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Abstract. In the present paper, given an arbitrary fixed non-empty set Ω and a triple (called pairing)

P ∶= (U,F,Λ), where U and Λ are two sets and F ∶ U × Ω Ð→ Λ is a map, we consider a preorder
←P on the power set of Ω having the further property that Y ←P X if and only if {y} ←P X for any

y ∈ Y . When we take the symmetrization of the above preorder, we obtain an equivalence relation ≈P
on P(Ω) which induces a Moore system MP and an abstract simplicial complex NP on Ω. They are

defined by taking respectively the maximum and the minimal elements of any equivalence class with

respect to ≈P. We find a sufficient condition on P ensuring that the family NP is a matroid when Ω is
a finite set. We call the resulting pairings attractive. The aforementioned condition can be generalized

even for a non-finite ground set Ω. In this case, jointly with a finitess condition, it turns out that

for each X ∈ MP the minimal members of the corresponding equivalence class [X]≈P all have the
same cardinality. Nevertheless, the converse does not hold. As a counterexample, we will consider a

second kind of pairing, which we call quasi-attractive and whose main properties, above all in relation

to exchange properties of specific set systems, have been largely investigated. Finally, we will consider
the adjacency matrix of a graph G as a concrete model of pairing (still denoted by G) and interpret the

corresponding relation ←G as a measure of how a kind of local symmetry between vertices and subsets

of the graph itself is transmitted when we vary the vertex subsets. We will demonstrate that the pairing
induced by the adjacency matrix of the Petersen graph is attractive, while that of the so-called Erdös’

friendship graph induces a quasi-attractive but not attractive pairing on the vertex set.

1. Introduction

1.1. General Premise. In many mathematical scopes, given an arbitrary set Ω, a growing attention is
going to be placed on the interactions between the properties of specific kinds of binary relations, set op-
erators, families of subsets of Ω and set-theoretic operations between subsets or other algebraic and com-
binatorial structures. The development of the aforementioned interactions admits various interrelation
with numerous branches of mathematics where it is applied, such as design theory [8, 29], phylogenetic
analysis [7, 21, 22], discrete dynamical systems [2, 3], algebraic structures theory [1, 27, 35, 36, 37, 33]
functional analysis [28, 38], combinatorial topology [25, 26], complex analysis [4, 5, 6], graph theory
[20, 30, 31, 39] and granular computing [40].
Based on such a perspective, in [15] some kinds of subdomains of an integral domain U have been
classified through a binary relation ←mod defined on U , involving modules and equivalently expressible
by means of the vanishing of a specific subset of the polynomial ring in several variables with coefficients
in suitable subdomains of U . In such a case, the aforementioned relation is extended reflexive, i.e.
X ⊆ Y Ô⇒ X ←mod Y and also union-additive, i.e. ⋃{Z ∣ Z ∈ F} ←mod X for any family F of subsets
of Ω such that Z ←mod X for each Z ∈ F .
On the other hand, in [16] monoid actions have been studied in order to investigate a decomposition of
Alexandroff topological spaces in terms of a combinatorial property of dependence on unions. Through the
use of specific set systems on Ω induced by monoid actions S ×Ω Ð→ Ω, new links between Alexandroff
topologies on Ω and some kinds of congruence relations on Ω induced by the monoid action of S have
been established.
However, indeed, one may generalize the monoid action by a map F from the Cartesian product of any
two sets U and Ω to a set Λ. In general, the sets U and Ω differ and are not necessarily endowed with any
algebraic or topological structures [13]; nevertheless, they may agree and could be chosen as the vertex
set of a simple undirected graph [10, 14], as a metric space [11], in order to yield a more interesting study.
The arising structure, which has been called a pairing on Ω, and its main properties have been deeply
investigated in [11, 12].
The introduction of a pairing structure on Ω induces an abstract geometry (that has been called relation
geometry in [15]) which depends on the properties satisfied by a particular binary relation relatively to
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set-theoretic operations between subsets of Ω or to pre-existing algebraic structures.
Based on the above remark, in the present paper we will introduce two subclasses of pairings, analyze
how they affect the behaviour of some specific set systems definable in pairing theory and, finally, we
find concrete models of these classes of pairings from graph theory. In view of the results obtained in
[16], fixed a subset X of Ω, we can consider the following binary relation ≡X on U defined as follows:
for each u,u′ ∈ U , we set u ≡X u′ ∶⇐⇒ F (u,x) = F (u′, x) for all x ∈ X. It may be easily shown that ≡X
turns out to be an equivalence relation on U , so we will denote by [u]X the equivalence class of u ∈ U
and, furthermore, we will set πP(X) ∶= {[u]X ∣ u ∈ U} to denote the set partition induced by ≡X on U .
In our context the terminology X-symmetry relation in order to describe the above equivalence relation
[14]. The nomenclature symmetry relation stems by the fact that when one interpretes the adjacency
matrix of a simple undirected graph as a Boolean pairing, the previous equivalence relation takes actually
account of a local symmetry, in the sense of Erdös [23]. In fact, given a vertex subset X and two non-
adjacent vertices v, v′ of G such that v ≡X v′, it may be easily verified that the automorphism group
of the subgraph induced by X ∪ {v, v′} is non-trivial (for further details and interpretations from the
viewpoint of local symmetry, we refer the reader to [10]).
On the other hand, the interpretation of the X-indiscernibility relations as a local symmetry and further
developments in such a direction allow to extend a graph to another graph and to define on the vertex set
of such an extension an algebraic operation whose properties are connected to the geometric properties
of the starting graph (see [14] for further details).
Now, the X-symmetry relation induces the binary relation ←P on the power set P(Ω) of Ω defined as
follows: Y ←P X if and only if for each u,u′ ∈ U such that u ≡X u′ it also results that u ≡Y u′. The
aforementioned relation takes into account how the local symmetries induced by any two subsets of Ω
relate. This binary relation induces the relation geometry we want to investigate in the whole paper.
It may be easily see that ←P satisfies extended reflexivity, union-additivity and transitivity. More in
general, in [12] it has been proved that any binary relation P(Ω) satisfying the three above properties
agrees with the relation ←P induced by some pairing P on Ω and, furthermore, in [13] an algorithm to
construct such a pairing has been provided in the case where Ω is finite.

1.2. Content of the Paper. Starting from a given pairing P on Ω, we may associate with P a closure
operator MP ∶ P(Ω) Ð→ P(Ω), where MP(X) ∶= {z ∈ Ω ∣ {z} ←P X}, and the corresponding Moore
system MP of all its fixed point [18]. Moreover, taking the symmetrization of the preorder ←P, the
resulting equivalence relation ≈P on P(Ω) identifies any two subsets sharing the same image with respect
to MP. In this case, any equivalence class admits a maximum element, namely the image under MP,
which we call maximum partitioner. The aforementioned equivalence relation allows us to take into
account the entire evolution of the set partitions of U induced by subsets of Ω when we undertake some
deletion or additions of elements starting from some given subset (see [11]). In this context, the collection
NP of all the minimal members (called minimal partitioners) of each equivalence class with respect to
≈P assumes a relevant role. In fact, it turns out that NP is an abstract simplicial complex and, when Ω
is a finite set, it is possible to find examples of pairings for which NP is a matroid. Therefore, in a more
general perspective, it is interesting to find appropriate conditions on the pairing P to ensure that NP

is a matroid.
In this paper we find the following sufficient condition for NP to be a matroid when Ω is a finite set:
for each X ∈ P(Ω) and any y ∈ Ω and x ∈ X such that {y} /←P X and {x} /←P X ∖ {x}, it results that
{x} /←P X △{x, y}. We call a pairing P satisfying the aforementioned property attractive.
By virtue of the link between attractiveness and the matroidality of NP, such a notion will be the starting
point on which the present paper relies. In particular, for any arbitrary set Ω, assuming attractiveness
jointly with a finiteness condition (which we call locally finiteness), it may be shown that all the minimal
partitioners of a given X ∈ MP have the same cardinality (see [12]). In [13] the aforementioned minimal
partitioners have been called P-reducts of X and their computation has been brought back to the well-
known problem of determining the minimal transversal set system of a specific family of subsets of Ω
[32]; this problem has been already investigated for specific graph structures, such as the Petersen graph
and a geometric characterization has been provided in [10].
In this paper, we will see that attractiveness implies the equality between the family of the P-reducts
of X and the collection of the maximal members of NP ∩ P(X), for any X ∈ P(Ω); moreover, when Ω
is finite, the previous set-theoretic equality and attractiveness become equivalent. On the other hand,
attractiveness is also a sufficient condition for the collection of the maximal members of NP ∩P(X), for
any X ∈ P(Ω), to satisfy an exchange property generalizing the exchange axiom of the bases of a matroid
[42]. So that, we deduce that if Ω is a finite set and P is an attractive pairing on Ω, then NP is the
family of the independent sets of a matroid on Ω.
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Nevertheless, the condition of uniform cardinality of the P-reducts of X, for each X ∈ MP is only
necessary for attractiveness when Ω is finite. Indeed, examples of non-attractive pairings for which the
P-reducts of any maximum partitioner have uniform cardinality may be found in the context of graph. In
the present work we weaken the condition of being attractive, requiring that for all subsets X,Y ∈ P(Ω)

such that X ≈P Y and any x ∈X the existence of yx ∈ Y for which {x} ←P (X ∖ {x}) ∪ {yx}.
We call a pairing satisfying the above property quasi-attractive and show that quasi-attractiveness is
actually a weaker version of attractiveness. Given a quasi-attractive pairing P on an arbitrary set Ω
(even infinite) satisfying locally finiteness, it may be proved that for any X ∈ MP the P-reducts of X
have the same cardinality. Furthermore, when Ω is a finite set, the collection of all the P-reducts of
any maximum partitioner X satisfies the exchange property characterizing the bases of a matroid on Ω,
though, NP need not to be a matroid. However, quasi-attractiveness is also related to the matroidality
of a specific sub-set system of NP.
In general, it is not easy an easy task to find non-trivial families of pairings which are either at-
tractive or quasi-attractive; however, in this paper we will exhibit some specific models of attractive
and quasi-attractive pairings from graph theory. To this regard, we interpret the adjacency matrix
of a simple undirected graph G as a pairing on its vertex set, which we still denote by G. In this
case, the corresponding relation ←G may be explicitly rewritten as follows: Y ←G X if and only if
((v ∼ x ⇐⇒ v′ ∼ x ∀x ∈ X) Ô⇒ (v ∼ y ⇐⇒ v′ ∼ y ∀b ∈ Y )), for each v, v′ ∈ V (G) and where
∼ denotes the adjacency relation between vertices of G. From an intuitive standpoint, pairings taking
account on how the local symmetry transmits when we vary the vertex subsets inducing it. In other
terms, whenever two vertices are symmetric with respect to the vertex subset X, then they must be
symmetric also with respecto to the vertex subset Y . In particular, we are interested in how the addition
or the deletion of vertices from a given vertex subset causes changes in the induced local symmetries.
In this sense, the behaviour of the minimal vertex subset describing the same information about local
symmetry as X becomes fundamental. As we said above, these subsets correspond to NG. So, we deduce
that when the graph induces an attractive pairing, then NG forms a matroid on Ω. Thus, for attractive
graphs, we have found another way to associate matroids with graphs, different from the matroid arising
when one considers the circuits of the graph as the minimal dependent subsets [41, 42].
In graph context, moreover, the G-reducts of any X ∈ MG have been also named symmetry bases of X
[10] and, when G is attractive, they behave as the bases of the matroid NG. On the other hand, when we
consider the pairing P[G,d] induced by the distance matrix of a graph, it may be easily verified that the
notion of P[G,d]-reduct of V (G) translates into that of resolvent subset, which is a fundamental tool in
order to compute the metric dimension of a graph [9, 34].
Now, one non-trivial example of graph whose adjacency matrix induces an attractive pairing is Petersen
graph. As it is a strongly regular graph one may think the existence of a correlation between attractive-
ness and strongly regularity. The question arises spontaneously since it is placed within the problem of
how to recognize through the structural properties (and therefore to characterize) the graphs inducing
an attractive pairing. Nevertheless, such a correlation is disregarded as we will see in Section 5 and in
Example 5.11.
On the other hand, as claimed before, quasi-attractiveness is weaker than attractiveness. To provide
an example from graph theory, we will exhibit a family of graphs inducing a quasi-attractive but not
attractive pairing, namely the Erdös’ friendship graph Fn defined and studied in Section 6. These graphs
stem from a well-known paper by Erdös et al. [24], where the authors investigated further extremal
properties in graphs: in particular, Erdös’ friendship graphs arise a solution to a problem which is clas-
sically exposed in an informative manner as follows: if a group of people has the property that every pair
of people has exactly one friend in common, there exists a person who is friend to all the other?
In such a case, we still ask for the existence of a possible correlation between quasi-attractiveness and
strong regularity but, again, we are able to prove that such a correlation is disregarded also in this case
since, in view of the definition of Fn, it is immediate to verify that quasi-attractiveness of the induced
pairing does not imply strong regularity, while, on the other hand, the 5-cycle provides an example of
strongly regular graph which is not quasi-attractive.
We will now describe briefly the content of the sections. In Section 2 we provide the notations we will
use within the whole paper, with a particular attention to main properties of pairings and pairings. In
Section 3 we introduce the notion of attractive pairing and study various properties of such a kind of
relation, above all in relation to the collection of the maximal members of NP∩P(X), for each X ∈ P(Ω).
In Section 4 we introduce the notion of quasi-attractive pairing and, next, we will analyze further prop-
erties of quasi-attractive pairings relatively to the validity of the exchange property for the set system of
all the P-reducts of any subset X ∈ P(Ω). In Section 5 we will demonstrate the pairing induced by the
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Petersen graph is attractive and next provide a negative answer to the existence of some interrelations
between strongly regularity and attractiveness. Finally, in Section 6, we will prove that the Erdös’ friend-
ship graphs are an example of quasi-attractive but not attractive pairings and, next, provide a negative
answer to the existence of some interrelations between strongly regularity and quasi-attractiveness.

2. Reviews, Notations and Basic Results

Notations. In what follows, we denote by Ω a given arbitrary (even infinite) set, by P(Ω) its power set
and by Pfin(Ω) the family of the finite subsets of Ω. Let X ∈ P(Ω). If X ∈ Pf(Ω), we denote by ∣X ∣

the number of elements of X and, if ∣X ∣ = k, we say that X is a k-subset of Ω. In general, for any k ≥ 1
we denote the family of all k-subsets of Ω by Pk(Ω). If Y ∈ P(Ω), we denote by X ∖ Y the difference
between X and Y and by X △ Y their symmetric difference. We use the symbol BREL(Ω) to denote
the collection of all binary relations on P(Ω). We call the elements of P(P(Ω)) set systems on Ω. Let
F ∈ P(P(Ω)). We denote by Max(F) and Min(F) the sub-set systems of all maximal and minimal
members of F with respect to set-theoretical inclusion. If X ∈ P(Ω), we call any member of the set
system Max(F ∩P(X)) a X-basis of F . In particular, we call an Ω-basis of F a basis of F , therefore in
our terminology the bases of F agree with the maximal elements of F .
We say that a non-empty set system F :

● has uniform cardinality if all members of F have the same cardinality;
● is a Moore system if Ω ∈ F and ∀F

′
⊆ F [⋂F

′
∈ F]. We denote by MSY (Ω) the family of all

Moore systems on Ω;
● is an abstract simplicial complex if X ∈ F and Y ⊆X Ô⇒ Y ∈ F ;
● is exchangeable if ∀X,Y ∈ F , ∀x ∈X ∖ Y [∃y ∈ Y ∖X (X △{x, y} ∈ F)].

When Ω is a finite set, we say that F is a matroid on Ω if:

(M1) F is an abstract simplicial complex on Ω;
(M2) for any X,Y ∈ F such that ∣X ∣ = ∣Y ∣ + 1, there exists x ∈X ∖ Y such that Y ∪ {x} ∈ F .

In this case, we call independent set any element of F . If F is a matroid on Ω, it may be easily verified
that the set system Max(F ∩ P(X)) is exchangeable for any X ∈ P(Ω). Conversely, if Ω is a finite set,
any non-empty exchangeable set system B on Ω agrees with the family of all the bases of a matroid on
Ω. For other general results on matroids, the reader can consult [42].
X set operator on Ω is a map σ ∶ P(Ω) Ð→ P(Ω), and we denote by OP (Ω) the set of all set operators
on Ω. Let σ ∈ OP (Ω). We say that σ is:

● extensive if X ∈ P(Ω) Ô⇒ X ⊆ σ(X);
● monotone if X,B ∈ P(Ω),B ⊆X Ô⇒ σ(B) ⊆ σ(X);
● idempotent if X ∈ P(Ω) Ô⇒ σ(σ(X)) = σ(X);
● a closure operator if it is extensive, monotone and idempotent.

Posets and Lattices. A partially ordered set (abbreviated poset) is a pair X = (X,≤), where X is a
set and ≤ is a binary, reflexive, antisymmetric and transitive relation on X. Let X be a given poset and
x ∈ X. We call upset of x the subset (x)↑X ∶= {y ∈ X ∣ x ≤ y}. Let y ∈ X. We write x < y if x ≤ y and
x ≠ y. Moreover we use the symbol x∣∣y to say that x and y are two non-comparable elements in X. We
say that y covers x (or that x is a co-cover of y), denoted by x ⋖ y, if x < y and there exists no element

z ∈X such that x < z < y. We denote by (x)↓,⋖X the family of all the co-covers of x in X.
We set

IX(x) ∶= {z ∈ (x)↓,⋖X ∣ z′ ∈X and z′ < x Ô⇒ z′ ≤ z}

and

I(X) ∶= {x ∈X ∣ IX(x) ≠ ∅}.

Clearly, if IX(x) ≠ ∅, it contains only one element. If Y ⊆ X, we call an element z ∈ X such that y ≤ z
for any y ∈ Y an upper bound of Y . We call the minimum (if it exists) of all upper bounds of Y the least
upper bound of Y . The notions of lower bound and greatest lower bound are dual. X is said a lattice if
any two elements of X have both a least upper bound and a greatest lower bound. Moreover, X is said
a complete lattice if X is a lattice and if each of its subsets has both a least upper bound and greatest
lower bound in the lattice.

Pairings. We call a triple P = (U,F,Λ), where U , Λ are non-empty sets and F ∶ U ×Ω Ð→ Λ is a map
having domain U ×Ω and codomain Λ, a pairing on Ω. Let PAIR(Ω) denote the set of all pairings on Ω.
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Fix an arbitrary P = (U,F,Λ) ∈ PAIR(Ω). For any X ∈ P(Ω), we consider the equivalence relation ≡X

on the set U , that we call X-symmetry relation, defined by

∀u,u′ ∈ U [u ≡X u′ ∶ ⇐⇒ F (u,x) = F (u′, x) ∀x ∈X],

Let [u]X the equivalence class of u with respect to ≡X and πP(X) ∶= {[u]X ∣ u ∈ U}.
Starting from the equivalence relation ≡X , we may define the binary relation ←P on P(Ω) as follows: for
each X,Y ∈ P(Ω) we set

Y ←P X ∶ ⇐⇒ (∀u,u′ ∈ U [u ≡X u′ Ô⇒ u ≡Y u′]),

We call ←P a pairing relation on Ω. From now on we will always assume that P ∈ PAIR(Ω) is a given
arbitrary pairing on Ω. With regard to pairing relations, it is immediate to verify the following properties:

(P1) Y ⊆X Ô⇒ Y ←P X;
(P2) Z ←P Y and Y ←P X Ô⇒ Z ←P X;
(P3) Y ←P X ⇐⇒ ∀y ∈ Y [{y} ←P X];

for any X,Y,Z ∈ P(Ω).
For each X,Y ∈ P(Ω) we set

X ≈P Y ∶ ⇐⇒ X ←P Y and Y ←P X ⇐⇒ ∀u,u′ ∈ U (u ≡X u′ ⇐⇒ u ≡Y u′)

The relation ≈P is an equivalence relation and we will denote by [X]≈P
the equivalence class of any

subset X ∈ P(Ω).
At this point, let us provide the notion of P-reduct of a subset X.

Definition 2.1. Let X,Y ∈ P(Ω) be such that Y ⊆X. We say that Y is a P-reduct of X if:

(R1) X ←P Y ;
(R2) ∀y ∈ Y [X /←P Y ∖ {y}].

We denote by RP(X) the set of all P-reducts of X. If X = Ω, we will use the notation RP instead of
RP(Ω).

In the next result we recall some properties of the relation ←P and of two associated set systems and of
the family of the X-reducts, for each subset X ∈ P(Ω).

Theorem 2.2. Let X,Y,Z ∈ P(Ω). The following conditions hold:

(i) If X ←P Y , then X ∪Z ←P Y ∪Z. In particular, if X ≈P Y , then X ∪Z ≈P Y ∪Z;
(ii) the subset family [X]≈P

has a maximum MP(X) that coincides with ⋃[X]≈P
;

(iii) MP(X) = {z ∈ Ω ∣ {z} ←P X} = {z ∈ Ω ∣ X ∪ {z} ≈P X} = {z ∈ Ω ∣ (u,u′ ∈ Ω ∧ u ≡X u′) Ô⇒
F (u, z) = F (u′, z)};

(iv) the set operator MP ∶ W ∈ P(Ω) ↦ MP(W ) ∈ P(Ω) is a closure operator on Ω and the set
system MP ∶= {MP(W ) ∣ W ∈ P(Ω)} = {W ∈ P(Ω) ∣ MP(W ) = W} ∈ MSY (Ω) and, hence
M(P) ∶= (MP,⊆) is a complete lattice;

(v) the set system NP ∶= ⋃{Min([X]≈P
) ∣ X ∈ MP} = {X ∈ P(Ω) ∣ ∀x ∈X [x ∈ Ω ∖MP(X ∖ {x})]}

is an abstract simplicial complex on Ω;
(vi) RP(X) =Min([X]≈P

);
(vii) RP(X) ⊆Max(NP ∩ P(X)).

Proof. See [11]. �

The members of the set systemMP are usually called maximum partitioners, while those of NP are said
minimal partitioners [11].

Remark 2.3. The reverse inclusion in part (vii) of Theorem 2.2 does not hold in general. We refer the
reader to [11] for some counterexamples.

2.1. Graphs and Pairings. We refer the reader to [19] for any general notion concerning graph theory.
Let G = (V (G),E(G)) be a finite simple (i.e. no loops and no multiple edges are allowed) undirected
graph, with vertex set V (G) = {v1, . . . , vn} and edge set E(G). If v, v′ ∈ V (G), we will write v ∼ v′ if
{v, v′} ∈ E(G) and v ≁ v′ otherwise. We call the set NG(v) ∶= {w ∈ V (G) ∣ v ∼ w} the neighborhood of
v in G and we set N c

G(v) ∶= V (G) ∖NG(v). Two vertices v and w are said twin if NG(v) = NG(w). A
graph is said twin-free if it has no twin vertices. We say that a graph G is regular if ∣NG(v)∣ = ∣NG(w)∣

for each v,w ∈ V (G) and, more specifically, we say that G is k-regular if ∣NG(v)∣ = k for each v ∈ V (G).
Moreover, we say that G is strongly regular with parameters (n, k, λ, ν) if it is a k-regular graph on n
vertices, every two adjacent vertices have λ common neighbors and every two non-adjacent vertices have
ν common neighbors.
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Two graphs G = (V (G),E(G)) and H = (V (H),E(H)) are said isomorphic, denoted by G ≅ H, if
there exists a bijection φ ∶ V (G) Ð→ V (H) such that for all v, v′ ∈ V (G) it results that {v, v′} ∈

E(G) ⇐⇒ {φ(v), φ(v′)} ∈ E(H). We say that H = (V (H),E(H)) is a subgraph of G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). If X ⊆ V (G), the generated subgraph by X in G, denoted by G[X], is the graph
having X as vertex set and such that if v and v′ are two distinct vertices in X, then {v, v′} ∈ E(G[X])

if and only if {v, v′} ∈ E(G).
If v and w are two distinct vertices of G and k ≥ 1, a k-path (or sometimes simply a path) between v
and w is a graph P = (V (P ),E(P )), where V (P ) = {v0, . . . , vk}, E(P ) = {{v0, v1}, . . . ,{vk−1, vk}}, v0 = v
and vk = w. In such a case, the number k − 1 is called the length of the path. In particular, any 1-path
is a single vertex. We denote by d(v,w) the distance between v and w, i.e. the length of any shortest
path between v and w. By convention, we also assume that d(u,u) = 0 for any u ∈ V (G). We say that a
graph G is connected if for any two distinct vertices v,w ∈ V (G) there exists a path between them. If v
is a vertex, we call the maximal connected subgraph of G containing v the connected component of v in
G. Each maximal connected subgraph of G is said connected component of G.
In this paper we denote by Pk1,...,ks any disjoint union of s paths Pk1 , . . . , Pks , where Pki is a ki-path,
for i = 1, . . . , s.
Some classical examples of graphs with vertex set {v1, . . . , vn} we will use within the paper are given
below:

● Complete graph on n vertices. It is denoted by Kn and is the graph such that {vi, vj} is an edge,
for each pair of indexes i ≠ j.

● (r1, . . . , rs)−complete multipartite graph on n vertices. It is denoted by Kr1,...,rs , where r1 + ⋅ ⋅ ⋅ +
rs = n and there exist s non-empty subsets B1, . . . ,Bs of V (G) such that ∣Bi∣ = ri, Bi ∩Bj = ∅

if i ≠ j,
s

⋃

i=1
Bi = V (G) and E(G) = {{x, y} ∣ x ∈ Bi, y ∈ Bj , i ≠ j}. In this case, we also denote

Kr1,...,rs by the symbol (B1∣ . . . ∣Bs). Moreover, if s = 2, we say that Kr1,r2 is a complete bipartite
graph.

● n-cycle. It is denoted by Cn and has edge set E(Cn) = {{v1, v2},{v2, v3}, . . . ,{vn−1, vn},{vn, v1}}.

Let G be a n-graph. We now consider the pairing P[G] ∶= (V (G), F,{0,1}) ∈ PAIR(V (G)), where

F (u, v) ∶= {
1 if u ∼ v
0 otherwise

We call P[G] the adjacency pairing of G. From now on, we write G instead of P[G]. For any X ∈

P(V (G)), the equivalence relation ≡X can be translated as follows:

v ≡X v′ ∶⇐⇒ NG(v) ∩X = NG(v′) ∩X

3. Attractive Pairings

In this section we provide the notion of attractive pairing on Ω and next analyze some basic properties of
such structures. More in detail, we will see that the family of all P-reducts of each subset X ∈ P(Ω) agrees
with the family of the maximal members of NP contained in X and form an exchangeable set system. We
finally observe that there exist non-attractive pairing for which the condition Max(NP ∩ P(X)) holds
for any X ∈ P(Ω); while, when Ω is a finite set, the coincidence between RP(X) and Max(NP ∩P(X))

becomes also a sufficient condition.
Let us provide the notion of locally finite and attractive pairings on Ω.

Definition 3.1. We say that a pairing P ∈ PAIR(Ω) is:

● locally finite if

∀X,Y ∈ P(Ω),∀y ∈ Y [Y ←P X Ô⇒ ∃Xy ⊆X ({y} ←P Xy)

We denote by PAIRlf(Ω) the set of all locally finite pairings on Ω;
● attractive if

∀X ∈ P(Ω),∀y ∈ Ω,∀x ∈X [{y} /←P X and {x} /←P X ∖ {x} Ô⇒ {x} /←P X △{x, y}]

We denote by PAIRa(Ω) the collection of all attractive pairings on Ω. Moreover, we use the
symbol PAIRlfa(Ω) ∶= PAIRa(Ω) ∩ PAIRlf(Ω) to denote the collection of all locally finite,
attractive pairings on Ω.

Let us characterize in another way the condition for a pairing of being attractive.

Proposition 3.2. The following two conditions are equivalent:
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(i) P ∈ PAIRa(Ω);
(ii) ∀y ∈ Ω,∀x ∈X [{y} ←P X and {y} /←P X ∖ {x} Ô⇒ {x} ←P (X ∖ {x}) ∪ {y}].

Proof. See [12]. �

In the next result we provide a property satisfied by any attractive pairing.

Proposition 3.3. Let P ∈ PAIRa(Ω), X ∈ P(Ω) and x, y ∈ Ω be such that

(1) MP({x}) ∩MP(X) = ∅ and MP({x}) ∩MP(X ∪ {y}) ≠ ∅

Then MP({y}) ∩MP(X ∪ {x}) ≠ ∅.

Proof. Let X ∈ P(Ω) and x, y ∈ Ω be such that MP({x})∩MP(X) = ∅ and MP({x})∩MP(X∪{y}) ≠ ∅.
Hence, by part (iii) of Theorem 2.2 there exists u ∈ Ω such that

(2) {u} ←P {x} and {u} ←P X ∪ {y}

As {u} ←P {x}, the first condition in (1) implies that

(3) {u} /←P X

Assume by contradiction that

(4) MP({y}) ∩MP(X ∪ {x}) = ∅

Hence, by part (iii) of Theorem 2.2 and by (P1) and (P2), we easily deduce that {y} /←P X. Now, by
(2) and (3), using Proposition 3.2 we get {y} ←P X ∪ {u}, whence X ∪ {y} ←P X ∪ {u}. At this point,
from the second condition of (2) we easily deduce that

X ∪ {y} ≈P X ∪ {u}

So, using the first condition of (2), we readily verify that X ∪{y} ←P X ∪{x}. Thus, by (P1), it results
that {y} ←P X ∪ {x}, whence y ∈ MP({y}) ∩MP(X ∪ {x}), in contrast with (4). This shows that
MP({y}) ∩MP(X ∪ {x}) ≠ ∅. �

In [12] it has been proved that the collection of all the P-reduct of a maximum partitioner X is always
non-empty set when the pairing is both locally finite and attractive. Let us recall such an important
result.

Theorem 3.4. Let P ∈ PAIRlfa(Ω) and X ∈ MP. Then RP(X) ≠ ∅ and RP(X) has uniform
cardinality.

Proof. See [12]. �

At this point, we will establish two specific properties of attractive pairings, namely the fact that the
X-reducts agree with the maximal members of NP contained in X and form an exchangeable set system.
In particular, when Ω is a finite set and P is an attractive pairing, we will demonstrate that the family
of all the minimal partitioners is a matroid.

Theorem 3.5. Let P ∈ PAIRa(Ω). Then:

(i) RP(X) =Max(NP ∩ P(X));
(ii) Max(NP ∩ P(X)).

for any X ∈ P(Ω). Moreover, if Ω is a finite set, it also results that:

(iii) NP is a matroid and RP(X) agrees with the family of all its X-bases, for each X ∈ P(Ω).

Proof. (i): Let X ∈ P(Ω). We claim that RP(X) = Max(NP ∩ P(X)). To this regard, it suffices to
show the inclusion Max(NP∩P(X)) ⊆ RP(X) since, by part (vii) of Theorem 2.2, the reverse inclusion
is always true. Take therefore Y ∈Max(NP ∩ P(X)). We will first demonstrate that

(5) X ←P Y

Assume by contradiction the existence of x ∈X such that

(6) {x} /←P Y

Hence x ∈ Ω∖MP(Y ) by part (iii) of Theorem 2.2. Moreover, as Y ∈ NP, it results that {y} /←P Y ∖{y}
for any y ∈ Y . Using (6) and the fact that P ∈ PAIRa(Ω), it follows that the condition

(7) {y} /←P Y △{x, y}
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holds for any y ∈ Y . Consider now the subset Y ∪ {x}. In view of (6) and of (7), it easily follows that
Y ∪ {x} ∈ NP ∩ P(X), contradicting the fact that Y ∈Max(NP ∩ P(X)). Thus (5) holds.
Now, fix some y ∈ Y . We have

X /←P Y ∖ {y}

since, otherwise, we would get
{y} ←P Y ←P X ←P Y ∖ {y},

whence {y} ←P Y ∖{y}, which contradicts the assumption that Y ∈ NP. Therefore, Y also satisfies (R2)
of Definition 2.1. This proves that Y ∈ RP(X).
(ii): Let B,C ∈ Max(NP ∩ P(X)) and x ∈ B ∖ C. In view of the previous part (i), we have that
RP(X) =Max(NP ∩ P(X)). Thus

(8) B ≈P C.

Now, as B ∈ NP, it results that {x} /←P B ∖ {x}. Therefore B /←P B ∖ {x} and, by (8), we deduce that
C /←P B ∖ {x}. In particular, there exists y ∈ C such that

(9) {y} /←P B ∖ {x}.

By (9), we must clearly have y ∈ C ∖ B. At this point, by (8) and (9), we have that {y} ←P B and
{y} /←P B ∖ {x}. Therefore, in view of part (ii) of Proposition 3.2, we get

(10) {x} ←P B△{x, y}.

Hence

(11) B△{x, y} ≈P B ∪ {y} ≈P B.

Set B′
∶= B△{x, y}. Clearly, B′

∈ P(X). We claim that B′
∈ NP or, equivalently, that

(12) {b′} /←P B′
∖ {b′}

for each b′ ∈ B′. In view of (9), the claim holds when we take b′ ∶= y. So, take b′ ∈ B ∖ {x} and assume
by contradiction that (12) does not hold. Thus

(13) {b′} ←P B′
∖ {b′} = (B ∖ {x}) △ {y, b′}.

Notice that

(14) {b′} /←P B ∖ {x, b′},

otherwise {b′} ←P B ∖ {b′}, contradicting the fact that B ∈ NP. Now, using part (ii) of Proposition 3.2
on the conditions (13) and (14), we get

{y} ←P (B ∖ {x, b′}) ∪ {b′} = B ∖ {x},

which contradicts (9). Therefore, we conclude that (12) holds for each b′ ∈ B′. This shows that B′
∈ NP.

Finally, let B′′
∈ Max(NP ∩ P(X)) be such that B′

⫋ B′′. As Max(NP ∩ P(X)) = RP(X), we
get B′′

∈ RP(X), which is in contrast with (11). So, B′
∈ Max(NP ∩ P(X)) and this proves that

Max(NP ∩ P(X)) is exchangeable.
(iii): In view of the previous two parts, it follows that the collection Max(NP) = RP agrees with the
family of the bases of a matroid. Such a matroid is exactly NP. �

Remark 3.6. In general, the converse of part (ii) of Theorem 3.5 does not hold. See [11] for some
counterexamples.

In the following example, we will see that if the set system Max(NP ∩P(X)) is exchangeable, then the
corresponding pairing should not be attractive.

Example 3.7. Let us consider the pairing P induced by the adjacency matrix of the graph P5. Let
V ∶= V (P5). In such a case, it may be easily verified that

Max(NP ∩ P(V )) = {{v1, v2, v3},{v1, v2, v4},{v1, v2, v5},{v1, v3, v4},

{v1, v4, v5},{v2, v3, v5},{v2, v4, v5},{v3, v4, v5}},

Max(NP ∩ P({v1, v2, v3, v4})) = {{v1, v2, v3},{v1, v2, v4},{v1, v3, v4}},

Max(NP ∩ P({v1, v2, v3, v5})) = {{v1, v2, v3},{v1, v2, v5},{v2, v3, v5}},

Max(NP ∩ P({v1, v2, v4, v5})) = {{v1, v2, v4},{v1, v2, v5},{v1, v4, v5},{v2, v4, v5}},

Max(NP ∩ P({v1, v3, v4, v5})) = {{v1, v3, v4},{v1, v4, v5},{v3, v4, v5}},

Max(NP ∩ P({v2, v3, v4, v5})) = {{v2, v3, v5},{v2, v4, v5},{v3, v4, v5}},

Max(NP ∩ P({v1, v3, v5})) = {{v1, v3},{v1, v5},{v3, v5}},
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Max(NP ∩ P({v2, v3, v4})) = {{v2, v3},{v2, v4},{v3, v4}},

and Max(NP ∩ P(X)) = {X} for the remaining vertex subsets X.
On the other hand, let us observe that P5 is not an attractive graph. In fact, just take X = {v2, v3, v4},
a = v3 and b = v1. Then {v3} ←P X △{v1, v3} = {v1, v2, v4} since {v1, v2, v4} ≈P V .

When Ω is a finite set, it results that the condition Max(NP ∩ P(X)) = RP(X) for any X ∈ P(Ω)

becomes sufficient for attractiveness. This we now present.

Theorem 3.8. Let Ω be a finite set. The following conditions are equivalent:

(i) P ∈ PAIRa(Ω);
(ii) ∀X ∈ P(Ω) [Max(NP ∩ P(X)) = RP(X)].

Proof. (i) Ô⇒ (ii): It has been already shown in part (i) of Theorem 3.5.
(ii) Ô⇒ (i): Fix X ∈ P(Ω) and consider first the monotone map ρP ∶ P(Ω) → N defined as follows:

(15) ρP(X) ∶= max{∣X ′
∣ ∣ X ′

∈Max(NP ∩ P(X))}.

We claim that

(16) MP(X) = {w ∈ Ω ∣ ρP(X) = ρP(X ∪ {w})}.

To this regard, let z ∈MP(X). Hence X ∪ {z} ≈P X. Let Y ∈ RP(X ∪ {z}) =Max(NP ∩ P(X ∪ {z}))
be such that ∣Y ∣ = ρP(X). If z ∈ Ω ∖ Y , then we clearly have Y ∈ RP(X). Thus, we get ∣Y ∣ ≤ ρP(X) ≤

ρP(X ∪ {z}) = ∣Y ∣, i.e. ρP(X) = ρP(X ∪ {z}).
On the other hand, if z ∈ Y , we have Y = C ∪ {z} for some C ∈ P(X). Notice that C ∉ RP(X),
otherwise we would have πP(Y ∖ {z}) = πP(C) = πP(X) = πP(X ∪ {z}), contradicting the fact that
Y ∈ RP(X ∪ {z}). Nevertheless, since Y ∈ NP, we must necessarily have C ∈ NP ∩ P(X) and, thus,
C ⫋ D for some D ∈Max(NP ∩ P(X)) = RP(X). This means that ∣Y ′

∣ < ρP(X) and, hence, we deduce
that

ρP(X ∪ {z}) = ∣Y ∣ = ∣Y ′
∣ + 1 ≤ ρP(X)

Since ρP is monotone, we also have ρP(X) ≤ ρP(X ∪{z}). This proves that MP(X) ⊆ {w ∈ Ω ∣ ρP(X) =

ρP(X ∪ {w})}.
Conversely, to prove the reverse inclusion, let z ∈ Ω be such that ρP(X) = ρP(X ∪ {z}) and assume by
contradiction that z ∈ Ω ∖MP(X), i.e. X /≈P X ∪ {z}. Let moreover Y ∈ Max(NP ∩ P(X)) = RP(X)

be such that ∣Y ∣ = ρP(X). Clearly, it follows that Y ∈ NP ∩ P(X ∪ {z}) and, by our assumption, that
∣Y ∣ = ρP(X) = ρP(X ∪ {z}). This implies that Y ∈Max(NP ∩ P(X ∪ {z}) = RP(X ∪ {z}) and, hence,

πP(X) = πP(Y ) = πP(X ∪ {z})

in contrast with the fact that z ∈ Ω ∖MP(X). This concludes the proof of (16).
Take now {y} /←P X and {x} /←P X ∖ {x}. Assume by contradiction that

(17) {x} ←P X △{x, y}

Then, in view of part (iii) of Theorem 2.2, (15) and (16), our choices of the elements x and y may be
expressed in terms of the map ρP as follows:

(18) ρP(X ∪ {y}) = ρP(X) + 1, ρP(X) = ρP(X ∖ {x}) + 1, ρP(X ∪ {y}) = ρP(X △{x, y}).

Let X ′
∈ Max(NP ∩ P(X △ {x, y})) be such that ρP(X △ {x, y}) = ∣X ′

∣. As X ′
∈ Max(NP ∩ P(X △

{x, y})) ⊆ NP ∩ P(X ∪ {y}), by (17) and by the condition ρP(X ∪ {y}) = ρP(X △ {x, y}) given in (18),
we easily deduce that

X ′
∈Max(NP ∩ P(X ∪ {y})) = RP(X ∪ {y}),

where the last equality holds in view of the hypothesis. Now, since {y} /←P X and X ′
∈ RP(X ∪ {y}), it

must necessarily be X ′
= X ′′

∪ {y}, where X ′′
∈ P(X ∖ {x}). By part (v) of Theorem 2.2 it results that

X ′′
∈ NP ∩ P(X) and thus we get

(19) ∣X ′′
∣ = ∣X ′

∣ − 1 = ρP(X ∪ {y}) − 1 = ρP(X) > ρP(X ∖ {x}).

Nevertheless, as X ′′
∈ P(X ∖ {x}), we also have ρP(X ∖ {x}) ≥ ∣X ′′

∣ = ρP(X), which contradicts (19).
Therefore, (17) cannot hold and P must be an attractive pairing. �
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4. Quasi-Attractive Pairings

In this section we introduce the notion of quasi-attractive pairing. It originates by assuming a specific
property which is indeed weaker than attractiveness, as we will see in Proposition 4.1. Furthermore, we
will firstly provide a characterization of quasi-attractiveness in terms of order-theoretical properties of
MP. Next, we investigate the main properties of quasi-attractive pairings, above all in relation to the
behaviour of the set system RP(X), for any X ∈ P(Ω). In particular, we will demonstrate that when Ω
is a finite set, quasi-attractiveness becomes equivalent to require the exchangeability of RP(X) for any
X ∈ P(Ω). In this way, we relate quasi-attractiveness to the matroidality of a sub-set system of NP.
Let us now provide a necessary condition for attractive pairings, allowing us to introduce a new subclass
of pairings.

Proposition 4.1. Let P ∈ PAIRa(Ω) and X,Y ∈ P(Ω) be such that X ≈P Y . Then

∀x ∈X [∃yx ∈ Y ({x} ←P (X ∖ {x}) ∪ {yx})]

Proof. Let X,Y ∈ P(Ω) be such that X ≈P Y and fix x ∈ X. There is nothing to prove if x ∈ Y . So
assume that x ∈ Ω ∖ Y . First note that if {x} ←P X ∖ {x}, then the condition {x} ←P (X ∖ {x}) ∪ {y}
holds for each y ∈ Y . Therefore, we may also suppose that

{x} /←P X ∖ {x}

Then, using the assumption that X ≈P Y , we may find an element yx ∈ Y such that {yx} /←P X ∖ {x}.
Hence, by (P1), (P2) and the fact that Y ≈P X, it follows that {yx} ←P X. Now, since P ∈ PAIRa(Ω),
by part (ii) of Proposition 3.2 we get

{x} ←P (X ∖ {x}) ∪ {yx}

�

In view of Proposition 4.1, we may now provide the fundamental notion of quasi-attractive pairing and
the corresponding notion of quasi-attractive pairing.

Definition 4.2. We say that a pairing P ∈ PAIR(Ω) is quasi-attractive if for each X,Y ∈ P(Ω) such
that X ≈P Y and any x ∈X

∃yx ∈ Y [{x} ←P (X ∖ {x} ∪ {yx}]

We denote by PAIRqa(Ω) the collection of all quasi-attractive pairings on Ω. We set moreover PAIRlfqa(Ω) ∶=

PAIRlf(Ω) ∩ PAIRqa(Ω).

Let us characterize the condition for a pairing of being quasi-attractive in terms of a specific property of
the complete lattice M(P). More in detail we will demonstrate that a pairing is quasi-attractive if and
only if for any X ∈ P(Ω) the elements of I(F), where F is the upset of MP(X) in M(P), are exactly
those of the form MP(X ∪ {z}), where {z} /←P X.

Proposition 4.3. The following conditions are equivalent:

(i) P ∈ PAIRqa(Ω);
(ii) ∀Z ∈ MP,∀Y ∈ P(Ω),∀x ∈ Ω [{x} /←P Z and Y ∖ Z ≠ ∅ and Z ∪ Y ≈P Z ∪ {x} Ô⇒ ∃y ∈

Y ({x} ←P Z ∪ {y})];

(iii) for any X ∈ P(Ω) the elements of I(F), where F = (MP(X))
↑
MP

, are exactly those of the form

MP(X ∪ {z}), where {z} /←P X.

Proof. (i) Ô⇒ (ii): Let Z ∈ MP and Y ∈ P(Ω) be such that Y ∖ Z ≠ ∅. Let moreover x ∈ Ω be
such that Z ∪ Y ≈P Z ∪ {x}. If {x} ←P Z, there is nothing to prove. So, assume that {x} /←P Z. As
P ∈ PAIRqa(Ω), there must be some y ∈ Y ∖Z such that {x} ←P Z ∪ {y}.
(ii) Ô⇒ (i): Let X,Y ∈ P(Ω) be such that X ≈P Y and x ∈ X. We claim that P ∈ PAIR(Ω). If
{x} ←P X ∖ {x}, there is nothing to prove. Analogously, if x ∈ Y ∩X, the claim is obvious. So, take
x ∈ X ∖ Y and assume that {x} /←P X ∖ {x}. Set Z ∶=MP(X ∖ {x}). Hence {x} /←P Z. It is immediate
to verify that

(20) X ≈P Z ∪ {x}.

Furthermore, since X ≈P Y , there exists y ∈ Y such that

(21) {y} /←P Z.
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In view of (20), we also get {y} /←P Z ∪ {x}. Notice also that Y ∪ Z ≈P Y . Thus, by (20) and of our
choice of Y , it follows that Z ∪ {x} ≈P Z ∪ Y . In view of (21), we also have y ∈ Y ∖ Z. So, we can use
our assumption to find an element y′ ∈ Y such that

(22) {x} ←P Z ∪ {y′}.

As Z ≈P X ∖ {x}, we conclude that {x} ←P (X ∖ {x}) ∪ {y′}.
(i) Ô⇒ (iii): Let P ∈ PAIRqa(Ω). We claim that for any X ∈ P(Ω) the elements of I(F), where

F = (MP(X))
↑
MP

, are exactly those of the form MP(X ∪ {z}), where {z} /←P X. To this aim, fix

X ∈ P(Ω) and an element z ∈ Ω such that {z} /←P X. Consider the subsets

Y = {z ∈ Ω ∣ MP(X ∪ {z}) =MP(X ∪ {z})}

and
X ′

∶=MP(X ∪ {z}) ∖ Y.

It clearly follows that MP(X) ⊆X ′
⫋MP(X ∪{z}). We now claim that X ′

∈ MP. Let z ∈MP(X ′
)∖X ′.

Clearly, it results that z ∈ Y . Moreover, it follows that X ′
≈P X ∪ {z}. As P ∈ PAIRqa(Ω), there exists

x′ ∈X ′ such that
{z} ←P [(X ∪ {z}) ∖ {z}] ∪ {x′} =X ∪ {x′}.

Thus, we deduce that X ∪ {z} ←P X ∪ {x′}. It is also evident that X ∪ {x′} ←P X ∪ {z} since x′ ∈ X ′.
In this way, we are saying that X ∪ {x′} ≈P X ∪ {z}, whence x′ ∈ Y , contradicting our choice of x′. This
shows that X ′

∈ MP.
Let now X ′′

∈ MP be such that MP(X) ⊆X ′′
⫋MP(X ∪ {z}). We clearly have X ′′

⊆X ′. Therefore, X ′

is the only co-cover of MP(X ∪ {z}) in the upset of MP(X) in the lattice M(P).

Conversely, let W ∈ I(F), where F = (MP(X))
↑
MP

. Denote by W ′ the corresponding co-cover. Then

MP(X) ⊆W ′
⫋W . Suppose by contradiction that no element of the form MP(X∪{z}), with {z} /←P X,

agrees with W . Since W ′
∈ IF(W ), it follows that MP(X ∪{z}) ⊆W ′ for any x ∈ Ω such that {z} /←P X.

Thus, taking all the elements w ∈W such that {w} /←P X, we get W ⊆W ′, which is an absurd. Therefore,
there exists z ∈ Ω such that {z} /←P X and W =MP(X ∪ {z}).
(iii) Ô⇒ (i): Take X ≈P Y and fix x ∈ X. Set X ′

∶= X ∖ {x}. There is nothing to prove if {x} ←P X ′.
Therefore, assume that {x} /←P X ′. Set G ∶= (MP(X ′

))
↑
MP

. In view of our assumption, it results

that IG(MP(X ′
∪ {x})) ≠ ∅. Let B denote the corresponding co-cover. Clearly, B cannot contain

elements z ∈ Ω such that X ′
∪ {x} ≈P X ′

∪ {z}. This implies that B = MP(X ′
∪ {x}) ∖ Z, where

Z = {z ∈ Ω ∣ X ′
∪ {x} ≈P X ′

∪ {z}}. At this point, notice that Y ∩ Z ≠ ∅, otherwise we would have
MP(Y ) =MP(X) =MP(X ′

∪ {x}) ⊆MP(X ′
∪ {x}) ∖Z ⫋MP(X ′

∪ {x}), which is impossible. Thus, let
y ∈ Y ∩Z. We get {x} ←P X ′

∪ {y} = (X ∖ {x}) ∪ {y}, i.e. P ∈ PAIRqa(Ω). �

In this section we will demonstrate that when one has a locally finite quasi-attractive pairing, then all
the P-reducts of a maximum partitioner A have the same cardinality. Moreover, we will also deduce that
quasi-attractiveness on a finite set Ω may be characterized by the fact that the P-reducts of any subset
A ∈ P(Ω) form an exchangeable set system, property which characterizes the A-bases of a matroid on Ω,
though in general NP is not a matroid.

In the next result we will prove that all the reducts of a maximum partitioner of a locally finite quasi-
attractive pairing have the same cardinality.

Theorem 4.4. Let P ∈ PAIRlfqa(Ω) and X ∈ MP be such that RP(X) ≠ ∅. Then RP(X) has uniform
cardinality.

Proof. Let W = {w1, . . . ,wn}, V = {v1, . . . , vm} ∈ RP(X) be such that m < n. Take v1 ∈ V . As P ∈

PAIRqa(Ω), there exists an element of W , say w1, such that {v1} ←P (V ∖ {v1}) ∪ {w1}. Set V (1) ∶= V
and

V (2) ∶= (V ∖ {v1}) ∪ {w1} = {w1, v2, . . . , vm}.

It is immediate to verify that V (2) ≈P V (1) ≈P V ≈P W . Therefore, we may use again the assumption

that P ∈ PAIRqa(Ω) on the subsets V (2) and W and to the element v2 in order to find w2 ∈ W such

that {v2} ←P (V (2) ∖ {v2}) ∪ {w2}. Set

V (3) ∶= (V (2) ∖ {v2}) ∪ {w2} = {w1,w2, v3, . . . , vm}.

Clearly we get V (3) ≈P W and, thus, we may iterate the above procedure until we reach a subset

V (m) ∶= {w1, . . . ,wm} ⫋ W such that V (m) ≈P W . Thus, we conclude that W ∉ RP(X), contradicting
our choice of W . This proves the claim when Ω is finite.
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Let now Ω be an infinite set and also assume W ∈ RP(X) to be infinite. Also the subset V must be
infinite. In fact, note that for any v ∈ V there must correspond some finite subset Fv ∈ Pfin(W ) such
that {v} ←P Fv. Let now

Y ∶= ⋃{Fv ∣ v ∈ V }

Clearly, it results V ←P Y and Y ⊆ W , whence Y ≈P V ≈P W ≈P X. Since W ∈ RP(X), we must
necessarily have Y = W . If V were finite, even the subset Y (and so W ) would be finite, which is
impossible by our assumption. Thus, V is an infinite subset.
At this point, notice that ∣W ∣ ≤ ∑v∈V ∣Fv ∣ ≤ ℵ0∣V ∣ = ∣V ∣. The thesis holds exchanging the role of W and
V in the above argument. �

Corollary 4.5. If Ω is a finite set, P ∈ PAIRqa(Ω) and X ∈ P(Ω), then RP(X) has uniform cardinality.

Proof. It is an immediate consequence of Theorem 4.4. �

In the next result we will characterize quasi-attractiveness on finite sets through the fact that the set
system of the P-reducts of any subset X is exchangeable.

Theorem 4.6. Let Ω be a finite set. Then the following conditions are equivalent:

(i) P ∈ PAIRqa(Ω);
(ii) for any X ∈ P(Ω) the set system RP(X) is exchangeable.

Proof. (i) Ô⇒ (ii): Let X ∈ P(Ω), Y,Z ∈ RP(X) and y ∈ Y ∖ Z. As Y ≈P Z and P ∈ PAIRqa(Ω),
there exists z ∈ Z such that

(23) {y} ←P (Y ∖ {y}) ∪ {z}.

Set W ∶= (Y ∖ {y}) ∪ {z}. In order to show that RP(X) is exchangeable, we will demonstrate that
z ∈ Z ∖ Y and W ∈ RP(X). First of all, notice that

(24) z ∈ Z ∖ Y,

otherwise, by (23), we would get z ≠ y and {y} ←P W = Y ∖ {y}, contradicting the assumption Y ∈

RP(X). Therefore, since y ∈ Y ∖ Z, by (24) it follows that ∣W ∣ = ∣Y ∣. Moreover, again by (23), we also
deduce that

(25) W ≈P Y ∪ {z} ≈P Y,

where the second equivalence follows by the fact that Y ≈P Z and z ∈ Z.
Assume now by contradiction that W ∉ RP(X). As Y ∈ RP(X), we have that X ←P Y , therefore, by
(25), we also have that X ←P W . Hence the fact that W ∉ RP(X) implies the negation of condition
(R2) of Definition 2.1, so that we can find some w ∈ W such that X ←P W ∖ {w}. Consider the set
system

Gw ∶= {W ′
∈ P(W ∖ {w}) ∣ X ←P W ′

}.

Then Gw ≠ ∅ because X ←P W ∖ {w} and, since Ω is finite, we have Min(Gw) ≠ ∅. Let then W ∗
∈

Min(Gw). As X ←P W ∗, it follows that W ∗ satisfies (R1) of Definition 2.1 and, by the minimality of
W ∗ in Gw, we deduce that W ∗ also satisfies (R2) of Definition 2.1. Thus

(26) W ∗
∈ RP(X) and ∣W ∗

∣ < ∣W ∣ = ∣Y ∣

As Y ∈ RP(X), the conditions in (26) are in contrast with the statement of Corollary 4.5. So, we
conclude that W ∈ RP(X).
(ii) Ô⇒ (i): Let X,Y ∈ P(Ω) be such that X ≈P Y and let x ∈ X. We claim the existence of y ∈ Y
such that {x} ←P (X ∖ {x}) ∪ {y}. If {x} ←P X ∖ {x} we clearly have {x} ←P (X ∖ {x}) ∪ {y} for any
y ∈ Y , so there is nothing to prove. Similarly, if x ∈X ∩ Y , just choose y = x to get the claim.
Therefore, we may assume that X are incomparable Y with respect to set-theoretical inclusion and take
x ∈X ∖ Y such that

(27) {x} /←P X ∖ {x}

Consider at this point the set system

HX ∶= {Y ∈ [X]≈P
∣ x ∈ Y }

As X ∈ HX and Ω is finite, we have that Min(HX) ≠ ∅. Let X̂ ∈ Min(HX). We claim that X̂ ∈

RP(MP(X)). As X̂ ∈ [X]≈P
, we clearly have MP(X) ←P X̂, so that Property (R1) of Definition 2.1

holds. Let now X ′
⫋ X̂ and assume that X ′

∈ [X]≈P
, i.e.

(28) X ′
≈P X̂
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Then x ∈ Ω ∖X ′. By (28) and by (P1),(P2),(P3), we easily deduce that {x} ←P X ∖ {x}, in contrast

with (27). So X̂ satisfies also Property (R2) of Definition 2.1 and, thus, X̂ ∈ RP(MP(X)).

Denote now by Y ′ some P-reduct of Y . In view of our assumptions, we easily deduce that X̂ and
Y ′ are incomparable with respect to set-theoretical inclusion. So, as X̂, Y ′

∈ RP(MP(X)), by the

exchangeability of RP(MP(X)) there exists yx ∈ Y ′
∖ X̂ such that {x} ←P (X̂ ∖ {x}) ∪ {yx}. As

X̂ ∈ P(X), it follows that (X̂ ∖ {x}) ∪ {yx} ←P (X ∖ {x}) ∪ {yx}, so that we conclude that

{x} ←P (X ∖ {x}) ∪ {yx}

This shows that P ∈ PAIRqa(Ω). �

Remark 4.7. When Ω is a finite set and P ∈ PAIRqa(Ω), the equality RP(X) = Max(NP ∩ P(X))

does not hold, as we will see in the last section. Nevertheless, notice that in general RP agrees with the
family of the bases of a matroid on Ω which is a sub-set system of NP.

5. The Petersen Graph is Attractive

Non-trivial examples of attractive pairings from metric space theory have been found in [12]. Concerning
graphs, using the results of Section 8 in [11], it may be easily shown that the complete graph Kn and the
complete multipartite graph Kr1,...,rs are attractive. Furthermore, the n-cycle is not in general attractive
since if we take G = C5, X = {v1, v2}, x = v2 and y = v3 it results that {y} /←G X, {x} /←G X ∖ {x} but
{x} ←G X △{x, y}.
On the other hand, a second tipology of pairing can be introduced on a graph G by taking the triple
(V (G), d,N), where d denotes the distance between the vertices of the graph G. Such a pairing has been
called the distance pairing of G. It may be easily shown that the distance pairing of the n-cycle Cn is
attractive for each n ≥ 3. Moreover, when we consider the distance pairing of a graph, the notion of
reduct becomes the well-known notion of resolvent subset [9]. In particular, the minimum cardinality of
the family of all the reducts of G agrees with the metric dimension of the graph G. Hence, the problem
of the determination of the metric dimension of a graph has been translated as the problem of finding
the minimum cardinality of the reducts of the distance pairing of a graph. In view of Theorem 4.4,
we deduce that if the distance pairing associated with a graph G is quasi-attractive, then the resolvent
subsets of G have uniform cardinality, which agrees with the metric dimension of G itself. In particular,
an interesting task consists of the geometric characterization of the resolvent subsets and the computation
of the corresponding metric dimension through the reducts of the distance pairing.
In this section we provide an example of non-trivial simple undirected graph whose adjacency pairing is
attractive. This is the so-called Petersen graph, here denoted by Pet. It is the graph whose vertices can
be identified with the 2-subsets of 5̂ ∶= {1, 2, 3, 4, 5}, such that two vertices X and Y are adjacent if and
only if their corresponding 2-subsets are disjoint. Therefore, we write vij to denote the vertex identified

with {i, j}. In what follows the letters h, i, j, k, l will denote all elements in 5̂ in an arbitrary order.
In what follows, we will provide a characterization of the Moore system MPet and, next, demonstrate
that Pet is an attractive graph.
We recall now, without giving any proofs, some important well known properties of the Petersen graph.

Proposition 5.1. We have that:

(1) Pet is a strongly regular graph with parameters (10,3,0,1).
(2) The girth of Pet is equal to 5.

We want to provide a characterization for the members of MPet. To this regard, we divide the proof in
some propositions, where we analyze the various cases occurring. First of all notice that the emptyset
and the singletons are all maximum partitioners since the Petersen graph is connected and twin-free.
Furthermore, all pairs of vertices are maximum partitioners. This we now present.

Proposition 5.2. We have that P2(V (Pet)) ⊆MPet.

Proof. Set G ∶= Pet. Let us now prove that any 2-subset A belongs to MG. To this regard, it suffices
to show that whenever we take u ∈ V (G) ∖A, then πG(A) ≠ πG(A ∪ {u}), i.e. there exists z, z′ ∈ V (G)

such that z ≡A z′ but z /≡A∪{u} z′. Take A = {v,w}, where v ∼ w and let u ∉ A. Two cases may
occur: either u ≁ v and u ≁ w or u ∼ w and u ≁ v. In the first case, as u ≁ v, there exists a vertex
z ∈ V (G) such that NG(u) ∩ NG(v) = {z}. Let moreover z′ ∈ NG(v) ∖ {z}. It may be easily verified
that z ≡A z′ but z ≡A∪{u} z′. In the second case, v, w and u form a 3-path. Assume that u ∼ v. Then

there exist h, i, j, k ∈ 5̂ such that w = vij , v = vhk and u = vil. Using the strong regularity of G, it
may be easily verified that NG(A) = {vij , vhk, vil, vkl, vhl, vjl, vjk, vhj} ≠ V (G). Therefore there exists
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z ∈ V (G)∖ [NG(w)∪NG(v)∪NG(u)]. Moreover, let us note that there exists z′ ∈ V (G) such that z′ ≁ v,
z′ ≁ w and z′ ∼ u. In fact, as NG(u) = {v, u′, u′′}, using the strong regularity it is straightforward to see
that u′, u′′ ∉ NG(v) ∪NG(w). Let z′ ∶= u′ (the case z′ ∶= u′′ is the same). Then z ≡A z

′ but z /≡A∪{u} z′.
Take now A = {v,w}, where v ≁ w and let u ∈ A. Three cases may occur: or v, w and u form a 3-path,
or u ∼ v and u ≁ w or u, v and w are three non-adjacent vertices. In the first situation, the vertex u is
the only element of NG(v) ∩NG(w). Let v = vij and w = vih for some h, i, j ∈ 5̂. We may assume that
u = vkl. Take z = vhj and z′ = vik. It is straightforward to see that z ≡A z

′ and z /≡A∪{u} z′.
In the second situation, let v = vij and w = vih for some h, i, j ∈ 5̂. We may take u = vhk. Notice that
there exist z, t ∈ V (G) such that {z} = NG(u)∩NG(w) and {t} = NG(w)∩NG(v). Denote by z′ the third
vertex which is adjacent to w. It may be easily seen that z ≡A z

′ and z /≡A∪{u} z′.
In the third case, we have that u, v and w. If v = vij and w = vih for some h, i, j ∈ 5̂, then there are
exactly three vertices non-adjacent to both v and w, namely u = vik, z = vjh and z′ = vil. Hence, we get
z ∼ u and z′ ≁ u. Therefore z ≡A z

′ and z /≡A∪{u} z′. Thus A ∈ MG when A is a 2-subset. �

Let us now characterize the maximum partitioners with three elements.

Proposition 5.3. Let A ∈ P3(V (Pet)). Then A ∈ MPet if and only if G[A] ≅ P2,1.

Proof. Set G ∶= Pet and let A = {u, v,w} be 3-subset. First of all, notice that A may assume three
possible configurations, namely P1,1,1, P2,1 and P3. Let G[A] ≅ P1,1,1. Then there exists z ∈ V (G) such
that either A = NG(z) or z is not adjacent to any of the three vertices of A. In the first case, the addition
of the vertex z to A does not affect the induced symmetry partition, so πG(A) = πG(A ∪ {z}). In the
second case, let us note that πG(A) = A ∪ {z}∣{t}t∈(A∪{z})c . In fact, there is no pair of adjacent vertices
in A ∪ {z} and, because of the strong regularity, the vertices of (A ∪ {z})c are the common neighbors
of pairs of vertices of A ∪ {z}. Nevertheless, by the same reason, it results that πG(A ∪ {z}) = πG(A).
Therefore, when G[A] ≅ P1,1,1, we conclude that A ∉ MG.
Let G[A] ≅ P3. Without loss of generality, suppose that u ∼ v and v ∼ w. Let z ∈ V (G) be such that
v ∼ z, z ≁ u and z ≁ w. Then we have that πG(A) = πG(A ∪ {z}). In fact, the other two vertices
t, t′ ∈ NG(z) ∖ {v} are not adjacent to the vertices of A, so t ≡A t′ and t ≡A∪{z} t′. The other relations
A-symmetry classes are the same since the involved vertices are not adjacent to z. Thus A ∉ MG.
Finally, let us consider the case where G[A] ≅ P2,1. Clearly, there exist h, i, j, k ∈ 5̂ such that v = vij ,
w = vhk and u = vih. Using the strong regularity, it may be easily verified that ∣NG(A)∣ = 7. Thus, the
three vertices in V (G) ∖NG(A) form a single A-symmetry block. Set Y ∶= A ∪ {t}, where t ∈ V (G) ∖A.
We will demonstrate that ∅ ≠ V (G) ∖ NG(Y ) ⫋ V (G) ∖ NG(A). This clearly implies the existence
of z, z′ ∈ V (G) such that z ≡A z′ and z /≡Y z′, ensuring that A ∈ MG. Without loss of generality
we may set v = vij , w = vhk and u = vih. The addition of the vertex t involves some possibilities.
We may have t ∼ w, t ≁ v and t ≁ u. Then, using the strong regularity, we may easily verify that
NG(Y ) = {vil, vhk, vij , vjl, vkl, vhl, vik, vjk}, whence ∅ ≠ V (G) ∖NG(Y ) ⫋ V (G) ∖NG(A).
Secondly, we may have t ∼ w, t ∼ u and t ≁ v. In such a case, let t = vlj . Then, using again the
strong regularity, we may easily verify that NG(Y ) = {vhl, vij , vhk, vlj , vih, vli, vik, vjk, vkl}, whence ∅ ≠

V (G) ∖NG(Y ) ⫋ V (G) ∖NG(A).
Moreover, it may happen that t ∼ u, t ≁ v and t ≁ w. Then, through the strong regularity, it may be easily
shown that NG(Y ) = {vij , vhk, vkl, vjl, vhl, vil, vhi, vjk}, whence again ∅ ≠ V (G)∖NG(Y ) ⫋ V (G)∖NG(A).
Finally, we may have t ≁ u, t ≁ v and t ≁ v. Again by the strong regularity, it may be easily shown that
NG(Y ) = {vij , vhk, vkl, vhl, vjl, vil, vik, vjk}, whence again ∅ ≠ V (G) ∖NG(Y ) ⫋ V (G) ∖NG(A). �

In the following result we will exhibit all the 4-subsets of Pet which are also maximum partitioners.

Proposition 5.4. Let A ∈ P4(V (Pet)). Then A ∈ MPet if and only if G[A] ≅ P2,2 or G[A] ≅ P1,1,1,1 or
G[A] ≅H1, where H1 has the following form:

Proof. Set G ∶= Pet and let A = {u, v,w, t}. Assume that G[A] ≅ P4, with the adjacencies given
by u ∼ v, v ∼ w and w ∼ t. Without loss of generality, we may suppose that v = vij , u = vhl,
w = vhk and t = vil. Therefore, it may be easily verified through the strong regularity that NG(A) =

{vij , vhl, vhk, vil, vhj , vjk, vjl, vkl, vik}. Thus ∣N c
G(A)∣ = 1. Let now z, z′ ∈ V (G) be two distinct vertices

such that z ≡A z
′. Then there exists a ∈ A such that z ∼ a and z′ ∼ a. Such an element a must be unique.

Moreover, z ≁ z′. We cannot have neither a = u nor a = t. In fact, if z, z′ ∈ NG(u) (the case of t is similar),
since u ≁ t, only one between z and z′ must be adjacent to t and this implies z /≡A z′, contrarily to our
assumption. So, either a = v or a = w. This means that z ≡A z

′ if and only if either z ∈ NG(v) and z′ = u
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or z ∈ NG(w) and z′ = t. Let B ∶= A∪ {z}. It is now immediate that πG(A) = πG(A∪ {z}). So, A ∉ MG.
Assume now that G[A] ≅ P3,1, with he adjacencies given by u ∼ v and v ∼ w. Without loss of generality,
we may suppose that v = vij , u = vhl, w = vhk and t = vhi. Then, using the strong regularity, we have
NG(A) = {vhl, vij , vhk, vik, vil, vkl, vjk, vjl}. Thus ∣N c

G(A)∣ = 2 and t ∈ N c
G(A). Take two distinct vertices

z, z′ ∈ V (G) such that z ≡A z′. This happens if and only if either z, z′ ∈ N c
G(A) or z = u and z = w.

In fact, let a ∈ A be the only vertex which is both adjacent to z and to z′. It cannot be a = t since
the strong regularity of G implies that every neighbor of t is also a neighbor of one between u, v and
w; moreover it cannot be a = u (the case a = w is similar) since there exists a single common neighbor
between u and t by the strong regularity. Thus a = v and then z = u and z′ = w. Denote by x the vertex
in V (G) ∖ (NG(A) ∪ {t}) and set B ∶= A ∪ {x}. Then we clearly have πG(A) = πG(B).
Let now assume G[A] ≅ P2,1,1, with v ∼ w. Without loss of generality, we may suppose that v = vij , w =

vhl, u = vjl and t = vil. Using the strong regularity, we have NG(A) = {vjl, vkl, vij , vhk, vhj , vhl, vik, vjk}.
Thus N c

G(A) = {vjl, vil} = {u, t}. Furthermore, in view of the previous computation, we observe that
NG(v) ∩NG(u) ∩NG(t) = ∅ and NG(w) ∩NG(u) ∩NG(t) = {x}. Take two distinct vertices z, z′ ∈ V (G)

such that z ≡A z′. Then either z, z′ ∈ N c
G(A) or z, z′ ∈ NG(A). In the latter situation, there exists only

a vertex a ∈ A such that z ∼ a and z′ ∼ a. The previous computations force a to be w. Therefore we get
z = y and z′ = v, where y denotes the third vertex in NG(w). In other terms, z ≡A z

′ if and only if either
z = u and z′ = t or z = y and z′ = v. Set now B ∶= A ∪ {x}. In view of our choice of x, we clearly have
πG(A) = πG(B).
Let G[A] ≅ P1,1,1,1. Hence, the vertices of A are all isolated and, by the strong regularity, any pair of
vertices of A admits one common neighbor. This suffices to show that πG(A) = A∣{v}v∈NG(A). Take
x ∈ V (G) ∖ A. Hence there are two vertices of A, say v and w, such that x ∈ NG(v) ∩NG(w). Hence
v ≡A u but v /≡A∪{x} u and this proves that A ∈ MG.
Let now assume that G[A] ≅H1, with the adjacencies u ∼ v, v ∼ w and v ∼ t. Then there exists a vertex
v such that A = {v} ∪NG(v). As v is the common neighbor of each pair of non-adjacent vertices in A,
we deduce that any vertex of A ∖ {v} admits two other distinct neighbors, so NG(A) = V (G). Now, let
z, z′ ∈ V (G) be such that z ≡A z′. Then there exists only a vertex a ∈ A such that z ∼ a and z′ ∼ a.
In view of the above observation, it may be easily verified that πG(A) = v∣NG(v)∣(NG(a) ∖ {v})a∈NG(v).
Take now x ∈ V (G)∖A. Denote by z, z′ the elements of NG(t)∖{v}. If x ∈ NG(z) (the case x ∈ NG(z′) is
similar), then z /≡A∪{x} z′. Moreover, if x = z (the case x = z′ is similar), then t /≡A∪{z} u. Thus A ∈ MG.
Finally, assume that G[A] ≅ P2,2, with adjacencies u ∼ v and w ∼ t. We firstly find the symmetry par-
tition induced by A. To this regard, let us denote by u, v,w, t the vertices in A, with u ∼ v and w ∼ t.
Since u ∼ v, there exist four distinct indexes h, j, k, l ∈ 5̂ such that u = vhj and v = vkl. Furthermore, as
w ∼ t without being adjacent to u and v, we may have {w, t} = {vik, vjl} or {w, t} = {vil, vjk}. Assume
that {w, t} = {vik, vjl} (the proof in the other case is similar). Since vij ≁ vjl, there exists only a vertex,
namely vhk, which is adjacent to both vij and vjl. Similarly, let vhl be the only vertex adjacent to both
vij and vik, vhi be the only vertex adjacent to both vkl and vjl, and vhj be the only vertex adjacent
to both vkl and vik. In this way, we get NG(A) = {vij , vkl, vik, vjl, vhk, vhl, vhi, vhj} = V (G) ∖ {vil, vjk}.
Thus, it results that vil ≡A vjk since they are not adjacent to the vertices in A. At this point, let
z, z′ ∈ NG(A) be such that z ≡A z′. Hence, using the above argument and the strong regularity of G,
there exists only a vertex a ∈ A such that z ∼ a and z′ ∼ a. Without loss of generality, let a = vij . Thus
{z, z′} ⊆ {vkl, vhl.vhk}. Nevertheless, vhl ∼ vik but vkl ≁ vik; similarly, vhk ∼ vjl but vkl ≁ vjl and, finally,
vhk ≁ vik. This forces z = z′ and, therefore, we proved that πG(A) = {v}v∈NG(A)∣N

c
G(A). We claim that

A ∈ MG. It suffices to prove that any vertex x ∉ A is always adjacent to only one among the vertices
of N c

G(A). To this aim, just notice that x ∈ {vhl, vhj , vhk, vhi, vjk, vil}, that NG(vil) = {vhj , vjk, vhk} and
NG(vjk) = {vhl, vhi, vil}. Hence, there always exists an edge between the vertices in V (G) ∖A and those
of N c

G(A). However, by the strong regularity no pair of vertices may have two common neighbors. This
proves the claim and concludes the proof. �

In the next proposition we will describe the behaviour of the 5-subsets of Pet.

Proposition 5.5. Let A ∈ P5(V (Pet)). Then either A ∈ RPet or there exists a 6-subset B ∈ MPet such
that A ⊆ B. Moreover, in the second case it results that πPet(A) = πPet(B).

Proof. Let A ∈ P(V (Pet)) be a 5-subset. In view of the proof of Theorem 7.10 of [10], it may be verified
that A ∈ RPet or there exists a 6-subset B ∈ MPet such that A ⊆ B. In the latter situation, it results
that either G[A] ≅ P3,1,1 or G[A] ≅H2, where H2 has the following form:

H2
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Assume firstly that G[A] ≅ P3,1,1. Let A = {u, v,w, z, t}, where z and t are the isolated vertices of G[A],
u ∼ v and v ∼ w. Notice that two distinct vertices u′, u′′ ∈ V (G) are such that u′ ≡A u′′ if and only if
either u′ = u and u′′ = w or u′ = z and u′′ = t. At this point, taking the vertex subset B and denoted by
x the vertex missing from A, we get NG(x) = {z, t, v}. Hence, again, u′ ≡B u′′ if and only if either u′ = u
and u′′ = w or u′ = z and u′′ = t, i.e. πG(A) = πG(B).
Assume now that G[A] ≅ H2. As before, denote by x the vertex in B ∖A. Let moreover u ∼ v, v ∼ w,
v ∼ z and z ∼ t. Notice that two distinct vertices u′, u′′ ∈ V (G) are such that u′ ≡A u′′ if and only if either
u′ = u and u′′ = w or u′ = x and u′′ = t. At this point, taking the vertex subset B, we clearly have that
u ≡B w and z ≡B t, whence πG(A) = πG(B). �

In the following result we will describe the behaviour of the 6-subsets of Pet.

Proposition 5.6. Let A ∈ P6(V (Pet)). Then the following conditions are equivalent:

(i) A /≈Pet V (Pet);
(ii) A = ∆Pet(v,w) where v ∼ w;
(iii) Pet[A] ≅H3, where H3 has the following form:

H3

Moreover, if Pet[A] ≅H3 then A ∈ MPet.

Proof. Set G ∶= Pet. The equivalence between (ii) and (iii) has been provided in [10]. Let us prove the
equivalence between (i) and (ii). To this regard, first notice that since G is a twin-free graph, Then
πG(V (G)) = v1∣ . . . ∣v10. Now, assume that A = ∆G(v,w) for some two adjacent vertices v and w. Let
NG(v) ∶= {w, v′, v′′} and NG(w) ∶= {v,w′,w′′

}, with v′, v′′,w′,w′′ distinct vertices. Hence v′ ≡A v′′ (and
similarly w′

≡A w′′). In fact, if v′ ∼ w′ (or v′ ∼ w′′) we would obtain NG(v′) ∩ NG(w) = {v,w′
} (or

NG(v′) ∩NG(w) = {v,w′′
}), contradicting the fact that non-adjacent vertices in G must have only one

common neighbor. Thus A /≈G V (G).
Conversely, let A /≈G V (G). We claim that A = ∆G(v,w), for some two adjacent vertices v and w. First
of all, as A is a 6-subset, let us note that NG(A) = V (G), otherwise we would find a vertex u ∈ V (G)

which is not adjacent to all the vertices of A and, thus, ∣NG(u)∣ ≤ 2, contradicting the 3-regularity of
G. Moreover, as A /≈G V (G), there exist v′, v′′ ∈ V (G) such that v′ ≡A v′′. In particular, in view of
the strongly regularity, it results that v′ ≁ v′′ and, thus, there exists exactly one vertex v ∈ A such that
v′ ∼ v and v′′ ∼ v. The other vertices of A ∖ {v} are not adjacent neither to v′ nor to v′′. So, setting
NG(v′) = {v, v′1, v

′
2} and NG(v′′) = {v, v′′1 , v

′′
2 }, we clearly have Ac

= {v′1, v
′
2, v

′′
1 , v

′′
2 }. At this point, notice

that v′, v′′ ∈ A. In fact, if one of them, say v′, does not belong to A, we conclude that Ac contains five
points.
As ∣NG(v)∣ = 3 and v cannot be adjacent to the vertices of Ac in view of the strong regularity, there
exists w ∈ A such that v ∼ w. Let NG(w) = {v,w′,w′′

}. The vertices w′ and w′′ must belong to A.
In fact, assume w′

∉ A. Without loss of generality, we may suppose that w′
= v′1 (the other cases are

similar). Then w and v′ are not adjacent but have two common neighbors, namely v and w′, contradicting
the strong regularity. So, we must have w′

∈ A. The same argument holds for w′′. This proves that
A = ∆G(v,w), with v ∼ w. In this way, we showed the equivalence between (i), (ii) and (iii).
At this point, we claim that A ∈ MG. To this aim, let u ∈ V (G) ∖ A. We have to find two vertices
z, z′ ∈ V (G) such that z ≡A z′ but z /≡A∪{u} z′. In view of the previous argument, without loss of
generality we may assume u ∈ NG(v′1). Hence set z ∶= v′ and z′ ∶= v′′. It follows that z ≡A z′. Moreover,
z ∼ u and z′ ≁ u in view of the strong regularity of G. So z /≡A∪{u} z′ and A ∈ MG. �

Corollary 5.7. We have that P7(V (Pet)) ⊆ [V (Pet)]≈Pet
.

Let us provide the following properties of specific 4-subsets which we will be useful when showing the
attractiveness of the relation ←Pet.

Lemma 5.8. Let A = {u, v,w, t} ∈ P4(V (Pet)). The following conditions hold:

(i) if Pet[A] ≅ P3,1, then there exists B ∈ P(V (Pet)) such that Pet[B] ≅ H3, A ⊆ B and πPet(A) =

πPet(B);
(ii) if Pet[A] ≅ P2,1,1, then there exists B ∈ P(V (Pet)) such that Pet[B] ≅H3, A ⊆ B and πPet(A) =

πPet(B);
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(iii) if Pet[A] ≅ P4, then there exists B ∈ P(V (Pet)) such that Pet[B] ≅ H3, A ⊆ B and πPet(A) =

πPet(B).

Proof. (i): Let Pet[A] ≅ P3,1, where u ∼ v and v ∼ w. In view of the proof of Proposition 5.4, there
exists only a vertex x ∈ V (G) ∖ (NG(A) ∪ {t}) and πPet(A) = πPet(A ∪ {x}). As Pet[A ∪ {x}] ≅ P3,1,1,
by Proposition 5.6 there exists B ∈ P(V (Pet)) such that Pet[B] ≅ H3 and A ⊆ B. In particular
πPet(A ∪ {x}) = πPet(B).
(ii): Let Pet[A] ≅ P2,1,1, where v ∼ w. In view of the proof of Proposition 5.4, there exists only a vertex
x ∈ NG(w) ∩NG(u) ∩NG(t) and πPet(A) = πPet(A ∪ {x}). As Pet[A ∪ {x}] ≅ H2, by Proposition 5.6
there exists B ∈ P(V (Pet)) such that Pet[B] ≅H3 and A ⊆ B. In particular πPet(A ∪ {x}) = πPet(B).
(iii): Let Pet[A] ≅ P4, where u ∼ v, v ∼ w and w ∼ t. In view of the proof of Proposition 5.4, just add
the third vertex of NG(v) and the third vertex of NG(w) in order to obtain the wanted 6-subset B. �

Let us recollect the above results in the following theorem.

Theorem 5.9. Let A ∈ P(V (Pet)). Then A ∈ MPet if and only if one of the following conditions hold:

● ∣A∣ ≤ 2;
● A = V (Pet);
● ∣A∣ = 3 and G[A] ≅ P2,1;
● ∣A∣ = 4 and G[A] ≅ P2,2, or G[A] ≅ P1,1,1,1 or G[A] ≅H1;
● ∣A∣ = 6 and A = ∆Pet(v,w), for some v ∼ w.

In the next result we will demonstrate that the Petersen graph is attractive.

Theorem 5.10. Let V ∶= V (Pet). We have that Pet ∈ PAIRa(V ).

Proof. Set G ∶= Pet. In view of Theorem 5.9, we may assume that 1 ≤ ∣A∣ ≤ 6. Furthermore, in view of
Propositions 5.5 and 5.6, notice that when A is a 6-subset it is never possible to choose at the same time
two vertices b ∈ Ω and a ∈ A such that {b} /←G A and {a} /←G A ∖ {a}.
Let now A be a singleton or a 2-subset. Hence, in view of Theorem 5.9 for any choice of b ∈ Ω and a ∈ A
such that {b} /←G A and {a} /←G A ∖ {a} it easily follows that {a} /←G A△{a, b}.
Let A be an arbitrary 3-subset. Clearly, {a} /←G A ∖ {a} for any a ∈ A. Let {b} /←G A and set
X ∶= A ∖ {a} ∪ {b}. Assume that G[A] ≅ P1,1,1. As we argued in Proposition 5.3, there exists z ∈ V (G)

such that either A = NG(z) or z is not adjacent to any of the three vertices of A. In the first case, we
get b ∈ V (G) ∖ (A ∪ {z}). Hence either G[X] ≅ P2,1 or G[X] ≅ P1,1,1 and there exists w ∈ V (G) which is
not adjacent to the vertices of X. If G[X] ≅ P2,1, in view of Proposition 5.3 we clearly have {a} /←G X.
Otherwise G[X] ≅ P1,1,1 and there exists w ∈ V (G) which is not adjacent to the vertices of X. Again
by the proof of Proposition 5.3, it results that X ≈G X ∪ {z} and by Proposition 5.4, it results that
X ∪ {z} ∈ MG. So, {a} /←G X. In the second case, X ≈G X ∪ {z} by the proof Proposition 5.3 and
X ∪ {z} ∈MG. So, we get b ≠ z. On the one hand, if b is adjacent to two vertices of A, when a is one of
them and replace it with b, we obtain G[X] ≅ P2,1 and, thus {a} /←G X; while when a is the remaining
vertex and replace it with b, we obtain G[X] ≅ P3. By Proposition 5.3, it results that MG(X) =X ∪{y},
where X ∪ {y} ≅H1 and, again, {a} /←G X.
On the other hand, if b is adjacent to only one vertex of A, when a is one of the two remaining vertices and
replace it with b, we obtain G[X] ≅ P2,1 and, thus {a} /←G X; while when a ∼ b, we get G[X] ≅ P1,1,1. By
our choice of b, there must necessarily exists z ∈ V (G) such that NG(z) =X. Therefore MG(X) =X∪{z}
and, thus, {a} /←G X.
Assume that G[A] ≅ P3. Let z be the third vertex adjacent to the central vertex of the 3-path A. Then
b ≠ z in view of Proposition 5.4. Thus, either b is adjacent to only one extreme of the 3-path A or it is
not adjacent to any vertex of A. In the first case, when we choose a to be the second extreme of the
3-path A, we obtain G[X] ≅ P3, so taking the vertex y which is adjacent to the central vertex of the
3-path X, we conclude that y ≠ a and MG(X) = X ∪ {y}, whence {a} /←G X; otherwise when we choose
a to be one of the other vertices, it results that G[X] ≅ P2,1 and, hence {a} /←G X. In the second case,
whenever we replace a vertex a with b we get G[X] ≅ P2,1 and, hence {a} /←G X.
Assume that G[A] ≅ P2,1. Fix a ∈ A and replace it with b ∈ V (G) ∖ A. Set X ∶= A△ {a, b}. If a is
the isolated vertex, b can be adjacent to at least one of the remaining vertices, so that G[X] ≅ P3. In
such a situation, the central vertex of the resulting 3-path is one among the previous two vertices, say
v. As MG(X) = X ∪ {y} where y is the third vertex of NG(v), and y ≠ a, we conclude that {a} /←G X.
Otherwise, b can be an isolated vertex, i.e. G[X] ≅ P2,1, and then {a} /←G X as X ∈ MG.
Let now A = {u, v,w, t} be a 4-subset. In view of Propositions 5.3 and 5.4 it may be easily verified that
A ∖ {a} ≈G A for any a ∈ A if and only if either G[A] ≅ P1,1,1,1 or G[A] ≅H1.
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Assume then G[A] ≅ P2,2, with adjacencies u ∼ v and w ∼ t. We may choose a ∈ A and b ∈ V (G) ∖ A.
Set X ∶= A△{a, b}. We may have either b ∈ V (G) ∖NG(A) or b is adjacent to only one vertex of any of
the two 2-paths, for instance b ∈ NG(u) ∩NG(w). On the one hand, if b ∉ NG(A), then G[X] ≅ P2,1,1.
Moreover, in view of Lemma 5.8 and of Proposition 5.4, we get MG(X) =X ∪ {x, y} where x is adjacent
to b, to the other isolated vertex of X and to one of the vertices of the 2-path of X, while y is the third
neighbor of the previous vertex of the 2-path of X. As a ∉ {x, y}, we conclude that {a} /←G X.
On the other hand, if b ∈ NG(u) ∩NG(w) we have either G[X] ≅ P3,1 or G[X] ≅ P4. When G[X] ≅ P3,1,
by the proof of Proposition 5.4 we get MG(X) = X ∪ {x, y}, where x ∈ V (G) ∖ (NG(A) ∪ {v}) and
y ∈ NG(x) ∩NG(v); while when G[X] ≅ P4, we get MG(X) = X ∪ {x, y}, where x is the third vertex
of NG(b) and y is the third vertex of NG(u). Clearly, in both situations, we get a ∉ {x, y} and, thus,
{a} /←G X.
Assume now that G[A] ≅ P4, with adjacencies u ∼ v, v ∼ w and w ∼ t. Let {b} /←G A. Hence, in view of
Proposition 5.4, it follows that b ∉ NG(v)∪NG(w). Now, we may remove an extreme a of the 4-path, say
u, or an inner vertex, say v. Set X ∶= A△{a, b}. Let a = u. On the one hand, we may have b ∼ t, whence
G[X] ≅ P4. Then MG(X) = X ∪ {x, y} where x ∈ NG(w) and y ∈ NG(t). Clearly, a ∉ {x, y} and hence
{a} /←G X. On the other hand, we may have b ∼ u or b ∉ NG(A). We get G[X] ≅ P3,1 and reasoning as
in the proof of Proposition 5.4, it follows that MG(X) = X ∪ {x, y} where x ∈ NG(w) ∩NG(b) and y is
the third vertex of NG(x). Thus again a ∉ {x, y} and, in particular, {a} /←G X.
Furthermore, if a = v, we may have b ∼ u and b ≁ t, whence G[X] ≅ P2,2. By Proposition 5.4 it readily
follows that {a} /←G X. We may also have b ∈ NG(u) ∩NG(t). Then G[X] ≅ P4 and, by the proof of
Proposition 5.8, MG(X) = X ∪ {x, y} where x ∈ NG(t) and y ∈ NG(b). Again {a} /←G X. We may have
b ∼ t and b ≁ u. In such a case, we get G[X] ≅ P3,1. By Lemma 5.8, we get MG(X) = X ∪ {x, y}, where
x ∈ NG(t) ∩NG(u), y ∈ NG(x) and y ≠ u. Clearly a ∉ {x, y} and therefore {a} /←G X. Finally, we may
have b ∉ NG(A), whence G[X] ≅ P2,1,1. In this situation, by Lemma 5.8 notice that MG(X) =X ∪{x, y}
where x ∈ NG(t) ∩NG(u) and y ∈ NG(t). Thus, once again {a} ∉ {x, y}, so {a} /←G X.
Assume now that G[A] ≅ P3,1, with adjacencies u ∼ v and v ∼ w. In view of Lemma 5.8, it follows
that b cannot be the common neighbor of v and t and, moreover, called such a common neighbor z, we
cannot have b ∼ z. Therefore, we may choose b to be adjacent to only one extreme of the 3-path or to be
adjacent to one extreme of the 3-path and to the isolated vertex. Let a ∈ A and set X ∶= A△ {a, b}. In
the first case, if a = v we get G[X] ≅ P2,1,1 and thus, by Lemma 5.8, we get MG(X) =X ∪ {x, y}, where
x ∈ NG(w) ∩NG(b) and y ∼ b. Clearly v ∉ {x, y}, so {a} /←G X. If a = w we get G[X] ≅ P3,1 and thus,
by Lemma 5.8, we get MG(X) = X ∪ {x, y}, where x ∈ NG(u) ∩NG(t) and y ∼ x. Clearly w ∉ {x, y},
whence {a} /←G X. If a = t we get G[X] ≅ P4 and thus, by Lemma 5.8, we get MG(X) = X ∪ {x, y},
where x ∈ NG(u) and y ∈ NG(v). Clearly, t ∉ {x, y} and hence {a} /←G X.
In the second case, if a = w we get G[X] ≅ P4 and thus, by Lemma 5.8, we get MG(X) =X∪{x, y}, where
x ∈ NG(b) and y ∈ NG(u). Clearly w ∉ {x, y} and hence {a} /←G X. If a = v we get G[X] ≅ P3,1 and thus,
by Lemma 5.8, we get MG(X) =X ∪ {x, y}, where x ∈ NG(b) ∩NG(w) and y ∈ NG(x). Clearly v ∉ {x, y}
and hence {a} /←G X. If a = t we get G[X] ≅ P4 and thus, by Lemma 5.8, we get MG(X) = X ∪ {x, y},
where x ∼ v and y ∼ u. Clearly t ∉ {x, y} and hence {a} /←G X. Finally, if a = u, we get G[X] ≅ P2,2

which belongs to MG by Theorem 5.9. So again {a} /←G X.
Assume now that G[A] ≅ P2,1,1, with u ∼ v. Let z ∈ NG(w) ∩NG(t). In view of the proof of Proposition
5.4, it follows that only one of the vertices u and v is adjacent to z. Suppose that u is such a vertex.
Then the condition {b} /←G A becomes b ∉ NG(u) ∪ A by Lemma 5.8. Therefore, it may happen that
either b is adjacent to only one isolated vertex of A or b is adjacent to v and to one isolated vertex of A.
Let a ∈ A and set X ∶= A△{a, b}. In the first situation, if a = t, we get either G[X] ≅ P2,2. By Theorem
5.9 we deduce that {a} /←G X. If a = w, we get G[X] ≅ P2,1,1. Our choice of b and Lemma 5.8 imply that
MG(X) =X ∪ {x, y}, where x ∈ NG(t) ∩NG(v) and y ∈ NG(v). Clearly, w ∉ {x, y} and hence {a} /←G X.
If a = u, we again get G[X] ≅ P2,1,1. We supposed that NG(w)∩NG(v)∩NG(t) = ∅. So, by Lemma 5.8 we
deduce that MG(X) =X ∪{x, y}, where x ∈ NG(v)∩NG(b) and y ∈ NG(b). Clearly, u ∉ {x, y} and hence
{a} /←G X. If a = v, once again we get G[X] ≅ P2,1,1. We supposed that NG(w)∩NG(u)∩NG(t) ≠ ∅. So,
by Lemma 5.8 we deduce that MG(X) =X ∪ {x, y}, where x ∈ NG(u) ∩NG(w) and y ∈ NG(w). Clearly,
v ∉ {x, y} and hence {a} /←G X.
In the second situation, let b ∼ v and assume, without loss of generality, b ∼ w. Fix a ∈ A and set
X ∶= A△ {a, b}. If a = t, we get G[X] ≅ P4. By Lemma 5.8 we deduce that MG(X) = X ∪ {x, y}, where
x ∈ NG(b) and y ∈ NG(v) and, as t ∉ {x, y}, we conclude that {a} /←G X. If a = w, we get G[X] ≅ P3,1.
By Lemma 5.8 we deduce that MG(X) = X ∪ {x, y}, where x ∈ NG(v) ∩NG(t) and y ∈ NG(x). Clearly
w ∉ {x, y} and thus {a} /←G X. If a = u, we again get G[X] ≅ P3,1. By Lemma 5.8 we deduce that
MG(X) = X ∪ {x, y}, where x ∈ NG(b) ∩NG(t) and y ∈ NG(x). Clearly, u ∉ {x, y} and hence {a} /←G X.
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v1 v2

v3v4

v5

Figure 1. The Graph of Example 5.11.

v1 v2 v3 v4 v5
v1 0 1 0 1 0
v2 1 0 1 0 0
v3 0 1 0 1 0
v4 1 0 1 0 1
v4 0 0 0 1 0

Figure 2. The Adjacency Matrix of the Graph of Example 5.11

If a = v, we get G[X] ≅ P2,1,1. In view of Lemma 5.8, there exists a 6-subset B containing X and
inducing the same symmetry partition as X. Let x ∈ NG(u) ∩NG(t). If x ∈ NG(b), we would have v ∈ B
and, in particular, {b} ←G A, contradicting our choice of b. Therefore, B =MG(X)) =X ∪ {x, y}, where
x ∈ NG(w) ∩NG(t) and y ∈ NG(w). Clearly u ∉ {x, y} and hence {a} /←G X.
Finally, assume that A = {u, v,w, t, z} is a 5-subset. By Proposition 5.5 and Theorem 5.9, we may only
suppose either G[A] ≅ P3,1,1 or G[A] ≅ H2. In the first case, let u ∼ v and v ∼ w. Let {b} /←G A. In
view of Proposition 5.5, we can choose b to be adjacent to one extreme of the 3-path and to one isolated
vertex. Without loss of generality, take b ∈ NG(u) ∩NG(t). Let a ∈ A be such that {a} /←G A ∖ {a}. In
view of Lemma 5.8, the only choice of a is v. Set X ∶= A△ {a, b}. Then G[X] ≅ P3,1,1. By Propositions
5.5 and 5.6 it follows that X ⊆ B, where B ∈ MG is a 6-subset such that G[B] ≅ H3. The only way to
obtain such a subset B consists of adding to X the vertex y ∈ NG(b) ∩NG(z) ∩NG(w). Clearly, y ≠ a
and thus {a} /←G X.
In the second case, let v ∼ w, w ∼ u, u ∼ t and u ∼ z. Let {b} /←G A. Then b ∉ NG(w). Without loss
of generality, we may choose have either b ∈ NG(v) ∩NG(t) or b ∈ NG(t) ∖NG(v). In both situations,
it follows that X ≅ H2 and adding the remaining vertex y of NG(t), we get X ⊆ X ∪ {y}. As y ≠ a, we
conclude {a} /←G X. This proves the thesis. �

The example of the Petersen graph may induce to think the existence of a relation between strongly
regularity and attractiveness. Nevertheless, there is no link between the above properties. In fact, in
reference to the discussion of the 5-cycle at the beginning of Section 5, notice that when a graph is
strongly regular, it does not necessarily turn out to be an attractive graph.
The converse does not even hold as we will see in the following example.

Example 5.11. Consider the graph G in Figure 1 and whose adjacency matrix is given in Figure 2.
The aforementioned graph is not regular (and hence it is not strongly regular). It may be easily shown
that

MG = {∅,{v1, v3, v4},{v2},{v5},{v1, v2, v3, v4},{v1, v3, v4, v5}, V (G)}

and that

[∅]≈G
= {∅}, [{v1, v2, v3}]≈G

= {{v1},{v3},{v4},{v1, v3},{v1, v4},{v3, v4},{v1, v3, v4}}, [{v2}]≈G
= {{v2}},

[{v5}]≈G
= {{v5}}, [{v2, v5}]≈G

= {{v2, v5}},

[{v1, v2, v3, v4}]≈G
= {{v1, v2},{v2, v3},{v2, v4},{v1, v2, v3},{v1, v2, v4},{v2, v3, v4},{v1, v2, v3, v4}},

[{v1, v3, v4, v5}]≈G
= {{v1, v5},{v3, v5},{v4, v5},{v1, v3, v5},{v1, v4, v5},{v3, v4, v5},{v1, v3, v4, v5}},

[V (G)]≈G
= {{v1, v2, v5},{v2, v3, v5},{v2, v4, v5},{v1, v2, v3, v5},{v1, v2, v4, v5},{v2, v3, v4, v5}, V (G)}.

The reader can now easily check that G is an attractive graph.
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6. Friendship Graphs are Quasi-Attractive but not Attractive

We now find a model of quasi-attractive pairing induced by the adjacency matrix of a specific graph
family. To be more detailed, in this section we deal with a family of graphs inducing a quasi-attractive
relation. This is the so-called Erdös’ friendship graph Fn. We will characterize the members of the Moore
system MFn and, next, we will prove that the pairing induced by Fn satisfies quasi-attractive but not
attractiveness.
Let us consider the set V ∶= {v1, v2, . . . , v2n+1} and take the partition T ∶= {S1, . . . , Sn, Sn+1}, where
Si ∶= {v2i−1, v2i} for each i = 1, . . . , n, and Sn+1 ∶= {v2n+1}.
We will consider the graph Fn whose vertex set is V (Fn) ∶= V and edge set E(G) ∶= {S1, . . . , Sn,{vj , v2n+1}2nj=1}.
In Figure 3, we represent F4.

v1 v2

v3

v4

v5 v6

v7

v8

v9

Figure 3. The Graph F4.

Set
GX ∶= {S ∈ T ∖ {Sn+1} ∣ S ⊆X}, WX ∶= ⋃GX

FX ∶= {S ∈ T ∣ ∣S ∩X ∣ = 1}, ZX ∶= ⋃{S ∩X ∣ S ∈ FX} and YX ∶= ⋃{S ∖X ∣ S ∈ FX}.

We now exhibit the X-symmetry partition of Fn for each non-empty vertex subset X ∈ P(V (Fn))
∗.

Proposition 6.1. For each non-empty vertex subset X ∈ P(V (Fn))
∗, we have that

(29) πFn(X) = {
YX ∪ {v2n+1}∣[YX ∪ {v2n+1}]c if X = {vi} for some i = 1, . . . ,2n
{v}v∈YX

∣{w}w∈WX
∣v2n+1∣(YX ∪WX ∪ {v2n+1})c otherwise

Proof. Set G ∶= Fn. Let w ∈ X ∖ {v2n+1}. Then w ∈ Si for some i = 1, . . . , n. In particular, we have
either w = v2i−1 or w = v2i. The only vertices adjacent to w are exactly the remaining vertex of Si

and v2n+1. Therefore, if X = {v2i−1}, we get πG(X) = v2iv2n+1∣{v2iv2n+1}c; while if X = {v2i}, we get
πG(X) = v2i−1v2n+1∣{v2i−1v2n+1}c.
Furthermore, if X = {v2n+1}, we have X = ZX , WX = YX = ∅ and any vertex is adjacent to v2n+1 except
for v2n+1 itself. Thus, in this case, πG(X) = v2n+1∣(v2n+1)c.
Assume that ∣X ∣ ≥ 2. Take v ∈WX . Hence there exists S ∈ T ∖ {Sn+1} such that v ∈ S. Let moreover v′

be the remaining vertex of S. Then, v is the only vertex which is adjacent to v′ but not v. Thus, the
vertices of WX form single blocks. Let now v ∈ YX . Then v ∈ S ∖X for some S ∈ T ∖ {Sn+1}. Denote
by v′ the remaining vertex of S. Clearly, v′ ∈ X. The only vertices which are adjacent to v′ are v and
v2n+1 but, since ∣X ∣ ≥ 2, there exists another vertex u ∈ X and v2n+1 ∼ u while v ≁ u. This proves that
the vertices of YX form single blocks.
Furthermore, the vertex v2n+1 constitutes a single symmetry block, since it is the only vertex of the graph
which is adjacent to all the vertices of X ∖ {v2n+1} and not adjacent to v2n+1 itself.
Finally, the remaining vertices can be adjacent to at most one vertex of X, i.e. the vertex v2n+1 (if it
belongs to X). Thus they form a single symmetry block and this concludes the proof of (29). �

In the next result we will characterize the maximum partitioners of the graph Fn.

Proposition 6.2. Let X ∈ P(V (Fn)). Then X ∈ MFn if and only if it results that

(a) ∣X ∣ ≤ 1 or
(b) X = V (Fn) or
(c) X = ZX ∪WX ∪ {v2n+1}, where ZX and WX satisfy one of the following conditions:

● ∣ZX ∖ {v2n+1}∣ ≤ 1 and ∣ZX ∖ {v2n+1}∣ +
∣WX ∣
2

≤ n − 1;
● ∣ZX ∖ {v2n+1}∣ ≥ 2.
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Proof. Set G ∶= Fn. There is nothing to prove when X = V (G). Moreover, in view of (29), it follows that
πG({v}) ≠ πG(∅) for each v ∈ V (G), thus ∅ ∈ MG. It may be also easily verified that all singletons are
maximum partitioners of G. In fact, if X = {v,w}, then one of the vertices, say v, must belong to some
Si, where i = 1, . . . , n. Let v′ ∈ Si ∖ {v}. We may have either v′ ∈ YX or v′ ∈WX . However, in both cases,
we get v′ ≡{v} v2n+1 while v′ /≡X v2n+1 by (29). Thus all singletons are maximum partitoners of G.
Consider a vertex subset X ≠ V (G) such that ∣X ∣ ≥ 2 and X = ZX ∪WX ∪ {v2n+1}. We will demonstrate
the existence of two vertices u,u′ such that u ≡X u′ and u /≡X∪{w} u′ when either ∣ZX ∖ {v2n+1}∣ ≤ 1 and

∣ZX ∖ {v2n+1}∣ +
∣WX ∣
2

≤ n − 1 or ∣ZX ∖ {v2n+1}∣ ≥ 2. In other terms, we want to show that X ∈ MG when

either ∣ZX ∖ {v2n+1}∣ ≤ 1 and ∣ZX ∖ {v2n+1}∣ +
∣WX ∣
2

≤ n − 1 or ∣ZX ∖ {v2n+1}∣ ≥ 2.
First of all, take w ∉X. Notice that there exists an index i ∈ {1, . . . , n} such that w ∈ Si. Let w′

∈ Si∖{w}

and assume that w′
∉ X. Hence w,w′

∈ [YX ∪WX ∪ {v2n+1}]c and, thus, w ≡X w′. Furthermore, as
w′

∈ YX∪{w} and w ∈ ZX∪{w} ∖ {v2n+1}, we get w /≡X∪{w} w′.
On the one hand, assume that ∣ZX ∖ {v2n+1}∣ ≤ 1 and ∣ZX ∖ {v2n+1}∣ +

∣WX ∣
2

≤ n− 1. Take w ∉X. Clearly,
w ∈ Si for some i = 1, . . . , n. Let us denote by w′ the vertex in Si∖{w}. Assume firstly that w′

∈X. Hence

w′
∈ ZX ∖{v2n+1} and, in particular, ∣WX ∣

2
≤ n−2. Thus, there exists Sj , wher j ≠ i, such that Sj ∩X = ∅.

Let u ∈ Sj and set u′ ∶= w. Hence, by (29), we easily get u ≡X u′. Nevertheless, we get w′
∈WX∪{w} and

Sj ∩ (X ∪ {w}) = ∅. Therefore, again by (29), we conclude that u /≡X∪{w} u′, as wanted. On the other
hand, assume now that ∣ZX ∖ {v2n+1}∣ ≥ 2. Take w ∉X. Hence there exists some i ∈ {1, . . . , n} such that
w ∈ Si. Denote by w′ the vertex of Si∖{w}. As ∣ZX ∖{v2n+1}∣ ≥ 2 there must be a vertex u ∈ ZX ∖{v2n+1}
which is different from w′ and which clearly belongs to Sj , for some j ≠ i. Then, after setting u′ ∶= w′,
by (29) we get u ≡X u′. Nevertheless, it results that u ∈WX∪{w} and u′ ∈ ZX∪{w}, thus u /≡X∪{w} u′.
This shows the right implication. Conversely, take X ∈ MG such that ∣X ∣ ≥ 2 and X ≠ V (G). In view of
(29), if v2n+1 ∉X and ∣X ∣ ≥ 2, then πG(X) = πG(X ∪ {v2n+1}). Moreover, in view of the definition of ZX

and of WX and by the above remark, we get

X = ZX ∪WX ∪ {v2n+1}.

We will demonstrate that either ∣ZX ∖{v2n+1}∣ ≤ 1 and ∣ZX ∖{v2n+1}∣ +
∣WX ∣
2

≤ n−1 or ∣ZX ∖{v2n+1}∣ ≥ 2.
To this regard, let w ∉ X. Hence there exists an index i ∈ {1, . . . , n} such that w ∈ Si. Denote by w′ the
remaining vertex of Si ∖ {w}. As X ∈ MG, we have that πG(X) ≠ πG(X ∪ {w}). Assume firstly that

w′
∉X. Thus Si∩X = ∅ and, in particular, we deduce that ∣WX ∣

2
≤ n−1. In particular, if ∣ZX∖{v2n+1}∣ ≤ 1,

it must necessarily be ∣ZX ∖ {v2n+1}∣ +
∣WX ∣
2

≤ n − 1.
Let us now assume that w′

∈ X. Hence we get w ∈ ZX ∖ {v2n+1} and w ∈ WX∪{w}. As πG(X) ≠

πG(X ∪ {w}), there must exist u ∈ [YX ∪WX ∪ {v2n+1}]c such that w ≡X u and w /≡X∪{w} u. Two cases
may occur: either u ∈ ZX ∖{v2n+1} and, hence ∣ZX ∖{v2n+1}∣ ≥ 2 or ∣ZX ∖{v2n+1}∣ = 1. In the latter case,

u ∈ Sj for some j ≠ i. In particular, it results that Sj ∩X = ∅ and, thus, ∣WX ∣
2

≤ n− 2. This concludes the
proof. �

We are now able to characterize the minimal partitioners of Fn.

Proposition 6.3. Let X ∈ P(V (Fn)). Then X ∈ NFn if and only if

(a) ∣X ∣ ≤ 1 or
(b) ∣X ∣ = 2 and v2n+1 ∈X or
(c) ∣X ∣ = 2n − 1 and v2n+1 ∉X or
(d) X = ZX ∪WX , v2n+1 ∉X and ZX and WX satisfy one of the following conditions:

● ∣ZX ∣ ≤ 1 and ∣ZX ∣ +
∣WX ∣
2

≤ n − 1;
● ∣ZX ∣ ≥ 2.

Proof. Set G ∶= Fn. There is nothing to prove if ∣X ∣ ≤ 1. Assume therefore that ∣X ∣ ≥ 2. We firstly
claim that X ≈G V (G) if and only if either ∣X ∣ ≥ 2n or ∣X ∣ = 2n − 1 and v2n+1 ∉ X. To this regard, in
view of Proposition 6.2 it results that X ≈G V (G) if and only if the two following cases occur: either

∣ZX ∖ {v2n+1}∣ = 1 and ∣WX ∣
2

= n − 1 or ZX ∖ {v2n+1} = ∅ and ∣WX ∣
2

= n. The first case implies that either
∣X ∣ = 2n or ∣X ∣ = 2n − 1, depending on whether v2n+1 belongs or not to X; while the second implies that
∣X ∣ = 2n.
Suppose now X /≈G V (G). Let us prove that [X]≈G

contains two elements if and only if X ≠ {vi, v2n+1}.
To this aim, assume that [X]≈G

contains two elements. Take X ∶= {vi, v2n+1} for some i = 1, . . . ,2n. In
view of Proposition 6.2, it results that X ∈ MG and, moreover, by the same result we have that each
singleton belongs to MG. So it results that [X]≈G

= {X}, contradicting our assumption.
Conversely, let us assume that X ≠ {vi, v2n+1}. Our assumptions on X imply that X = ZX ∪WX , where
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either ∣ZX ∖{v2n+1}∣ ≥ 2 or ∣ZX ∖{v2n+1}∣ ≤ 1 and 2 ≤ ∣ZX ∖{v2n+1}∣+
∣WX ∣
2

≤ n−1. In view of Proposition
6.2 the previous configurations belong to MG when v2n+1 ∈ X. Nevertheless, by (29) just notice that if
v2n+1 ∉X, then X ≈G X ∪ {v} and this implies that [X]≈G

contains two elements. �

Remark 6.4. Corollary 6.3 and part (vii) of Theorem 2.2 ensure that RP ⫋ Max(NP) since the last
family contains the vertex subsets of the form {vi, v2n+1}, with i = 1, . . . ,2n, while the former does not.

Remark 6.5. We clearly have F1 = K3, i.e. it is complete graph on 3 vertices. We have that K3 is
attractive and, hence, also quasi-attractive.

In the next theorem we will demonstrate that friendship graphs are quasi-attractive but not attractive.

Theorem 6.6. Let V ∶= V (Fn). Then Fn ∈ PAIRqa(V ) ∖ PAIRa(V ) for each n ≥ 2.

Proof. In view of Proposition 6.3, it is immediate to check that REDFn(X) forms an exchangeable set
system for any X ∈ P(Ω). Thus, by Theorem 4.6 we conclude that Fn is quasi-attractive for each n ≥ 2.
To show that Fn is not attractive, in view of part (iii) of Theorem 3.5 it suffices to prove that NFn is
not a matroid. To this regard, take the vertex subsets X = {v2n, v2n+1} and Y = {v1, v2, v2n}. In view of
Corollary 6.3, it results that X,Y ∈ NFn . Nevertheless, notice that neither X ∪{v1} nor X ∪{v2} belong
to NFn . Thus, NFn is not a matroid and the graph Fn cannot be attractive. �

Remark 6.7. The previous result gives an example of quasi-attractive graph which is not regular and,
a fortiori, which is not strongly regular. The converse does not even hold, as one may see taking again
the 5-cycle C5. Set G ∶= C5 and let X = {v1, v2, v4}, Y = {v1, v3, v5} and x = v4. It may be easily verified
that X ≈G Y and that neither {x} ←G X △{x, v3} nor {x} ←G X △{x, v5}.
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