1

cj cj−1

sij ϕ scjl

j−i>2, l−j=2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1>wl+1

v

u′ u′′

w′

u
w′′

w

σ φ

φ
σcj cj−1

sij ϕ scjl

j−i>2, l−j>2, j 6=n−1, j 6=n

wi−1=wi+1=wj−1=wj+1

wj−1=wj+1=wl−1>wl+1

v

w′

u′′
w′′

w

cj ci

csij cj

cj−1

j−i=2, j 6=n, j+1=l

wi−1>wi+1=wj−1=wj+1

v

w′

u′′
w′′

w

cj
ψ

csij cj

cj−1

j−i>2, j 6=n, j+1=l

wi−1>wi+1=wj−1=wj+1

v

u′ u′′

w′

u
w′′

w

cj+1 ci

ci
cj+1

cj cj−1

csij ϕ sjl

j−i=l−j=2, j 6=n−1, j 6=n

wi−1>wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

θ ci

ci
θ

cj cj−1

csij ϕ sjl

j−i=2, l−j>2, j 6=n−1, j 6=n

wi−1>wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

cj+1 ψ

ψ
cj+1

cj cj−1

csij ϕ sjl

j−i>2, l−j=2, j 6=n−1, j 6=n

wi−1>wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

u′ u′′

w′

u
w′′

w

θ ψ

ψ
θ

cj cj−1

csij ϕ sjl

j−i>2, l−j>2, j 6=n−1, j 6=n

wi−1>wi+1=wj−1=wj+1

wj−1=wj+1=wl−1=wl+1

v

w′ w′′

w

cj scij

scij cj

j−i≥2, j=n, j+1=l

wi−1=wi+1=wj−1>wj+1

v

u′
w′′

w′

w

cj+1
scij

cj

sjlscij

j−i≥2, j=n, l−j=2

wi−1=wi+1=wj−1>wj+1

wj−1=wj+1=wl−1=wl+1

v

u′
w′′

w′

w

θ
scij

cj

sjlscij

j−i≥2, j=n, l−j>2

wi−1=wi+1=wj−1>wj+1

wj−1=wj+1=wl−1=wl+1
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Corollary 6.5. Let u / w be two signed partitions in O(m,n) and let p, q respectively the
minimal and the maximal length of a saturated chain from u to w in O(m,n). Then for each
i ∈ {p, p+ 1 . . . , q} then there exists a saturated chain from u to w of length i.

Proof. We start from w and we take two any cocovers w′ and w′′ of w. Let v = w′ ∧ w′′ and
I = [v, w]. From the previous three propositions, we know that the possible structures for I are
(A), (B), (C) or (D′). The proof follows then exactly as in [11]. �

7. Overlapping Paths in O(m,n) and Möbius Function

In this section we determine the Möbius Function of our lattice O(m,n). Let w be a fixed
signed partition of O(m,n). At first we introduce in O(m,n) particular types of subsequences
which are associated with given sequences of ”overlapping” cocovers of w. In the case of the
usual integer partitions, these subsequences are called overlapping paths of w and they were
introduced and studied in [11]. We recall at first the definition of overlapping path as given in
[11].

Definition 7.1. Let S = (w1, w2, . . . , wr) be a sequence of cocovers of w, with ∆(wl, w) =
(il, jl) for l = 1, 2, . . . , r. Assume further that for all l ∈ {1, 2, . . . , r − 1}, wl and wl+1 are
(partially or fully) overlapping cocovers of w. Then we associate to S the subsequence of parts
of w P = (wi1 , wi1+1, . . . , wjr). We call P the overlapping path of w associated to S.

In our model the characterization of the overlapping paths is more complicated with respect
to the classical Brylawski case. This greater difficulty is due to the presence of the negative
summands in w, which produce the new evolution rules csij and scij , not present in the Brylawski
model. In order to explain as these rules act on the overlapping paths, we establish the next
two results. In the following propositions, we use the same notations as in Definition 7.1.

Proposition 7.2. Let P be the overlapping path of w associated to S. If k ∈ {i1, i1+1, . . . , jr−
1} and wk = wk+1 then:

a) i1 < k < jr − 1;
b) either wk−1 − wk ≤ 1 or wk−1 − wk ≥ 2, wk = 0, k = n+ 1;
c) either wk+1 − wk+2 ≤ 1 or wk+1 − wk+2 ≥ 2, wk = 0, k = n− 1.

Proof. a) Since ∆(w1, w) = (i1, j1) and ∆(wr, w) = (ir, jr), we have wi1 > wi1+1 and
wjr−1 > wjr . Therefore k 6= i1 and k 6= jr − 1 because wk = wk+1.

b) We assume wk−1 − wk ≥ 2. Then k − 1 = il for some l ∈ {1, . . . , r} and either k = jl
(in this case wl = ck−1(w)) or wk = 0 and k = n+ 1. Since P is an overlapping path, if
k = jl, then l 6= r, k = il+1 and wk > wk+1, which is a contradiction.

c) We assume wk+1−wk+2 ≥ 2. Then k+2 = jl for some l ∈ {1, . . . , r} and either k+1 = il
(in this case wl = ck+1(w)) or wk = 0 and k = n− 1. Since P is an overlapping path, if
k + 1 = il, then l 6= 1, k + 1 = jl−1 and wk > wk+1, which is a contradiction.

�

Proposition 7.3. Let P be the overlapping path of w associated to S. If k ∈ {i1, i1+1, . . . , jr−
1} and wk = wk+1 + 1 then exactly one of the following conditions holds:

a) k > i1 and wk−1 − wk ≤ 1 or k < jr − 1 and wk+1 − wk+2 ≤ 1;
b) i1 < k = n− 1 < jr − 1, wk−1 ≥ 3, wk = 1 and wk+2 ≤ −2;
c) i1 < k = n+ 1 < jr − 1, wk−1 ≥ 2, wk = 0 and wk+2 ≤ −3;
d) k = i1 = n− 1, wk = 1 and wk+2 ≤ −2;
e) k = jr − 1 = n+ 1, wk−1 ≥ 2 and wk = 0.

Proof. Let us suppose that case a) does not hold. If k = i1 and wk+1 − wk+2 ≥ 2 then either
k + 1 = i2 or k = n − 2, j1 = n + 1 and wk = 1 (case d)). The first case can not occur since
k = i1 and wk−wk+1 = 1. If k = jr−1 and wk−1−wk ≥ 2 then necessarily k−1 = ir, k = n+1
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and wk = 0 (case e)). If i1 < kjr − 1, wk−1 −wk ≥ 2 and wk+1 −wk+2 ≥ 2 then it holds one of
the following:

i either k + 1 = il for some l ∈ {2, . . . , r} or k = n− 1, jl = n and wk = 1 (case b));
ii either k − 1 = ih for some h ∈ {1, . . . , r − 1} or k − 1 = ih, k = n+ 1 and wk = 0 (case

c)).

Note now that since P is an overlapping path and wk − wk+1 = 1, if k − 1 = ih and k + 1 = il,
it must be l = h+ 2, k = il+1 and wk − wk+1 ≥ 2, which is a contradiction. �

Here we give six examples which illustrate the difference of our case with respect to the Brylawski
case.

4431|00024333|0012 4432|0111

4432|0012

s24
cs47

s68

2000|13441110|2344 2100|3334

2100|2344

s13
sc25

s57

Proposition 7.2 b) Proposition 7.2 c)

4220|2444 4300|1444 4310|3344

4310|2444

c2
sc35

c5

4333|0144 4431|0044 4432|0234

4432|0144

s24
cs46

c6

Proposition 7.3 b) Proposition 7.3 c)

33100|13455 33110|33355 33110|24445

33110|23455

sc46
s68

s79

54333|0111544442|01115 54431|00115

54432|01115

s14
s35

cs57

Proposition 7.3 d) Proposition 7.3 e)

Given w ∈ O(m,n) let us give now an important characterization of the signed partitions which
are meet of cocovers of w.

Proposition 7.4. Let w ∈ O(m,n) and let S = (w1, w2, . . . , wr) be an overlapping sequence
of cocovers of w, associated to the overlapping path P = (wi1 , wi1+1, · · · , wjr). An element
v ∈ O(m,n) is the infimum of the elements in S if and only if the vector δ := w − v is equal to
(0, · · · , 0, 1, 0 · · · , 0, −1, 0 · · · , 0) where 1 and −1 are in positions i1 and jr respectively.

Proof. Let v =
∧
iw

i and let k ∈ {0, 1, · · · , 2n − 1}. If 0 ≤ k < i1 then since for all j ∈
{0, 1, · · · , k} and for all j ∈ {1, 2, · · · , r}, wij = wj , we have vk = wk and so δk = 0. When

k = i1 then w1
k + 1 = w2

k = · · · = wrk = wk, vk = mini{
∑k

j=0w
i
j} −

∑k−1
j=0 vj = wk − 1 and so

δk = 1. If i1 < k < jr it is easy to see that mini{
∑k

j=0w
i
j} =

∑k
j=0wj−1 and so vk = wk. When

k = jr then, for each i
∑k

j=0w
i
j =

∑k
j=0wj and

∑k−1
j=0 vj =

∑k−1
j=0 wj − 1. Thus vk = wk + 1 and

δk = −1. Finally since for all jr ≤ l ≤ 2n − 1,
∑l

j=0w
i
j =

∑l
j=0wj

∑l
j=0 vj , it holds vk = wk

and thus δk = 0 for all k ∈ {jr + 1, jr + 2, · · · , 2n− 1}. �

Corollary 7.5. Let v, w ∈ O(m,n) with v / w and let {wi}i∈I be a set of cocovers of w. Then
v =

∧
i∈I w

i if and only if δ := w − v = (d0, d1, · · · , d2n−1) is a vector of alternating 1s and
−1s, eventually spaced by 0s such that if di − 1 = di+1 = · · · = di+j−1 = di+j + 1 = 0, then
(wi, · · · , wi+j) is an overlapping path of w.

Proof. It follows by applying the Proposition 7.4 for each overlapping sequence in {wi}i∈I . �

We can compute now the Möbius function µ of O(m,n) in some particular cases.

Corollary 7.6. Let v, w ∈ O(m,n) with v / w. If δ = w − v is not a vector of alternanting 1
and −1 eventually spaced by 0s or if it is but the parts in w between the position of any 1 and
that of the succeeding −1 does not form an overlapping path, then µ(v, w) = 0.
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Proof. The thesis follows at once by Corollary 7.5 and Corollary 3.9.5. of [27]. �

Let us consider now a particular class of cocovers of a fixed s-partition w.

Proposition 7.7. Let w ∈ O(m,n), {wi}i∈I be a set of cocovers of w and v =
∧
i∈I w

i.

Then for j ∈ I, v =
∧
i∈I, i6=j w

i if and only if there exists p ∈ {2, 3, · · · , 2n − 3} such that

wj = s(p−1)(p+1)(w) and wj fully overlap with wk and wl for some k, l ∈ I. In this case wk and
wl partially overlap and we call wj an acritical cocover.

Proof. By Corollary 7.5 v =
∧
i∈I, i 6=j w

i if and only if the overlapping paths of w associated to

the set of cocovers {wi}i∈I are the same of those associated to {wi}i∈I, i 6=j . This is possible only
if wj fully overlaps with wk and wl for some k, l ∈ I and at the same time wk and wl overlap. So
the only possibility is that wk and wl partially overlap and there exists p ∈ {2, 3, · · · , 2n− 3}
such that wj = s(p−1)(p+1)(w). In this case the interval [wk ∧wl, w] has the structure (D′) (see
Proposition 6.4) where wj = u. The reverse implication follows from Corollary 7.5. �

An acritical chain C = {v1, v2, . . . , vr} is a fully overlapping sequence of acritical cocovers
of w ∈ O(m,n). The length of an acritical chain C is the number of cocovers in it and it is
denoted by l(C). A critical cocover of w is a cocover of w which is not acritical. The length of
an overlapping path P is the number of critical cocovers in it and it is denoted by l(P ).
The calculus of the Möbius function in the other cases makes use of the following combinatorial
lemma.

Lemma 7.8. The number of ways to extract a subsequence of m elements from a sequence of
k elements such that no two consecutive elements are both left out is given by

f(k,m) =

(
m+ 1

k −m

)
.

Further, by setting F (k) :=
∑k

m=0(−1)mf(k,m), it results that F (k) is equal to 0, 1 or −1 and
F (k) ≡ 1− k (mod 3).

Proof. See [11] p. 213. �

Proposition 7.9. Let v, w ∈ O(m,n) such that v is a meet of cocovers of w. Let n(v, w) be
the number of critical cocovers of w in the interval [v, w], C1, . . . Cr be the acritical chains of
cocovers of w in [v, w] and m(v, w) :=

∏
i (1− l(Ci)). Then µ(v, w) is equal to 0, 1 or −1 and

µ(v, w) ≡ (−1)n(v,w)m(v, w) (mod 3).

Proof. Rota’s Cross-cut Theorem (see [25] for the classical reference or [27], Corollary 3.9.4.)
applied to the interval [v, w] implies that µ(v, w) =

∑
k(−1)kNk where Nk is the number of

k-subsets of cocovers of w whose infimum is v. But any such subset must contain the set K of
all critical cocovers of w in [v, w]. So we can write

µ(v, w) = (−1)n(v,w)
∑
k

(−1)k N ′k,

where N ′k is the number of k-subsets of acritical cocovers of w whose infimum with K is v. Now
note that ∑

k

(−1)k N ′k =

r∏
i=1

(∑
k

(−1)k N ′ki

)
,

where N ′ki is the number of k-subsets of Ci whose infimum with K is K ∧ Ci. But any such
number Nki is equal to the number of k-subsets of the Ci such that no two fully overlapping
cocovers in Ci are both left out. The proposition then follows easily by the Lemma 7.8. �

We note that by using Corollary 7.6 and Proposition 7.9 we can compute the Möbius function
µ(v, w) for all v E w in O(m,n). In fact, if v is not a meet of cocovers of w then, by Corollary
7.5, v and w satisfy the hypotheses of the Corollary 7.6 and thus µ(v, w) = 0, while if v is a
meet of cocovers of w then Proposition 7.9 gives us the value of µ(v, w).
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