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ABSTRACT. The celebrated Schwarz-Pick lemma for the complex
unit disk is the basis for the study of hyperbolic geometry in one
and in several complex variables. In the present paper, we turn our
attention to the quaternionic unit ball B. We prove a version of
the Schwarz-Pick lemma for self-maps of B that are slice regular,
according to the definition of Gentili and Struppa. The lemma has
interesting applications in the fixed-point case, and it generalizes
to the case of vanishing higher-order derivatives.

1. INTRODUCTION

In the complex case, holomorphy plays a crucial role in the study of the intrinsic
geometry of the unit disc ∆ = {z ∈ C : |z| < 1} thanks to the Schwarz-Pick
lemma [17, 18].

Theorem 1.1. Let f : ∆→ ∆ be a holomorphic function and let z0 ∈ ∆. Then

∣∣∣∣∣
f(z)− f(z0)

1− f(z0)f (z)

∣∣∣∣∣ ≤
∣∣∣∣
z − z0

1− z̄0z

∣∣∣∣(1.1)

for all z ∈ ∆, and

|f ′(z0)|

1− |f(z0)|2
≤

1
1− |z0|2

.(1.2)

All inequalities are strict for z ≠ z0, unless f is a Möbius transformation of ∆.

Some well-known consequences concern the rigidity of holomorphic self-
maps of ∆. For instance:

Corollary 1.2. A holomorphic f : ∆ → ∆ having more than one fixed point in
∆ must be the identity.
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Furthermore, for any holomorphic f : ∆ → ∆ such that f(z0) = z1 for fixed
z0, z1 ∈ ∆, the modulus |f ′(z0)| cannot exceed (1 − |z1|

2)/(1 − |z0|
2), and it

reaches this value if and only if f is a Möbius transformation, [25]. This implies
the following special case of the Cartan-Carathéodory theorem.

Theorem 1.3. Let f be a holomorphic self-map of ∆. If z0 is a fixed point of f
and f ′(z0) = 1, then f coincides with the identity function.

These are the bases for the study of hyperbolic geometry in one and in several
complex variables. We refer to [1,25] for the foundations of this beautiful theory.

Versions of the Schwarz lemma have been proven for the open unit ball

B = {q ∈ H : |q| < 1}

of the real space of quaternions H. Within the theory of regular quaternionic
functions introduced by Fueter in [7, 8], which has long been the most successful
analog of holomorphy over the quaternions, the article [26] presents a version of
the Schwarz lemma for functions H \ sB→ B that map ∞ to 0 and that are Fueter-
regular, i.e., that lie in the kernel of ∂/∂x0 + i ∂/∂x1 + j ∂/∂x2 + k∂/∂x3. More
generally, the analog of the Schwarz lemma presented in [26] is concerned with
functions over the Clifford algebras Cl(0,m). See [5, 23] for the foundations of
Fueter’s theory and of its generalization to the Clifford setting.

Another theory of quaternionic functions, introduced in [11, 12], is based on
a different notion of regularity.

Definition 1.4. Let Ω be a domain in H and let f : Ω → H be a function.
For all I ∈ S = {q ∈ H | q2 = −1}, let us denote LI = R+ IR, ΩI = Ω∩ LI , and
fI = f|ΩI . The function f is called (Cullen or) slice regular if, for all I ∈ S, the

restriction fI is real differentiable and the function ∂̄If : ΩI → H defined by

∂̄If(x + Iy) =
1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + Iy)

vanishes identically.

The same articles introduce the Cullen derivative ∂cf of a slice regular func-
tion f as

(1.3) ∂cf(x + Iy) =
1
2

(
∂

∂x
− I

∂

∂y

)
f(x + Iy)

for I ∈ S, x,y ∈ R, and they present an analog of the Schwarz lemma.

Theorem 1.5. Let f : B→ B be a slice regular function. If f(0) = 0, then

|f(q)| ≤ |q|(1.4)

for all q ∈ B and

|∂cf(0)| ≤ 1.(1.5)
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Both inequalities are strict (except at q = 0) unless f(q) = qu for some u ∈ ∂B =
{q ∈ H : |q| = 1}.

We are presently interested in recovering the full Schwarz-Pick lemma for B.
It is known in literature that the set M of (classical) Möbius transformations of B,

(1.6) M = {g(q) = v(q − q0)(1− q̄0q)
−1u | u,v ∈ ∂B, q0 ∈ B},

is a group with respect to the composition operation and that it is isomorphic to
Sp(1,1)/{± Id}. We recall that

Sp(1,1) = {C ∈ GL(2,H) | sCtHC = H} ≤ SL(2,H),

where H =
[

1 0
0 −1

]
, GL(2,H) denotes the group of 2 × 2 invertible quaternionic

matrices, and SL(2,H) denotes the subgroup of those such matrices which have
unit Dieudonné determinant (for details, see [3] and references therein). Among
the works that treat this matter, even in the more general context of Clifford alge-
bras, let us mention [2, 15, 24].

The groupM, and more generally the group of classical linear fractional trans-
formations q ֏ (aq + b)(cq + d)−1, is not included in Fueter’s class. The
identity function and the rotations q ֏ vq and q ֏ qu with u,v ∈ ∂B are
examples of classical Möbius transformations that are not Fueter-regular. Thanks
to a result of [23], and following [16], one can associate to each transformation
g(q) = v(q − q0)(1− q̄0q)−1u in M the Fueter-regular function

G(q) =
(1− q̄0q)−1

|1− q̄0q|2
uγ(g(q)),

where γ is the Fueter-regular function

γ(x0 + ix1 + jx2 + kx3) = x0 + ix1 + jx2 − kx3.

However, the function G is not, in general, a self-map of B. The variant of
the Fueter class considered in [16], defined as the kernel of ∂/∂x0 + i ∂/∂x1 +
j ∂/∂x2 − k∂/∂x3, includes the rotations q ֏ vqu for all u ∈ ∂B and for every
v ∈ ∂B that is reduced, i.e., whose component along k vanishes. However, the
treatment of the rest of the classical Möbius transformations encounters the same
kind of difficulties as in Fueter’s case.

On the other hand, the class of slice regular functions includes the transfor-
mations q ֏ (q−q0)(1−q0q)−1u for u ∈ ∂B and q0 in the real interval (−1,1).
It does not contain the whole groupM, but [21] introduced the new class of (slice)
regular Möbius transformations of B, which are nicely related to the classical ones.
They are presented in detail in Section 2, which also illustrates several operations
that preserve slice regularity: the multiplication f(q) ∗ g(q) of f(q) and g(q),
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with respect to which every g 6≡ 0 admits an inverse g(q)−∗; the conjugation
f c(q); and the symmetrization f s(q) = f(q)∗ f c(q).

In Section 3, we prove a quaternionic analog of the Schwarz-Pick lemma,
which discloses the possibility of using slice regular functions in the study of the
intrinsic geometry of B. Before stating our main result, let us recall the basic
notions concerning the real differential of a slice regular function. At a real point
x0, it acts by right multiplication by the Cullen derivative ∂cf(x0), while at a
point q0 = x0 + Iy0 ∈ LI with I ∈ S, x0, y0 ∈ R, and y0 ≠ 0 it has been thus
characterized in [22]: if we split the tangent space Tq0Ω ≅ H = R4 as LI ⊕ L

⊥
I

(with respect to the standard scalar product), then the differential of f at q0 acts
on LI by right multiplication by ∂cf(q0); on L⊥I , it acts by right multiplication by
the spherical derivative

(1.7) ∂sf(q0) = (2 Im(q0))
−1(f (q0)− f(q̄0))

defined in [14]. We recall that the Cullen derivative is a slice regular function,
while the spherical derivative is slice regular only when it is constant. The quater-
nions ∂cf(q0) and ∂sf(q0) can be computed as the values at q0 and q̄0 of a
unique slice regular function, which we may call the differential quotient of f at
q0:

Remark 1.6. Let f be a slice regular function on B(0, R)={q ∈ H : |q|<R}.
If, for all q0 ∈ Ω, we denote

(1.8) Rq0f(q) = (q − q0)
−∗ ∗ (f (q)− f(q0)),

then ∂cf(q0) = Rq0f(q0) and ∂sf(q0) = Rq0f(q̄0).

We are now in a position to state the main result of the present article.

Theorem 1.7 (Schwarz-Pick lemma). Let f : B → B be a regular function
and let q0 ∈ B. Then in B

|(f (q)− f(q0))∗(1− f(q0)∗f(q))
−∗| ≤ |(q − q0)∗(1− q̄0∗q)

−∗|,(1.9)

|Rq0f(q)∗(1− f(q0)∗f(q))
−∗| ≤ |(1− q̄0∗q)

−∗|.(1.10)

Moreover,

∣∣∂cf ∗ (1− f(q0)∗ f(q))
−∗
∣∣
|q0
≤

1
1− |q0|2

,(1.11)

|∂sf(q0)|

|1− f s(q0)|
≤

1

|1− q0
2|
.(1.12)

If f is a slice regular Möbius transformation of B, then equality holds in the previous
formulas. Otherwise, all the aforementioned inequalities are strict (except for the first
one at q0, which reduces to 0 ≤ 0).



The Schwarz-Pick Lemma for Slice Regular Functions 301

We conclude Section 3 by computing a point q̃0 with Re(q̃0) = Re(q0) and
| Im(q̃0)| = | Im(q0)| such that

∣∣∂cf ∗ (1− f(q0)∗ f(q))
−∗
∣∣
|q0
=

|∂cf(q0)|

|1− f(q0)f (q̃0)|
.

As an application of the main theorem, in Section 4 we obtain direct proofs
of the quaternionic analogs of the Cartan rigidity theorems mentioned at the be-
ginning of this introduction. Versions of these results have been proven in [13],
and our new approach allows us to strengthen their statements.

Theorem 1.8. Let f : B → B be a slice regular function and suppose f to have
a fixed point q0 ∈ B. Then either f is the identity function, or f has no other fixed
point in B.

Theorem 1.9. Let f : B→ B be a slice regular function and suppose f to have a
fixed point q0 ∈ B. The following facts are equivalent:

(1) f coincides with the identity function.
(2) The real differential of f at q0 is the identity.
(3) The Cullen derivative ∂cf(q0) equals 1.
(4) The spherical derivative ∂sf(q0) equals 1.
(5) Rq0f(q) equals (1− q̄0 ∗ q)−∗ ∗ (1− q̄0 ∗ f(q)) at some q ∈ B.
Finally, in Section 5 we generalize our version of the Schwarz-Pick lemma to

the case of vanishing higher-order derivatives.

2. REGULAR MÖBIUS TRANSFORMATIONS OF B

This section surveys the algebraic structure of slice regular functions and its ap-
plication to the construction of regular fractional transformations. From now on,
we will omit the term “slice” and refer to these functions as regular, tout court.
Since we will be interested only in regular functions on Euclidean balls B(0, R) of
radius R centered at 0, or on the whole space H = B(0,+∞), we will follow the
presentation of [9, 20]. However, we point out that many of the results we are
about to mention have been generalized to a larger class of domains in [6].

Theorem 2.1. Fix R with 0 < R ≤ +∞ and let

DR = {f : B(0, R)→ H | f regular}.

Then DR coincides with the set of quaternionic power series f(q) =
∑
n∈N q

nan
(with an ∈ H) converging in B(0, R). Moreover, DR is an associative real algebra
with respect to + and to the regular multiplication∗ defined on f(q) =

∑
n∈N q

nan
and g(q) =

∑
n∈N q

nbn by the formula

(2.1) f ∗ g(q) =
∑

n∈N

qn
n∑

k=0

akbn−k.
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We will also write f(q) ∗ g(q) for f ∗ g(q). In this case, the letter q will
always denote the variable. The ring DR admits a classical ring of quotients

LR = {f
−∗ ∗ g | f , g ∈ DR, f 6≡ 0}.

In order to introduce it, we begin with the following definition.

Definition 2.2. Let f(q) =
∑
n∈N q

nan be a regular function on an open
ball B = B(0, R). The regular conjugate of f , f c : B → H, is defined as f c(q) =∑
n∈N q

nān, and the symmetrization of f is defined as f s = f ∗ f c = f c ∗ f .

Notice that f s(q) =
∑
n∈N q

nrn with rn =
∑n
k=0 akān−k ∈ R. Moreover,

the zero-sets of f c and f s have been fully characterized.

Theorem 2.3. Let f be a regular function on B = B(0, R). For all x,y ∈ R
with x + yS ⊆ B, the regular conjugate f c has as many zeros as f in x + yS.
Moreover, the zero set of the symmetrization f s is the union of all the x + yS on
which f has a zero.

We are now ready for the definition of regular quotient. We denote by

Zh = {q ∈ B | h(q) = 0}

the zero-set of a function h.

Definition 2.4. Let f , g : B = B(0, R) → H be regular functions. The left
regular quotient of f and g is the function f−∗ ∗ g defined in B \ Zf s by

(2.2) f−∗ ∗ g(q) = f s(q)−1f c ∗ g(q).

Moreover, the regular reciprocal of f is the function f−∗ = f−∗ ∗ 1.

Left regular quotients prove to be regular in their domains of definition. If
we set (f−∗ ∗ g) ∗ (h−∗ ∗ k) = (f shs)−1f c ∗ g ∗ hc ∗ k, then (LR,+,∗) is
a division algebra over R and it is the classical ring of quotients of (DR,+,∗)
(for this notion, see [19]). In particular, LR coincides with the set of right regular
quotients

g ∗ h−∗(q) = hs(q)−1g ∗ hc(q).

The definition of regular conjugation and symmetrization is extended to LR by

setting (f−∗∗g)c = gc∗ (f c)−∗ and (f−∗∗g)s(q) = f s(q)−1gs(q). Further-
more, the following relation between the left regular quotient f−∗∗g(q) and the
quotient f(q)−1g(q) holds.

Theorem 2.5. Let f , g be regular functions on B = B(0, R). Then

(2.3) f ∗ g(q) =

{
0 if f(q) = 0,

f (q)g(f(q)−1qf(q)) otherwise.
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If we set Tf (q) = f c(q)−1qf c(q) for all q ∈ B \ Zf s , then

(2.4) f−∗ ∗ g(q) = f(Tf (q))
−1g(Tf (q)),

for all q ∈ B \Zf s . For all x,y ∈ R with x+yS ⊂ B \Zf s ⊂ B \Zf c , the function
Tf maps x + yS to itself (in particular, Tf (x) = x for all x ∈ R). Furthermore,
Tf is a diffeomorphism from B \ Zf s onto itself, with inverse Tf c .

We point out that, so far, no similar result relating g∗h−∗(q) to g(q)h(q)−1

is known.
This machinery allowed the introduction in [21] of regular analogs of linear

fractional transformations. To each A =
[ a c
b d

]
∈ GL(2,H) we can associate the

regular fractional transformation

FA(q) = (qc + d)
−∗ ∗ (qa+ b).

By the formula (qc+d)−∗ ∗ (qa+b) we denote the aforementioned left regular
quotient f−∗ ∗ g of f(q) = qc + d and g(q) = qa + b. We denote the 2 × 2
identity matrix as Id. The set of regular fractional transformations

G = {FA | A ∈ GL(2,R)}

is not a group, but it is the orbit of the identity function id = FId with respect to
the two actions on L∞ described in the next theorem.

Theorem 2.6. Choose R > 0 and consider the ring of quotients of regular quater-
nionic functions in B(0, R), denoted by LR. Setting

(2.5) f . A = (fc + d)−∗ ∗ (fa+ b)

for all f ∈ LR and for all A =
[ a c
b d

]
∈ GL(2,H) defines a right action of GL(2,H)

on LR. A left action of GL(2,H) on LR is defined by setting

(2.6) At . f = (a∗ f + b)∗ (c ∗ f + d)−∗.

The stabilizer of any element of LR with respect to either action includes the normal
subgroup N = {t · Id | t ∈ R \ {0}} ⊴ GL(2,H). Both actions are faithful, but not
free, when reduced to PSL(2,H) = GL(2,H)/N.

For more details, see [4, 21]. The two actions are related as follows.

Proposition 2.7. For all A ∈ GL(2,H) and for all f ∈ LR

(1) (f . A)c = Āt . f c;
(2) if A is Hermitian, then f . A = At . f ;
(3) if A is Hermitian, then (f . A)c = f c . Ā.
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As a consequence, the set G of regular fractional transformations is preserved
by regular conjugation. For the proofs of these properties, we refer the reader to
[4].

In the present paper, we are specifically interested in those regular fractional
transformations that map the open quaternionic unit ball B onto itself, called
regular Möbius transformations of B, whose class we denote as

M = {f ∈ G | f(B) = B}.

More generally, we will concern ourselves with the class

Reg(B,B) = {f : B→ B | f is regular}

of regular self-maps of B. It was proven in [21] that a function f ∈ Reg(B,B) is
a regular Möbius transformation if, and only if, it is bijective. Furthermore, the
next property was proven in [4, 21].

Theorem 2.8. A function f : B→ H is a regular Möbius transformation of B if
and only if there exist (unique) u ∈ ∂B, q0 ∈ B such that

(2.7) f(q) = (q − q0)∗ (1− q̄0 ∗ q)
−∗u = (1− qq̄0)

−∗ ∗ (q − q0)u.

In other words, M is the orbit of the identity function under the left and right actions
of Sp(1,1).

We point out that, by definition, q̄0 ∗ q = qq̄0. Finally, let us recall a result
that will prove useful in the sequel (see Proposition 3.3 of [4]).

Proposition 2.9. If f ∈ Reg(B,B), then for all a ∈ B

(2.8) (f (q)− a)∗ (1− ā∗ f(q))−∗ = (1− f(q)ā)−∗ ∗ (f (q)− a).

Furthermore, the left and right actions of Sp(1,1) and the regular conjugation preserve
both Reg(B,B) and M.

3. THE SCHWARZ-PICK LEMMA

In this section, we shall prove the announced Schwarz-Pick lemma for quater-
nionic regular functions. In order to obtain it, we begin with a result concerning
the special case of a function f : B → B having a zero. We follow the line of
the complex proof, with the aid of the maximum modulus principle for regular
functions proven in [12].

Theorem 3.1. Let f : B(0, R) → H be a regular function. If |f | has a relative
maximum at p ∈ B(0, R), then f is constant.

We now turn to the aforementioned result.
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Theorem 3.2. If f : B→ B is regular and f(q0) = 0 for some q0 ∈ B, and if

Mq0(q) = (q − q0)∗ (1− qq̄0)
−∗ = (1− qq̄0)

−∗ ∗ (q − q0),(3.1)

then

|M−∗
q0
∗ f(q)| ≤ 1(3.2)

for all q ∈ B. The inequality is strict, unless M−∗
q0
∗ f(q) ≡ u for some u ∈ ∂B.

Proof. ConsiderM−∗
q0
(q) = (1−qq̄0)∗(q−q0)−∗ = (q−q0)−∗∗(1−qq̄0),

which is a regular function on B minus the 2-sphere Sq0 = x0 + y0S through q0

(that is, minus the zero set of (q − q0)s = (q − x0)2 + y2
0 ). Since f(q0) = 0, we

have f(q) = (q−q0)∗Rq0f(q), where Rq0f : B→ H is the differential quotient
defined by formula (1.8). Hence setting

h(q) =M−∗
q0
∗ f(q) = (1− qq̄0)∗ Rq0f(q)

defines a regular function on B. Moreover, by the first part of Theorem 2.5

h(q) =M−∗
q0
∗ f(q) =M−∗

q0
(q)f (g(q)−1qg(q)),

where g =M−∗
q0

. Since |f | < 1 in B, we conclude that

|h(q)| = |M−∗
q0
∗ f(q)| ≤ |M−∗

q0
(q)|

away from Sq0 . Applying the second part of Theorem 2.5, we notice that for all
q ∈ B \ Sq0

M−∗
q0
(q) = (Tℓ(q)− q0)

−1(1− Tℓ(q)q̄0) = [Mq0(Tℓ(q))]
−1,

where ℓ(q) = q−q0, and where Mq0(q) = (1−qq̄0)−1(q−q0). Now, Mq0 maps
B onto itself and ∂B onto itself, and for all ε > 0 there exists r with |q0| < r < 1
such that

1 ≤ |Mq0(q)|
−1 ≤ 1+ ε for |q| ≥ r .

Hence,

max
|q|=r

|h(q)| ≤ max
|q|=r

|M−∗
q0
(q)| = max

|q|=r
|Mq0(Tℓ(q))|

−1

= max
|w|=r

|Mq0(w)|
−1 ≤ 1+ ε.

Suppose there existed p ∈ B, δ > 0 such that |h(p)| = 1 + δ. There would
exist r > |p| (with r > |q0|) such that max|q|=r |h(q)| ≤ 1 + δ/2 and, by the
maximum modulus principle, |h(q)| ≤ 1+δ/2 for |q| ≤ r . We would then have
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|h(p)| ≤ 1+δ/2, a contradiction with the hypothesis. Hence |M−∗
q0
∗f(q)| ≤ 1

for all q ∈ B.
We conclude by observing that, since |M−∗

q0
∗ f(q)| ≤ 1 for all q ∈ B, if

there exists q̃ ∈ B such that |M−∗
q0
∗ f(q̃)| = 1, then by the maximum modulus

principle 3.1, M−∗
q0
∗ f must be a constant u ∈ ∂B. ❐

In order to reformulate the previous result as an analog of the Schwarz-Pick
lemma, we will need some other instruments. The first of them is the following
lemma.

Lemma 3.3. Let f , g,h : B = B(0, R)→ H be regular functions. If |f | ≤ |g|,
then |h∗ f | ≤ |h∗ g|. Moreover, if |f | < |g|, then |h∗ f | < |h∗ g| in B \ Zh.

Proof. If |f | ≤ |g|, then for all q ∈ B \ Zh

|f(h(q)−1qh(q))| ≤ |g(h(q)−1qh(q))|

so that
|h∗ f(q)| = |h(q)| · |f(h(q)−1qh(q))|

≤ |h(q)| · |g(h(q)−1qh(q))| = |h∗ g(q)|

thanks to Theorem 2.5. The reasoning is also valid if all the inequalities are sub-
stituted by strict inequalities. Finally, for all q ∈ Zh we have |h ∗ f(q)| = 0 =
|h∗ g(q)|. ❐

Secondly, let us compute the differential quotient (and the derivatives) ofMq0

at q0.

Remark 3.4. In the case of the regular Möbius transformation Mq0 , clearly
Rq0Mq0(q) = (1 − qq̄0)−∗, so that ∂cf(q0) = 1/(1 − |q0|

2) and ∂sf(q0) =

1/(1− q0
2).

We are now in a position to suitably restate our result.

Corollary 3.5. If f : B→ B is regular, if q0 ∈ B, and if f(q0) = 0, then

(3.3) |f(q)| ≤ |Mq0(q)|

for all q ∈ B. The inequality is strict at all q ∈ B \ {q0}, unless there exists u ∈ ∂B
such that f(q) = Mq0(q) ·u at all q ∈ B. Moreover, |Rq0f(q)| ≤ |(1− qq̄0)−∗|
in B, and in particular

|∂cf(q0)| ≤
1

1− |q0|2
,(3.4)

|∂sf(q0)| ≤
1

|1− q0
2|
.(3.5)

These inequalities are strict, unless f(q) =Mq0(q) ·u for some u ∈ ∂B.
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Proof. By Theorem 3.2,

|M−∗
q0
∗ f(q)| ≤ 1 for all q ∈ B.

Since M−∗
q0
∗ f(q) and the constant 1 are regular in B, by Lemma 3.3

|f | ≤ |Mq0|

in B. According to Theorem 3.2, all inequalities above are strict for q ∈ B \ {q0},
unless there exists u ∈ ∂B such thatM−∗

q0
∗f(q) ≡ u, that is, f(q) =Mq0(q)·u

for all q ∈ B.
The second statement follows from

1 ≥ |M−∗
q0
∗ f(q)| = |(1− qq̄0)∗ (q − q0)

−∗ ∗ f(q)|

= |(1− qq̄0)∗ Rq0f(q)|

by applying Lemma 3.3, since (1− qq̄0)−∗ is regular and has no zeros in B. ❐

We shall now generalize the previous corollary to an analog of the Schwarz-
Pick lemma. We will make use of the Leibniz rules for ∂c , ∂s , from [10] and [14],
respectively. We recall that if f is regular in B(0, R), then

f(q) = vsf(q)+ Im(q)∂sf(q) for all q ∈ B(0, R),

where vsf denotes the spherical value vsf(q) = (f (q) + f(q̄))/2 for all q ∈
B(0, R).

Remark 3.6. If f : B(0, R)→ H is a regular function, then

∂c(f ∗ g)(q) = ∂cf(q)∗ g(q)+ f(q)∗ ∂cg(q),(3.6)

∂s(f ∗ g)(q) = ∂sf(q) · vsg(q)+ vsf(q) · ∂sg(q).(3.7)

Theorem 3.7 (Schwarz-Pick lemma). Let f : B → B be a regular function
and let q0 ∈ B. Then in B

|(f (q)− f(q0))∗(1− f(q0)∗f(q))
−∗| ≤ |(q − q0)∗(1− q̄0∗q)

−∗|,(3.8)

|Rq0f(q)∗(1− f(q0)∗f(q))
−∗| ≤ |(1− q̄0∗q)

−∗|.(3.9)

Moreover,

∣∣∂cf ∗ (1− f(q0)∗ f(q))
−∗
∣∣
|q0
≤

1
1− |q0|2

,(3.10)

|∂sf(q0)|

|1− f s(q0)|
≤

1

|1− q0
2|
.(3.11)

If f is a regular Möbius transformation, then equality holds in (3.8), (3.9) for all
q ∈ B, and it holds in (3.10), (3.11). Otherwise, all the aforementioned inequalities
are strict (except for (3.8) at q0, which reduces to 0 ≤ 0).
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Proof. Thanks to Proposition 2.9,

f̃ (q) = (f (q)− f(q0))∗ (1− f(q0)∗ f(q))
−∗

is a regular function B → B. Since f(q) − f(q0) has a zero at q0, by Theorem

2.5 the product f̃ has the additional property that f̃ (q0) = 0. Inequalities (3.8)

and (3.9) now follow by applying Corollary 3.5 to f̃ (taking into account that

q̄0∗q = qq̄0). They are strict unless f̃ (q) =Mq0(q) ·u for some u ∈ ∂B, which
is true if and only if f is a regular Möbius transformation of B.

Inequality (3.10) follows from Corollary 3.5 and from the fact that, according
to formula (3.6),

∂c f̃ (q) = ∂cf(q)∗ (1− f(q0)∗ f(q))
−∗

+ (f (q)− f(q0))∗ ∂c(1− f(q0)∗ f(q))
−∗,

where the second term vanishes at q0 by Theorem 2.5.
As for (3.11), it derives again from Corollary 3.5 if we prove that

∂s f̃ (q0) =
[
1− f s(q0)

]−1
∂sf(q0).

Indeed, if we set g(q) = (1 − f(q)f(q0))−∗, formula (3.7) and Proposition 2.9
imply

∂s f̃ (q0) = ∂s
[
g(g)∗ (f (q)− f(q0))

]
|q0

= ∂sg(q0) · vs
(
f(q)− f(q0)

)
|q0
+ vsg(q0) · ∂s

(
f(q)− f(q0)

)
|q0

= −∂sg(q0) · Im(q0) · ∂sf(q0)+ vsg(q0) · ∂sf(q0)

=
[
vsg(q0)+ Im(q0)∂sg(q0)

]
· ∂sf(q0)

= gc(q0) · ∂sf(q0),

where we have taken into account that, according to [14], vsgc(q) = vsg(q) and
∂sgc(q) = ∂sg(q). Thanks to Theorem 2.5, gc(q) = h−∗(q) = h(Th(q))−1,
where h(q) = (1− f(q)f(q0))c = 1− f(q0)∗ f c(q) and

Th(q) = (1− f(q)f(q0))
−1q(1− f(q)f(q0)).

Since
1− f(q0)f (q0) = 1− |f(q0)|

2

is real, Th(q0) = q0 and gc(q0) = h(q0)−1. Furthermore, if f(q) =
∑
n∈N q

nan,
then

f(q0)∗ f
c(q) = f(q0)∗

∑

n∈N

qnān

=
∑

n∈N

qnf(q0)ān =
∑

m,n∈N

qnqm0 amān
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equals f s(q) =
∑
k∈N q

k
∑k
m=0 amāk−m at q0. Hence, h(q0) = 1− f s(q0), and

the proof is complete. ❐

According to Theorem 2.5,

∂cf ∗
(
1− f(q0)∗ f(q)

)−∗
|q0
= ∂cf(q0)(1− f(q0)f (q̃0))

−1,

where q̃0 = f(q0)
−1
Tg
(
∂cf(q0)−1q0∂cf(q0)

)
f(q0) and g(q) = 1 − f(q0) ∗

f(q). Hence, inequality (3.10) can be restated as

|∂cf(q0)|

|1− f(q0)f (q̃0)|
≤

1
1− |q0|2

,

which closely resembles the complex estimate (1.2).

4. APPLICATIONS OF THE SCHWARZ-PICK LEMMA

As an application of our main result 3.7, we extend the study of the fixed-point
case undertaken in [13]. In the proofs, we thoroughly use the following property
of the zero set proven in [9] (an immediate consequence of Theorem 2.5).

Corollary 4.1. Let f , g,h be regular functions on B = B(0, R). Then the
product f ∗ g vanishes at a point q0 = x0 + Iy0 if, and only if, either f(q0) = 0 or
f(q0)−1q0f(q0) = x0 + f(q0)−1If (q0)y0 is a zero of g. As a consequence, if f ,h
vanish nowhere in B, then each x0+y0S ⊂ B contains as many zeros of f ∗g∗h as
zeros of g.

We are now ready for our study. The next result has been proven in [13] in
the special case when q0 is real, in the interval (−1,1).

Theorem 4.2. Let f : B→ B be a regular function and suppose f to have a fixed
point q0 ∈ B. Then either f is the identity function, or f has no other fixed point in
B.

Proof. Since f(q0) = q0, the inequality (3.8) becomes |f̃ | ≤ |Mq0| with

f̃ (q) = (f (q)− q0)∗ (1− q̄0 ∗ f(q))
−∗ = (1− f(q)q̄0)

−∗ ∗ (f (q)− q0).

Let us consider the set of points where f̃ and Mq0 coincide: thanks to Corollary

4.1, each x +yS ⊂ B contains as many zeros of f̃ −Mq0 as zeros of

(1− f(q)q0)∗ (f̃ (q)−Mq0(q))∗ (1− qq̄0)

= (f (q)− q0)∗ (1− qq̄0)− (1− f(q)q̄0)∗ (q − q0)

= f(q)∗ [1− qq̄0 + q̄0 ∗ (q − q0)]− q0 ∗ (1− qq̄0)− (q − q0)

= f(q)(1− |q0|
2)− q(1− |q0|

2) = [f (q)− q](1− |q0|
2).
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Clearly, the zero set of the last function is the fixed point set of f .
Now let us suppose f to have another fixed point q1 = x1 + Iy1 ≠ q0. If

q0 ∈ x1+y1S, then the fixed point set contains the whole 2-sphere x1+y1S, and

so does the zero set of f̃ −Mq0 ; in particular, |f̃ (x1 + Jy1)| = |Mq0(x1 + Jy1)|

for all J ∈ S. If, on the contrary, q0 and q1 lie in different spheres, then f̃ −Mq0

has a zero q̃1 ∈ x1 + y1S, and in particular, |f̃ (q̃1)| = |Mq0(q̃1)| with q̃1 ≠ q0.
In both cases, according to the regular Schwarz-Pick lemma (Theorem 3.7), f
must be a regular Möbius transformation of B.

We are left with proving that a regular Möbius transformation of B having
more than one fixed point in B must be the identity function. According to
Corollary 4.1, for all a ∈ B, u ∈ ∂B, the difference (1 − qā)−∗ ∗ (q − a)u − q
has more than one zero in B if, and only if,

P(q) = (q − a)u− (1− qā)∗ q = q2ā+ q(u− 1)− au

does. Now, if the last polynomial factorizes as P(q) = (q − α) ∗ (q − β)ā, then
αβā = −au. Either a = 0 (in which case P ≡ 0 and the transformation coincides
with the identity), or |αβ| = 1. In the latter case, α and β cannot both lie in B,
and P(q) cannot have more than one zero in B. Thus, (1 − qā)−∗ ∗ (q − a)u
cannot have more than one fixed point in B, and our proof is complete. ❐

As a byproduct of the previous proof, we observe that a regular Möbius trans-
formation of B having a fixed point in B either is the identity or has no other fixed
point in sB.

Another nice application of our main Theorem 3.7 is a direct proof of a result
of [13]: the analog of Cartan’s rigidity theorem for regular functions. In that
paper, the result was proven using a “slicewise” technique—that is, reducing to
the complex Cartan theorem. A direct approach is now possible, and it allows a
generalization of the statement.

Theorem 4.3. Let f : B→ B be a regular function and suppose f to have a fixed
point q0 ∈ B. The following facts are equivalent:

(1) f coincides with the identity function.
(2) The real differential of f at q0 is the identity.
(3) The Cullen derivative ∂cf(q0) equals 1.
(4) The spherical derivative ∂sf(q0) equals 1.
(5) Rq0f(q) equals (1− q̄0 ∗ q)−∗ ∗ (1− q̄0 ∗ f(q)) at some q ∈ B.
The new proof is based on a technical lemma.

Lemma 4.4. Let f : B → B be a regular function and let q0 ∈ B. If Rq0f(q)
equals the quotient

(4.1) (1− q̄0 ∗ q)
−∗ ∗ (1− f(q0)∗ f(q))

at any point of B, then f is a Möbius transformation of B.
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Proof. By Theorem 3.7,

|Rq0f(q)∗ (1− f(q0)∗ f(q))
−∗| ≤ |(1− q̄0 ∗ q)

−∗|,

and f is a regular Möbius transformation if equality holds at any point of B. This
is true, in particular, if

Rq0f(q)∗ (1− f(q0)∗ f(q))
−∗ − (1− q̄0 ∗ q)

−∗

vanishes at any point of B. This is equivalent to the vanishing of

Rq0f(q)− (1− q̄0 ∗ q)
−∗ ∗ (1− f(q0)∗ f(q))

at some q ∈ B. ❐

Proof of Theorem 4.3. (1) ⇒ (2) ⇒ (3): These implications are obvious.

(3) ⇒ (5): We already know that Rq0f(q0) = ∂cf(q0). Moreover, if f(q0) = q0,
then the quotient

Q(q) = (1− qq̄0)
−∗ ∗ (1− q̄0 ∗ f(q))

equals 1 at q0, thanks to the fact that q̄0∗f(q) = q̄0f(q̄
−1
0 qq̄0) (by Theorem 2.5).

(5) ⇒ (1): In the case of a fixed point q0, quotient (4.1) equals the aforementioned
Q(q). According to the previous lemma, if Q(q) equals Rq0f(q) at any point of
B, then f is a regular Möbius transformation. We are left with proving that if f
is a regular Möbius transformation and if

Rq0f(q)−Q(q)

= [(q − q0)
−∗ + (1− qq̄0)

−∗q̄0]∗ f(q)− (q − q0)
−∗q0 − (1− qq̄0)

−∗

= (q − q0)
−∗ ∗ (1− qq̄0)

−∗

∗ {[1− qq̄0 + (q − q0)q̄0]∗ f(q)− (1− qq̄0)q0 − (q − q0)}

= (q − q0)
−∗ ∗ (1− qq̄0)

−∗ ∗ (1− |q0|
2)∗ [f (q)− q]

has a zero in B, then f is identity. The latter condition is equivalent to the exis-
tence of a zero q1 ∈ B for

(1− qq̄0)∗ [Rq0f(q)−Q(q)](1− |q0|
2)−1 = (q − q0)

−∗ ∗ [f (q)− q],

i.e., to the existence of a regular g : B→ H such that

f(q)− q = (q − q0)∗ (q − q1)∗ g(q).
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We have already seen in the proof of Theorem 4.2 that if f(q) = (1 − qā)−∗ ∗
(q−a)u, then f(q)−q = (1−qā)−∗∗ (q−α)∗ (q−β)ā, where α, β cannot
both lie in B. These two facts are only compatible if ā = 0 and g ≡ 0, that is, if
f = id.

(1) ⇔ (4): When f(q0) = q0, then the spherical derivative

∂sf(q0) = (q0 − q̄0)
−1(q0 − f(q̄0))

equals 1 if, and only if, q̄0 is a fixed point of f , too. According to Theorem 4.2,
the latter is equivalent to f = id. ❐

For the sake of completeness, we conclude this section by identifying explicitly
which regular Möbius transformations fix a point q0 ∈ B. Let us denote

S3 =

{[
v 0
0 1

]
: v ∈ ∂B

}
≤ Sp(1,1).

Proposition 4.5. For each q0 ∈ B, the class of regular Möbius transformations
fixing q0 is the orbit of the identity function under the right action of the subgroup

(4.2) C(q0) · S
3 · C(q0)

−1 ≤ Sp(1,1),

with C(q0) =
[

1 −q̄0

−q0 1

]
. In other words, (1 − qā)−∗ ∗ (q − a)u fixes q0 if, and

only if,

u = (1− q0vq̄0)
−1(v − |q0|

2),(4.3)

a = q0(1− v̄)(1− q0v̄q̄0)
−1(4.4)

for some v ∈ ∂B.

Proof. If f is a regular Möbius transformation fixing q0, then f̃ = f . C(q0) is

a regular Möbius transformation mapping q0 to 0. Hence f̃ (q) = (1− qq̄0)−∗ ∗
(q − q0)v for some v ∈ ∂B. In other words,

f . C(q0) = id . C(q0) .

[
v 0
0 1

]
,

or, equivalently, f = id . A for someA ∈ C(q0)·S3·C(q0)−1. The final statement
follows by direct computation, if we force

[
1 −q̄0

−q0 1

][
v 0
0 1

][
1 −q̄0

−q0 1

]−1

and

[
1 −ā
−a 1

][
u 0
0 1

]

to induce the same transformation. ❐
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5. HIGHER-ORDER ESTIMATES

As in the complex case, the quaternionic Schwarz-Pick lemma admits higher-order
generalizations. Let us denote the nth Cullen derivative of a regular function f
as ∂nc f . Let (q − q0)∗n = (q − q0)∗ · · · ∗ (q − q0) denote the ∗-product of n
copies of q ֏ q − q0. The next theorem was proven in [10].

Theorem 5.1. Let Ω be a domain in H. A function f : Ω→ H is regular if and
only if for each q0 ∈ Ω,

(5.1) f(q) =
∑

n∈N

(q − q0)
∗n ∂

n
c f(q0)

n!

in a ball centered at q0 with respect to the non-Euclidean distance

(5.2) σ(q,p) =

{
|q − p| if p,q lie on the same complex plane LI ,

ω(q,p) otherwise,

where

(5.3) ω(q,p) =
√
[Re(q)−Re(p)]2 +

[
| Im(q)| + | Im(p)|

]2
.

Theorem 3.7 extends to the next result.

Theorem 5.2. Let f : B → B be a regular function, and let q0 ∈ B. If
∂mc f(q0) = 0 for 1 ≤m ≤ n− 1, then

(5.4) |(f (q)−f(q0))∗(1−f(q0)∗f(q))
−∗| ≤ |(q−q0)

∗n∗(1−q̄0∗q)
−∗n|

for q ∈ B. Furthermore,

(5.5)
∣∣∂nc f ∗ (1− f(q0)∗ f)

−∗
∣∣
|q0
≤

n!
(1− |q0|2)n

.

We point out that n!/(1− |q0|
2)n is the nth Cullen derivative of

(q − q0)
∗n ∗ (1− q̄0 ∗ q)

−∗n =M∗n
q0
(q).

Proof. If ∂mc f(q0) = 0 for 1 ≤ m ≤ n − 1 and we set q1 = f(q0), then the

formula f̃ = (f − q1)∗ (1− q̄1 ∗ f)−∗ defines a regular f̃ : B→ B with

∂mc f̃ =
m−1∑

k=0

∂m−kc f ∗ ∂kc (1− q̄1 ∗ f)
−∗

(
m

k

)
+ (f − q1)∗ ∂

m
c (1− q̄1 ∗ f)

−∗.
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Hence, ∂mc f̃ (q0) = 0 for 0 ≤m ≤ n−1, i.e., f̃ (q) = (q−q0)∗n∗g(q) for some

regular g : B → H. Reasoning as in Theorem 3.2, we prove that M−∗n
q0

∗ f̃ (q) is
a regular function B→ B and derive that for all q ∈ B

|f̃ (q)| ≤ |M∗n
q0
(q)|

and

|(q − q0)
−∗n ∗ f̃ (q)| ≤ |(1− q̄0 ∗ q)

−∗n|.

The latter implies

|∂nc f̃ (q0)| ≤
n!

(1− |q0|2)n
,

and observing

∂nc f̃ (q0) =
[
∂nc f ∗ (1− q̄1 ∗ f)

−∗
]
|q0

completes the proof. ❐

Finally, we generalize Theorem 3.7 in a different direction. We recall that the
spherical derivative ∂sf is constant on each sphere x0 + y0S and that it is not
regular unless it is constant. Hence, iterated spherical derivation is meaningless.
However, it makes sense to iterate the operator Rq0 defined by formula (1.8). This
led in [22] to the following result, where we use the notation

U(x0 +y0S, r ) = {q ∈ H : |(q − x0)
2 +y2

0 | < r
2}

for all x0, y0 ∈ R, r > 0, and we denote the composition of Rq̄0 and Rq0 by
juxtaposition and the nth iterate of Rq̄0Rq0 by (Rq̄0Rq0)

n.

Theorem 5.3. Let f be a regular function onΩ = B(0, R); let U(x0+y0S, r ) ⊆
Ω. Then for each q0 ∈ x0 +y0S there exists {An}n∈N ⊂ H such that

(5.6) f(q) =
∑

n∈N

[
(q − x0)

2 +y2
0

]n [
A2n + (q − q0)A2n+1

]

for all q ∈ U(x0 + y0S, r ). Namely, A2n = (Rq̄0Rq0)
nf(q0) and A2n+1 =

Rq0(Rq̄0Rq0)
nf(q̄0) for all n ∈ N.

We are now ready for the announced higher-order estimates. We recall that
gs denotes the function obtained from g by symmetrization (see Definition 2.2).

Theorem 5.4. Let f : B → B be a regular function and let q0 ∈ B. If the
coefficients Am of the expansion (5.6) vanish for 1 ≤m ≤ 2n− 1, then

|(f (q)− f(q0))∗ (1− f(q0)∗ f(q))
−∗| ≤ |Ms

q0
(q)|n,(5.7)

|(Rq̄0Rq0)
nf(q)∗ (1− f(q0)∗ f(q))

−∗| ≤ |(1− qx0)
2 + (qy0)

2|−n
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for q ∈ B. If A2n = 0 as well, then

|(f (q)− f(q0))∗ (1− f(q0)∗ f(q))
−∗| ≤ |Ms

q0
(q)|n |Mq0(q)|,(5.8)

|Rq0(Rq̄0Rq0)
nf(q)∗ (1− f(q0)∗ f(q))

−∗| ≤ |(1− qx0)
2 + (qy0)

2|−n

· |(1− qq̄0)
−∗|.

Proof. Let us set f̃ (q) = (f (q)−f(q0))∗(1−f(q0)∗f(q))−∗. This defines

a regular f̃ : B→ B with f̃ (q0) = 0 and

Rq0 f̃ (q) = (q − q0)
−∗ ∗ f̃ (q) = Rq0f(q)∗ (1− f(q0)∗ f(q))

−∗.

Thanks to the hypothesis A1 = Rq0f(q̄0) = 0, we conclude that Rq0 f̃ (q̄0) = 0 so
that

Rq̄0Rq0 f̃ (q) = (q − q̄0)
−∗ ∗ Rq0 f̃ (q) = [(q − x0)

2 +y2
0]
−1f̃ (q)

= Rq̄0Rq0f(q)∗ (1− f(q0)∗ f(q))
−∗.

Iterating this process, we conclude that

Rq0(Rq̄0Rq0)
k−1f̃ (q) = [(q − x0)

2 +y2
0 ]
−k+1(q − q0)

−∗ ∗ f̃ (q)

= Rq0(Rq̄0Rq0)
k−1f(q)∗ (1− f(q0)∗ f(q))

−∗,

(Rq̄0Rq0)
kf̃ (q) = [(q − x0)

2 +y2
0 ]
−kf̃ (q)

= (Rq̄0Rq0)
kf(q)∗ (1− f(q0)∗ f(q))

−∗

for all 1 ≤ k ≤ n and that the coefficients Ãm of the expansion of f̃ vanish for all

0 ≤ m ≤ 2n − 1. As a consequence, f̃ (q) = [(q − x0)2 + y2
0 ]
ng(q) for some

regular function g. Let us consider

Ms
q0
(q) = (1− qq̄0)

−s(q − q0)
s

= [(1− qx0)
2 + (qy0)

2]−1[(q − x0)
2 +y2

0 ]

and its nth power (Ms
q0
)n: then

(Ms
q0
(q))−nf̃ (q) = [(1− qx0)

2 + (qy0)
2]ng(q)

is a regular function h on B. Now, |h| = |Ms
q0
(q)|−n |f̃ (q)| ≤ |Ms

q0
(q)|−n,

whereMs
q0
=Mq0∗M

c
q0
=Mq0∗Mq̄0 maps ∂B to ∂B by Lemma 3.3. Reasoning

as in Theorem 3.2, we can prove that |h| ≤ 1 and equations (5.7) follow by direct
computation.
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Finally, if A2n = 0, then Ã2n = 0 and g(q) = [(q − x0)2 + y2
0 ]
−nf̃ (q) has

a zero at q0. Thus, h(q) = [(1 − qx0)2 + (qy0)2]ng(q) is a regular function
B → B having a zero at q0. By Theorem 3.7, |h| ≤ |Mq0| and equations (5.8)
follow from Lemma 3.3. ❐

We believe that the two results proven in this section, however technical their
statements may appear, show that the quaternionic Schwarz-Pick lemma estab-
lishes a strong link between the differential and multiplicative properties of the
regular self-maps of B. This recalls the complex setting, but in a many-sided way
that reflects the richness of the non-commutative context.
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