Complex variables functions. - Schröder equation in several variables and composition operators, by CinZia Bisi and Graziano Gentili, communicated on 10 March 2006.

Abstract. - Let φ be a holomorphic self-map of the open unit ball \mathbb{B}^{n} of \mathbb{C}^{n} such that $\varphi(0)=0$ and the differential $d \varphi_{0}$ of φ at 0 is non-singular. The study of the Schröder equation in several complex variables

$$
\sigma \circ \varphi=d \varphi_{0} \circ \sigma
$$

is naturally related to the theory of composition operators on Hardy spaces of holomorphic maps on \mathbb{B}^{n} and to the theory of discrete, complex dynamical systems. An extensive use of the infinite matrix which represents the composition operator associated to the map φ leads to a simpler approach, and provides new proofs, to results on existence of solutions for the Schröder equation.

KEY WORDS: Schröder equation; composition operators

Mathematics Subject Classification (2000): Primary 32A10, 47B33; Secondary 32A30, 32H15, 30C80.

1. Introduction

Let φ be a holomorphic self-map of the open unit ball \mathbb{B}^{n} of \mathbb{C}^{n} such that $\varphi(0)=0$ and the differential $d \varphi_{0}$ of φ at 0 is non-singular. $\mathrm{A} \mathbb{C}^{n}$-valued holomorphic map σ defined on \mathbb{B}^{n} is a solution of the Schröder equation associated to φ in several variables (and will be called a Schröder map for $\varphi,[5]$) if

$$
\begin{equation*}
\sigma \circ \varphi=d \varphi_{0} \circ \sigma . \tag{1.1}
\end{equation*}
$$

We will call the intersection of \mathbb{B}^{n} with any one-dimensional complex subspace of \mathbb{C}^{n} a slice of \mathbb{B}^{n}. The map φ is often assumed to be non-unitary on any slice, i.e. such that there are no ζ and η in $\partial \mathbb{B}^{n}$ with $\varphi(\lambda \zeta)=\lambda \eta$ for all λ in the unit disk Δ. Since φ maps \mathbb{B}^{n} into itself and $\varphi(0)=0$, the Schwarz Lemma implies $\left\|d \varphi_{0}\right\| \leq 1$, and strict inequality occurs precisely when φ is non-unitary on any slice (see, e.g., [1], [8]. In this case the differential $d \varphi_{0}$ has no eigenvalue of modulus 1 . Since we are interested only in locally univalent solutions of the Schröder equation (1.1), we assume that $d \varphi_{0}$ is diagonalizable to guarantee that the Schröder map σ of φ is invertible at 0 (see, e.g., [3]).

Let C_{φ} denote the composition operator $C_{\varphi}(f)=f \circ \varphi$ on the Hardy space $H^{2}\left(\mathbb{B}^{n}\right)$ (see, e.g., [4]). Cowen and MacCluer [3] give necessary and sufficient conditions on φ to guarantee the existence of solutions of the Schröder equation associated to φ. Namely, they prove the following:

THEOREM 1.1. Suppose φ is a holomorphic map of \mathbb{B}^{n} into \mathbb{B}^{n} with $\varphi(0)=0$ and suppose that $d \varphi_{0}$ is upper triangular in the standard basis and diagonalizable, with
diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ such that $0<\left|\lambda_{j}\right|<1$ for $j=1, \ldots, n$. Let X be any size, square upper left corner of the matrix A_{φ} representing C_{φ} with respect to the standard (non-normalized) basis of the Hardy space $H^{2}\left(\mathbb{B}^{n}\right)$. If the Schröder equation has a solution σ on \mathbb{B}^{n}, i.e. $\sigma \circ \varphi=d \varphi_{0} \circ \sigma$ and $d \sigma_{0}=I$, then X is diagonalizable.

THEOREM 1.2. Suppose φ is a holomorphic map of \mathbb{B}^{n} into \mathbb{B}^{n} with $\varphi(0)=0$ and suppose that $d \varphi_{0}$ is upper triangular in the standard basis and diagonalizable, with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ such that $0<\left|\lambda_{j}\right|<1$ for $j=1, \ldots, n$. Let $\lambda_{j}=\lambda_{1}^{k_{1}} \cdots \lambda_{n}^{k_{n}}$ be the longest expression (with maximal $\sum k_{i}$) for an eigenvalue of $d \varphi_{0}$ as a product of any number of powers of eigenvalues of $d \varphi_{0}$. Set $m=k_{1}+\cdots+k_{n}$ and let M be the number of multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ of total order $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ less than or equal to m; equivalently M is the dimension of the vector space \mathcal{H}_{m} spanned by the set $\left\{z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}:|\alpha| \leq m\right\}$. Let \mathcal{M} be the upper left $M \times M$ corner of the infinite matrix A_{φ} associated to C_{φ} with respect to the standard (non-normalized) basis of the Hardy space $H^{2}\left(\mathbb{B}^{n}\right)$. If \mathcal{M} is diagonalizable, then the Schröder equation has a solution σ with d σ_{0} invertible.

For what concerns the study of the classical Schröder equation we refer the reader to [5] and [6].

In Sections 3 and 4 of this paper we present new and simpler proofs of the above results. The new proofs are based on techniques borrowed from the theory of complex, discrete dynamical systems and on classical results due to Sternberg [10], and rely upon the fact that the study of composition operators on spaces of holomorphic maps on the open unit ball of \mathbb{C}^{n} plays a fundamental role in determining the solutions of the complex Schröder equation (see, e.g., [4]) .

We proceed as follows. We choose the standard orthogonal (non-normalized) basis $\left\{1, z_{1}, \ldots, z_{n}, z_{1}^{2}, z_{1} z_{2}, \ldots\right\}$ for the Hardy space $H^{2}\left(\mathbb{B}^{n}\right)$, ordered by degree and lexicographically for any degree. We associate to the composition operator C_{φ} acting on $H^{2}\left(\mathbb{B}^{n}\right)$ an infinite matrix A_{φ} which "represents" the action of C_{φ} on $H^{2}\left(\mathbb{B}^{n}\right)$ with respect to the above basis. If $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ and if $z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}$ is the j-th monomial of the basis, then the entries of the j-th column of the matrix A_{φ} are the coefficients of $\varphi_{1}^{\alpha_{1}} \varphi_{2}^{\alpha_{2}} \cdots \varphi_{n}^{\alpha_{n}}$ with respect to the basis. Notice that, for $j=2, \ldots, n+1$, the entries of the j-th column of A_{φ} are the coefficients of the series expansion of φ_{j-1} at 0 . An extensive use of this infinite matrix representation, together with techniques of discrete dynamical systems, leads to a different, simpler approach to some instrumental results of Sternberg (see Section 2) and to Theorems 1.1 and 1.2 by Cowen and MacCluer.

We believe that the direct techniques presented in this paper will be useful in finding a different approach to the study of the boundary Schröder equation in several complex variables (see [2]).

2. Preliminary results

If $H^{2}\left(\mathbb{B}^{n}\right)$ is the Hardy space of L^{2} holomorphic maps on \mathbb{B}^{n}, we will denote by \mathcal{B} the standard orthogonal (non-normalized) basis $\left\{1, z_{1}, \ldots, z_{n}, z_{1}^{2}, z_{1} z_{2}, \ldots\right\}$, where the monomials are ordered by degree and lexicographically for any degree. Let $\varphi=$ $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ be a holomorphic self-map of the open unit ball \mathbb{B}^{n} of \mathbb{C}^{n}, such that $\varphi(0)=0$
and the differential $d \varphi_{0}$ is non-singular. Let C_{φ} be the composition operator associated to φ.

Definition 2.1. The infinite matrix A_{φ} representing C_{φ} with respect to the basis $\mathcal{B}=$ $\left\{1, z_{1}, \ldots, z_{n}, z_{1}^{2}, z_{1} z_{2}, \ldots\right\}$ of the Hardy space $H^{2}\left(\mathbb{B}^{n}\right)$ is the matrix whose coefficients $A_{\alpha_{1} \ldots \alpha_{n}}^{\beta_{1} \ldots \beta_{n}}$ are defined by

$$
\begin{align*}
C_{\varphi}\left(z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}\right) & =\varphi_{1}^{\alpha_{1}}\left(z_{1}, \ldots, z_{n}\right) \varphi_{2}^{\alpha_{2}}\left(z_{1}, \ldots, z_{n}\right) \cdots \varphi_{n}^{\alpha_{n}}\left(z_{1}, \ldots, z_{n}\right) \tag{2.1}\\
& =\sum_{\beta_{1}, \ldots, \beta_{n} \in \mathbb{N}} A_{\alpha_{1} \ldots \alpha_{n}}^{\beta_{1} \ldots \beta_{n}} z_{1}^{\beta_{1}} z_{2}^{\beta_{2}} \cdots z_{n}^{\beta_{n}}
\end{align*}
$$

where both the row-indices $\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$ and the column-indices $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ inherit their well-ordering from the basis \mathcal{B}.

REMARK 2.2. For all the $(n+1)$ row-indices $\left(\beta_{1}, \ldots, \beta_{n}\right)$ with order $\beta_{1}+\ldots$ $+\beta_{n} \leq 1$, the entry $A_{\alpha_{1} \ldots \alpha_{n}}^{\beta_{1} \ldots \beta_{n}}$ of the infinite matrix A_{φ} vanishes if the column-index $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ has order $\alpha_{1}+\cdots+\alpha_{n} \geq 2$. In fact the series expansion of the map $\varphi_{1}^{\alpha_{1}}\left(z_{1}, \ldots, z_{n}\right) \varphi_{2}^{\alpha_{2}}\left(z_{1}, \ldots, z_{n}\right) \cdots \varphi_{n}^{\alpha_{n}}\left(z_{1}, \ldots, z_{n}\right)$ has neither linear nor constant terms if $\alpha_{1}+\cdots+\alpha_{n} \geq 2$. This property can be rephrased by saying that all the entries in the first $n+1$ rows of the infinite matrix A_{φ} vanish if they stay "on the right side" of the ($n+1$)-th column.

Lemma 2.3. If $d \varphi_{0}$ is non-singular and upper triangular, then the infinite matrix A_{φ} associated to C_{φ} is lower triangular.

Proof. Since $d \varphi_{0}$ is non-singular, the monomial with the "smallest" index appearing in 2.1 is exactly $z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}$. Therefore, $\left(\beta_{1}, \ldots, \beta_{n}\right)<\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ implies that $A_{\alpha_{1} \ldots \alpha_{n}}^{\beta_{1} \ldots \beta_{n}}=0$.

Let us recall that, given $j \in\{1, \ldots, n\}$, a resonance for the eigenvalue λ_{j} of $d \varphi_{0}$ is a relation of the form

$$
\lambda_{j}=\lambda_{1}^{k_{1}} \lambda_{2}^{k_{2}} \cdots \lambda_{n}^{k_{n}}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $d \varphi_{0}, k_{i} \geq 0$ for all $i=1, \ldots, n$ and $\sum_{i=1}^{n} k_{i} \geq 2$. We set

$$
R\left(\lambda_{j}\right)=\left\{\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: \lambda_{j}=\lambda_{1}^{k_{1}} \cdots \lambda_{n}^{k_{n}} \text { is a resonance for } \lambda_{j}\right\}
$$

Let P^{∞} denote the set of n-tuples of formal power series without constant terms, in n variables, and let F^{∞} denote the group of those elements of P^{∞} whose matrix of linear terms is non-singular. The following lemma is due to Sternberg [10].

Lemma 2.4. Let T be an element of F^{∞} whose matrix S of linear terms is diagonalizable. Assume there are no resonances among the eigenvalues of S. Then T is equivalent to S by an inner automorphism of F^{∞}.

Proof. A proof of Lemma 2.4 can be found in [10]. We present here a different proof, based on the use of composition operators. As pointed out in the introduction, for the purposes of this paper we can assume that the matrix S is diagonal. We wish to find an $R=\left(r_{1}, \ldots, r_{n}\right) \in F^{\infty}$ such that $R T R^{-1}=S=\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right)$. We can assume that the matrix of linear terms of R is the identity matrix and rewrite the desired equation as $R T=S R$.

In the language of composition operators the equation $R T=S R$ becomes

$$
C_{T} \circ C_{R}=C_{R} \circ C_{S},
$$

and in terms of the associated infinite matrices A_{T}, A_{R} and A_{S},

$$
\left.\begin{array}{rl}
\left(\begin{array}{ccccccc}
1 & 0 & \cdot & 0 & 0 & 0 & \cdot \\
0 & \lambda_{1} & \cdot & 0 & 0 & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \lambda_{n} & 0 & 0 & \cdot \\
0 & t_{2}^{n+2} & \cdot & t_{n+1}^{n+2} & \lambda_{1}^{2} & 0 & \cdot \\
0 & t_{2}^{n+3} & \cdot & t_{n+1}^{n+3} & t_{n+2}^{n+3} & \lambda_{1} \lambda_{2} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{ccccccc}
1 & 0 & \cdot & 0 & 0 & 0 & \cdot \\
0 & 1 & \cdot & 0 & 0 & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & 1 & 0 & 0 & \cdot \\
0 & r_{2}^{n+2} & \cdot & r_{n+1}^{n+2} & 1 & 0 & \cdot \\
0 & r_{2}^{n+3} & \cdot & r_{n+1}^{n+3} & r_{n+2}^{n+3} & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \\
& =\left(\begin{array}{cccccccccc}
1 & 0 & \cdot & 0 & 0 & 0 & \cdot \\
0 & 1 & \cdot & 0 & 0 & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & 1 & 0 & 0 & \cdot \\
0 & r_{2}^{n+2} & \cdot & r_{n+1}^{n+2} & 1 & 0 & \cdot \\
0 & r_{2}^{n+3} & \cdot & r_{n+1}^{n+3} & r_{n+2}^{n+3} & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{cccccc}
1 & 0 & \cdot & 0 & 0 & 0 \\
0 & \lambda_{1} & \cdot & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \lambda_{n} & 0 & 0 \\
0 & 0 & \cdot & 0 & \lambda_{1}^{2} & 0 \\
0 & 0 & \cdot & 0 & 0 & \lambda_{1} \lambda_{2}
\end{array}\right) \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
0 & \cdot
\end{array}\right) .
$$

Given the above equality among infinite matrices, to determine R it is enough to find, for all $j=2, \ldots, n+1$, the j-th column of the infinite matrix A_{R}. By equating the j-th column of the matrix on the left hand side with the j-th column of the matrix on the right hand side $(j=2, \ldots, n+1)$ we obtain an infinite, linear system of equations

$$
\begin{cases}t_{j}^{n+2}+\lambda_{1}^{2} r_{j}^{n+2} & =\lambda_{j-1} r_{j}^{n+2} \tag{2.2}\\ t_{j}^{n+3}+t_{n+2}^{n+3} r_{j}^{n+2}+\lambda_{1} \lambda_{2} r_{j}^{n+3} & =\lambda_{j-1} r_{j}^{n+3} \\ t_{j}^{n+4}+t_{n+2}^{n+4} r_{j}^{n+2}+t_{n+3}^{n+4} r_{j}^{n+3}+\lambda_{1} \lambda_{3} r_{j}^{n+4} & =\lambda_{j-1} r_{j}^{n+4} \\ \cdots & \end{cases}
$$

i.e. an infinite, lower triangular, linear system in the unknown variables $r_{j}^{k}(2 \leq j \leq n+1$; $k \geq n+2$). Since no one of the $\lambda_{1}, \ldots, \lambda_{n}$ vanishes, and since they have no resonance relations, all the linear systems of type 2.2 can be solved inductively.

In the presence of resonances for the eigenvalues of the matrix S of linear terms of $T \in F^{\infty}$, the "linearization procedure" does not work any more. Nevertheless Sternberg [10] proved the following

LEMMA 2.5. Let T be an element of F^{∞} whose matrix S of linear terms is diagonalizable and has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Suppose the set $R\left(\lambda_{j}\right)$ is not empty for some $j \in$ $\{1, \ldots, n\}$. Then there exists a transformation R in F^{∞} such that $R T R^{-1}$ has the form $N=\left(N_{1}, \ldots, N_{n}\right)$ where

$$
\begin{equation*}
N_{j}=\lambda_{j} z_{j}+\sum_{\left(k_{1}, \ldots, k_{n}\right) \in R\left(\lambda_{j}\right)} A_{k_{1} \ldots k_{n}}^{j} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}} \tag{2.3}
\end{equation*}
$$

for $j=1, \ldots, n$.
Proof. Again, for the original proof we refer the reader to [10]. A different, direct proof will be presented here. In the language of composition operators, the equation $R T=N R$ becomes

$$
C_{T} \circ C_{R}=C_{R} \circ C_{N},
$$

and in terms of the infinite matrices associated to composition operators,

$$
\begin{aligned}
& \left(\begin{array}{ccccccc}
1 & 0 & \cdot & 0 & 0 & 0 & \cdot \\
0 & \lambda_{1} & \cdot & 0 & 0 & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \lambda_{n} & 0 & 0 & \cdot \\
0 & t_{2}^{n+2} & \cdot & t_{n+1}^{n+2} & \lambda_{1}^{2} & 0 & \cdot \\
0 & t_{2}^{n+3} & \cdot & t_{n+1}^{n+3} & t_{n+2}^{n+3} & \lambda_{1} \lambda_{2} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{ccccccc}
1 & 0 & \cdot & 0 & 0 & 0 & \cdot \\
0 & 1 & \cdot & 0 & 0 & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & 1 & 0 & 0 & \cdot \\
0 & r_{2}^{n+2} & \cdot & r_{n+1}^{n+2} & 1 & 0 & \cdot \\
0 & r_{2}^{n+3} & \cdot & r_{n+1}^{n+3} & r_{n+2}^{n+3} & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \\
& =\left(\begin{array}{llllll}
1 & 0 & \cdot & 0 & 0 & 0 \\
\cdot & \cdot \\
0 & 1 & \cdot & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot \\
0 & 0 & \cdot & 1 & 0 & 0 \\
0 & r_{2}^{n+2} & \cdot & r_{n+1}^{n+2} & 1 & 0 \\
0 \\
0 & r_{2}^{n+3} & \cdot & r_{n+1}^{n+3} & r_{n+2}^{n+3} & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot
\end{array}\right)\left(\begin{array}{ccccccc}
1 & 0 & \cdot & 0 & 0 & 0 & \cdot \\
0 & \lambda_{1} & \cdot & 0 & 0 & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \lambda_{n} & 0 & 0 & \cdot \\
0 & A_{20 \cdot 0}^{1} & \cdot & A_{20 \cdot 0}^{n} & \lambda_{1}^{2} & 0 & \cdot \\
0 & A_{11 \cdot 0}^{1} & \cdot & A_{11 \cdot 0}^{n} & A_{11 \cdot 0}^{n+1} & \lambda_{1} \lambda_{2} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)
\end{aligned}
$$

where $A_{k_{1} \ldots k_{n}}^{j}=0$ if $\left(k_{1}, \ldots, k_{n}\right) \notin R\left(\lambda_{j}\right)$, for all $j \in\{1, \ldots, n\}$. As in Lemma 2.4. the above equality among infinite matrices produces n triangular, infinite, linear systems of equations that can be solved inductively to construct R. It turns out that the nonvanishing coefficients $A_{k_{1} \ldots k_{n}}^{j}$, corresponding to the indices of resonances, are not uniquely determined.

3. Solving the Schröder equation

Lemmas 2.4 and 2.5 were proved for formal power series. The results that they state actually hold in the environment of convergent complex power series (see, e.g., [7] and [9]) and therefore they can be applied to the case of germs of holomorphic maps. In fact the following local result holds.

THEOREM 3.1. Let $\varphi: U \rightarrow \mathbb{C}^{n}$ be a holomorphic map, where U is a neighborhood of $0 \in \mathbb{C}^{n}$ and $\varphi(0)=0$. Suppose that $d \varphi_{0}$ is diagonalizable and that its eigenvalues satisfy $0<\left|\lambda_{n}\right| \leq \cdots \leq\left|\lambda_{1}\right|<1$. Then there exist a germ of biholomorphism σ and a holomorphic map g associated to $\lambda_{1}, \ldots, \lambda_{n}$ such that, in a neighborhood of 0 ,

$$
\begin{equation*}
\sigma \circ \varphi=g \circ \sigma \tag{3.1}
\end{equation*}
$$

with $\sigma(0)=0$ and $d \sigma_{0}=I$. In particular, if $R\left(\lambda_{j}\right)$ is empty for all $j \in\{1, \ldots, n\}$, then $g=d \varphi_{0}$, i.e. φ can be linearized.

In the absence of resonances, the germ of biholomorphism provided by Theorem 3.1 can be extended to a solution of the Schröder equation on the open unit ball of \mathbb{C}^{n}, to obtain the following

THEOREM 3.2. Let $\varphi: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ be a holomorphic map such that $\varphi(0)=0, \varphi$ is non-unitary on any slice of \mathbb{B}^{n} and $d \varphi_{0}$ is non-singular and diagonalizable. Then, in the absence of resonances, there exists a holomorphic map $\tilde{\sigma}$ defined on \mathbb{B}^{n} which solves the Schröder equation

$$
\tilde{\sigma} \circ \varphi=d \varphi_{0} \circ \tilde{\sigma}
$$

and is such that $\tilde{\sigma}(0)=0$ and $d \tilde{\sigma}_{0}=I$.
Proof. As pointed out in the introduction, we assume that $d \varphi_{0}$ is diagonalizable to guarantee that the Schröder map $\tilde{\sigma}$ is invertible at 0 ; examples of non-locally invertible Schröder maps with $d \varphi_{0}$ not diagonalizable are given in [3]. We are then able to use Theorem 3.1 to find a local solution σ defined in a neighborhood U of 0 . Since in our hypotheses the basin of attraction of 0 is equal to \mathbb{B}^{n} (see, e.g., [1, Proposition 2.2.33]), for every $z \in \mathbb{B}^{n}$ there is $m(z) \in \mathbb{N}$ such that, for all $m \in \mathbb{N}$ with $m \geq m(z)$, we have $\varphi^{m}(z) \in U$. We can therefore define

$$
\begin{equation*}
\tilde{\sigma}(z)=d \varphi_{0}^{-m(z)} \circ \sigma \circ \varphi^{m(z)}(z) . \tag{3.2}
\end{equation*}
$$

Let us check that $\tilde{\sigma}$ is well defined and holomorphic on the whole of \mathbb{B}^{n}. In fact, if $p, q \in \mathbb{N}$ are such that $p>q \geq m(z)$, then

$$
\begin{aligned}
d \varphi_{0}^{-p} \circ \sigma \circ \varphi^{p}(z) & =d \varphi_{0}^{-p} \circ \sigma \circ \varphi^{p-q}\left(\varphi^{q}(z)\right)=d \varphi_{0}^{-p} \circ d \varphi_{0}^{p-q} \circ \sigma\left(\varphi^{q}(z)\right) \\
& =d \varphi_{0}^{-q} \circ \sigma \circ \varphi^{q}(z) .
\end{aligned}
$$

Since U is open and since $\varphi^{m(z)}(z) \in U$, the expression 3.2 defines $\tilde{\sigma}$ locally, in a neighborhood of $z \in \mathbb{B}^{n}$; hence $\tilde{\sigma}$ is holomorphic on \mathbb{B}^{n}.

We are left to prove that $\tilde{\sigma}$ satisfies the Schröder equation for φ on \mathbb{B}^{n}. We have

$$
\begin{aligned}
\tilde{\sigma} \circ \varphi(z) & =d \varphi_{0}^{-m(z)} \circ \sigma \circ \varphi^{m(z)}(\varphi(z))=d \varphi_{0}^{-m(z)} \circ \sigma \circ \varphi\left(\varphi^{m(z)}(z)\right) \\
& =d \varphi_{0}^{-m(z)} \circ d \varphi_{0} \circ \sigma\left(\varphi^{m(z)}(z)\right)=d \varphi_{0} \circ d \varphi_{0}^{-m(z)} \circ \sigma \circ \varphi^{m(z)}(z) \\
& =d \varphi_{0} \circ \tilde{\sigma}(z) . \quad \square
\end{aligned}
$$

4. The Schröder map in the presence of resonances

We will now consider the case in which there are resonances for the eigenvalues of the differential $d \varphi_{0}$ of the holomorphic map φ and prove Theorem 1.2. We will expand in details a nice example to explore, with our new approach, the connection between Theorem 1.2 and Lemma 2.5 .

Example 4.1. Suppose $n=2$ and let

$$
\varphi\left(z_{1}, z_{2}\right)=\left(c_{1} z_{1}, c_{1}^{3} z_{2}+c_{2} z_{1}^{2}\right)
$$

with $c_{1} \neq 0,1$ and $c_{2} \neq 0$. Hence, if c_{1}, c_{2} are sufficiently small then $\varphi\left(\mathbb{B}^{2}\right) \subseteq \mathbb{B}^{2}$, the map φ is injective on \mathbb{B}^{2} and

$$
d \varphi_{0}=\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{1}^{3}
\end{array}\right)
$$

Therefore $d \varphi_{0}$ is diagonal and its eigenvalues, $\lambda_{1}=c_{1}$ and $\lambda_{2}=c_{1}^{3}$, have a unique resonance of order 3. Then, with reference to the notations of Theorem 1.2, we have $\operatorname{dim} \mathcal{H}_{3}=10=\operatorname{dim} \mathcal{M}$, and hence \mathcal{M} is the upper left 10×10 corner of the matrix A_{φ} representing C_{φ} with respect to the basis \mathcal{B} of the Hardy space $H^{2}\left(\mathbb{B}^{2}\right)$. A simple computation shows that

$$
\mathcal{M}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.1}\\
0 & c_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c_{1}^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c_{2} & c_{1}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c_{1}^{4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c_{1}^{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c_{1} c_{2} & 0 & c_{1}^{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 c_{1}^{3} c_{2} & 0 & c_{1}^{5} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{1}^{7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{1}^{9}
\end{array}\right) .
$$

The matrix \mathcal{M} has distinct eigenvalues (indeed $1 \neq c_{1} \neq c_{1}^{n}, \forall n \in \mathbb{N}$). Therefore \mathcal{M} is diagonalizable and, by Theorem 1.2, there exists a solution σ of the Schröder equation. We want to directly construct a Schröder map, i.e. a map σ such that

$$
\begin{equation*}
\sigma \circ \varphi=d \varphi_{0} \circ \sigma \tag{4.2}
\end{equation*}
$$

In terms of the associated composition operators equation (4.2) becomes

$$
\begin{equation*}
C_{\varphi} \circ C_{\sigma}=C_{\sigma} \circ C_{d \varphi_{0}} . \tag{4.3}
\end{equation*}
$$

The infinite matrix A_{φ} associated to C_{φ} with respect to the basis \mathcal{B} contains \mathcal{M} as upper left 10×10 corner and is such that all its entries $a_{i j}$ with $1 \leq i \leq 10$ and $j>10$, or $1 \leq j \leq 10$ and $i>10$, vanish. A direct computation shows that the infinite matrix $A_{d \varphi_{0}}$
representing $C_{d \varphi_{0}}$ in $H^{2}\left(\mathbb{B}^{2}\right)$ is diagonal (since $d \varphi_{0}$ is diagonal) and its upper left 10×10 corner is

$$
\mathcal{Z}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c_{1}^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c_{1}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c_{1}^{4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c_{1}^{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & c_{1}^{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{1}^{5} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{1}^{7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{1}^{9}
\end{array}\right)
$$

In view of the structure of the infinite matrices A_{φ} and $A_{d \varphi_{0}}$, to find a solution of equation (4.2) it is enough to determine a 10×10 block, \mathcal{Y}, which will play the role of the upper left corner of the matrix representing C_{σ}, that is (see 4.3), such that

$$
\begin{equation*}
\mathcal{Y}^{-1} \mathcal{M} \mathcal{Y}=\mathcal{Z} \tag{4.4}
\end{equation*}
$$

The matrix \mathcal{M} decomposes into three blocks along the diagonal:

$$
\mathcal{M}_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{1} & 0 & 0 \\
0 & 0 & c_{1}^{3} & 0 \\
0 & 0 & c_{2} & c_{1}^{2}
\end{array}\right), \quad \mathcal{M}_{2}=\left(\begin{array}{cccc}
c_{1}^{4} & 0 & 0 & 0 \\
0 & c_{1}^{6} & 0 & 0 \\
c_{1} c_{2} & 0 & c_{1}^{3} & 0 \\
0 & 2 c_{1}^{3} c_{2} & 0 & c_{1}^{5}
\end{array}\right), \quad \mathcal{M}_{3}=\left(\begin{array}{cc}
c_{1}^{7} & 0 \\
0 & c_{1}^{9}
\end{array}\right) .
$$

As a consequence, equation (4.4) decomposes in turn into three simpler matrix equations of the same type. After assuming $d \sigma_{0}=I$, a direct computation leads to

$$
\mathcal{Y}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.5}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{c_{2}}{c_{1}^{3}-c_{1}^{2}} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{c_{2}}{c_{1}^{3}-c_{1}^{2}} & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{2 c_{2}}{c_{1}^{3}-c_{1}^{2}} & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Since, by definition, $C_{\sigma}\left(z_{1}\right)=(\sigma)_{1}$ and $C_{\sigma}\left(z_{2}\right)=(\sigma)_{2}$, we obtain

$$
\sigma\left(z_{1}, z_{2}\right)=\left(z_{1}, z_{2}+\frac{c_{2}}{c_{1}^{3}-c_{1}^{2}} z_{1}^{2}\right)
$$

Example 4.1 points out clearly the main feature of the resonant Schröder equation: even in the presence of resonances, precisely when the matrix \mathcal{M} associated to φ is
diagonalizable, the normal form of φ can be linear. This last fact happens when, for all $j=1, \ldots, n$, the coefficients $A_{k_{1} \ldots k_{n}}^{j}$ can be chosen to vanish for all $\left(k_{1}, \ldots, k_{n}\right) \in R\left(\lambda_{j}\right)$ (see 2.3), Lemma 2.5].

We are now ready to state and prove the following
Lemma 4.2. Suppose $\varphi: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ and M are as described in Theorem 1.2 Let \mathcal{M} be the upper left $M \times M$ corner of the infinite matrix A_{φ} representing the composition operator C_{φ} with respect to the basis \mathcal{B} of the Hardy space $H^{2}\left(\mathbb{B}^{n}\right)$. If \mathcal{M} is diagonalizable, then the coefficients $A_{k_{1} \ldots k_{n}}^{j}$ in the normal form 2.3) of the representation of φ can be chosen to be zero, for all $j=1, \ldots, n$ and all $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$. Therefore there exists a germ of biholomorphism σ such that, in a neighborhood of 0 ,

$$
\sigma \circ \varphi=d \varphi_{0} \circ \sigma
$$

with $\sigma(0)=0$ and $d \sigma_{0}=I$.
Proof. If \mathcal{M} is diagonalizable then there exists an infinite matrix A_{σ} whose upper left $M \times M$ corner, \mathcal{Y}, is such that $\mathcal{Y}^{-1} \mathcal{M} \mathcal{Y}=\mathcal{Z}$ is diagonal. Now, since

$$
\sum k_{i} \leq m
$$

by Lemma 2.5. all possibly non-zero coefficients $A_{k_{1} \ldots k_{n}}^{j}$ in the infinite matrix $A_{\sigma}^{-1} A_{\varphi} A_{\sigma}$ fall in the upper left $M \times M$ corner \mathcal{Z}. The fact that the eigenvalues of $d \varphi_{0}$ appear along the diagonal of \mathcal{Z} forces all the coefficients $A_{k_{1} \ldots k_{n}}^{j}$ to be zero. As a consequence, by means of the infinite matrix A_{σ}, we can construct the power series of the desired germ σ according to Lemma 2.5 which, as already pointed out, holds in the environment of convergent, complex power series.

The application of the same "globalizing techniques" used in the proof of Theorem 3.2 completes our new approach to the proof of Theorem 1.2 .

Note that, with our approach to the problem, the proof of Theorem 1.1 is straightforward.

We believe that our direct techniques will be useful to find a different approach to the study of the boundary Schröder equation in several complex variables (see [2]).

ACKNOWLEDGEMENTS. Research of C. Bisi and G. Gentili partially supported by PRIN Proprietà geometriche delle varietà reali e complesse and by GNSAGA of the Istituto Nazionale di Alta Matematica, Rome.

References

[1] M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Cosenza, 1989.
[2] F. Bracci - G. Gentili, Solving the Schröder equation at the boundary in several variables. Michigan Math. J. 53 (2005), 337-356.
[3] C. C. Cowen - B. MacCluer, Schröder's equation in several variables. Taiwanese J. Math. 7 (2003), 129-154.
[4] C. C. Cowen - B. MacCluer, Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, 1995.
[5] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. École Norm. Sup. (3) 1 (1884), 3-41.
[6] M. Kuczma, On the Schröder equation. Rozprawy Mat. 34 (1963).
[7] J.-P. Rosay - W. Rudin, Holomorphic maps from \mathbb{C}^{n} to \mathbb{C}^{n}. Trans. Amer. Math. Soc. 310 (1988), 47-86.
[8] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}. Grundlehren Math. Wiss. 241, Springer, New York, 1980.
[9] N. Sibony, Dynamique des applications rationnelles de P^{k}. In: Dynamique et Géométrie Complexes (Lyon, 1997), Panor. Synthèses 8, SMF, 1999, 97-185.
[10] S. Sternberg, Local contractions and a theorem of Poincaré. Amer. J. Math. 79 (1957), 809-824.

Received 26 January 2006,
and in revised form 22 February 2006.

C. Bisi

Dipartimento di Matematica Università degli Studi della Calabria Cubo 30b, Ponte Bucci, Arcavacata di Rende

87036 Cosenza, Italy
bisi@math.unifi.it, bisi@mat.unical.it
G. Gentili

Dipartimento di Matematica "U. Dini"
Università degli Studi di Firenze Viale Morgagni 67/A
50134 Firenze, Italy
gentili@math.unifi.it

