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THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC
THREEFOLD ACTING ON A SQUARE COMPLEX

CINZIA BISI, JEAN-PHILIPPE FURTER AND SEPHANE LAMY

Asstract. We study the group Tame(g)Lof tame automorphisms of a smooth
affine 3-dimensional quadric, which we can view as the undeglyiriety of
SL,(C). We construct a square complex on which the group admitstwrala
cocompact action, and we prove that the complex is CAT(0)hgmperrbolic. We
propose two applications of this construction: We show &mgtfinite subgroup
in Tame(SL,) is linearizable, and that Tame(gLsatisfies the Tits alternative.
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INTRODUCTION

The structure of transformation groups of rational suaisequite well under-
stood. By contrast, the higher dimensional case is sti#msally aterra incognita
This paper is an attempt to explore some aspects of tranafamgroups of ratio-
nal 3-folds.

The ultimate goal would be to understand the structure ofathele Cremona
group Bir(P3). Since this seems quite a formidable task, it is naturalreak
down the study by looking at some natural subgroups offBjr(with the hope
that this gives an idea of the properties to expect in genaf& now list a few
of these subgroups, in order to give a feeling about wherenmdest subgroup
Tame(Slp) fits into the bigger picture. A first natural subgroup is thenomial
group Gl(Z), where a matrixd;) is identified to a birational map a3 by tak-
ing (X,y,2) --» (xPuyP12z23 x1yA27823 y3s1\@32783) - Another natural subgroup is
the group of polynomial automorphisms @f. These two examples seem at first
glance quite dferent in nature, nevertheless it turns out that both areagued in
the subgroup By(P2) of birational transformations of genus 0, which are charac
terized by the fact that they admit a resolution by blowipgpoints and rational
curves (seeHru73 Lam13). On the other hand, it is known (seBdn99) that
given a smooth curv€ of arbitrary genus, there exists an eleménaf Bir(P3)
with the property that any resolution éfmust involve the blow-up of a curve iso-
morphic toC. So we must be aware that even if a full understanding of tbamr
Aut(C3) still seems far out of reach, this group AG#) might be such a small sub-
group of Bire®) that it might turn out not to be a good representative of tealtt
of properties of the whole group B#Y).

, GLs(2)

Bir(P3) - Birg(P®) > Aut(C3® > Tame(®)

© Aut(SLy) - Tame(Sk)

Ficure 1. A few subgroups of Biif®).

The group AutC3) is just a special instance of the following constructiorive®
V a rational &ine 3-fold, Aut{/) can be identified with a subgroup of Bif).
Apart fromV = C3, another interesting example is whehc C* is an dfine
quadric 3-fold, sayV is the underlying variety of SL In this case the group
Aut(V) still seems quite redoubtably filcult to study. We are lead to make a
further restriction and to consider only the smaller grofipasneautomorphisms,
either in the context of = C2 or SLy.

The definition of the tame subgroup for AGH|) is classical. Let us recall it in
dimension 3. The tame subgroup Tarf&(is the subgroup of Au@®) generated
by the dfine groupAz = GL3~<C3 and by elementary automorphisms of the form
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(xy,2) — (X+ P(y,2),y,2). A natural analogue in the case of dffirre quadric
3-fold was given recently inLjy13]. This is the group Tame(Sl, which will be
the main group under study in this paper.

When we consider the 2-dimensional analogues of the graupgurel, we
obtain in particular the Cremona group Bif}, the monomial group Gi(Z) and
the group of polynomial automorphisms AGH). A remarkable feature of these
groups is that they all admit natural actions on some hypierlspaces of some
sort. For instance the group §) acts on the hyperbolic half-plari&?, since
PSLy(Z) € PSLy(R) =~ Isom,(H?). But SLy(Z) also acts on the Bass-Serre tree
associated with the structure of amalgamated produs{ZSl~ Z/4 x7,» Z/6. A
tree, or the hyperbolic plang?, are both archetypal examples of spaces which
are hyperbolic in the sense of Gromov. The group B8@lso admits a structure
of amalgamated product. This is the classical theorem af dumal van der Kulk,
which states that Aut?) = A, *ponE, E2, WhereAy and E; are respectively the
subgroups of fiine and triangular automorphisms. So ALf( also admits an ac-
tion on a Bass-Serre tree. Finally, it was recently realitted the whole group
Bir(P?) also acts on a hyperbolic space, via a completeffedint construction:
By simultaneously considering all possible blow-ups d&&rit is possible to pro-
duce an infinite dimensional analoguelsf on which the Cremona group acts by
isometries (seejan1l CL13).

With these facts in mind, given a 3-dimensional transforomagroup it is natu-
ral to look for an action of this group on some spaces with positive curvature,
in a sense to be made precise. Considering the case of mdrmoaypa, we have
a natural action of Si(Z) on the symmetric space gR)/ SO3(R), see BH99,
11.L10]. The later space is a basic example of a CAT(0) symimefpace. Re-
call that a CAT(0) space is a geodesic metric space whergaaibtes are thinner
than their comparison triangles in the Euclidean plane. &ke this as a hint that
Bir(P%) or some of its subgroups should act on spaces of non-pesitiwature.
At the moment it is not clear how to imitate the constructignifductive limits
of blow-up to obtain a space say with the CAT(0) property, gary to generalize
instead the more combinatorial approach of the action onssBa&rre tree. The
group Tame(:®) does not possess an obvious structure of amalgamatedopredu
it is not immediate to answer the following:

Question A. Is there a natural action of Tan@{) on some hyperbolic aror
CAT(0) space?

Accordingly this question is rather vague. In our mind amcgcon some hyper-
bolic space would qualify as a “good answer” to QuesHoif it allows to answer
the following questions, which we consider to be basic tabtat our understand-
ing of the group:

Question B. Is any finite subgroup in Tamég) linearizable?
Question C. Does Tame(?) satisfy the Tits alternative?

To put this into context, let us review briefly the similar gtiens in dimension
2. The fact that any finite subgroup in AGH) is linearizable is classical (see
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for instance Fur83). The Tits alternative for Aut{?) and Bir(P?) were proved
respectively in Lam0]] and [Canl], and the proofs involve the actions on the
hyperbolic spaces previously mentioned.

Now we come to the group Tame(8L We define it as the restriction to SL
of the subgroup TaméC?) of Aut(C*) generated by @andE2, where Q is the
complex orthogonal group associated with the quadratim fgiven by the deter-
minantq = xX4 ~ XXs, and E2 :_{ ;g §_§ N (2 ﬁjgg&;g) P e C[x4, x3]}.
One possible generalization of simplicial trees are CAT{Be complexes (see
[Wis1Z)). We briefly explain how we construct a square complex onciwhhis
group acts cocompactly (but certainly not properly!). Eatdment of Tame(Sh)
can be writtenf = ({* 2). Modulo some identifications that we will make precise
in Section2, we associate vertices to each componignto each row or column
(f1, f2), (fs, f4), (f1, f3), (f2, f4) and to the whole automorphisin On the other
hand edges correspond to inclusion of a component inside @raolumn, or of
a row or column inside an automorphism. This yields a graphybich we glue
squares to fill each loop of four edges (see FigBeto finally obtain a square
complexcC.

In this paper we answer analogues of Questian® C in the context of the
group Tame(Sk). The main ingredient in our proofs is a natural action byrise
tries on the compleg, which admits good geometric properties:

Theorem A. The square comple® is CAT(0) and hyperbolic.
As a sample of possible applications of such a constructiembtain:

Theorem B. Any finite subgroup ifame(Sk) is linearizable, that is conjugate to
a subgroup of the orthogonal groupy.

Theorem C. The groupTame(Slk) satisfies the Tits alternative, that is for any
subgroup GC Tame(Sly) we have:

(1) either G contains a solvable subgroup of finite index;
(2) or G contains a free subgroup of rank 2.

The paper is organized as follows. In Sectibowe gather some definitions and
facts about the groups Tame(8land . The square complex is constructed in
Section2, and some of its basics properties are established. Therdtio8 3
we study its geometry: links of vertices, non-positive @iwe, simple connect-
edness, hyperbolicity. In particular, we obtain a proof bedremA. The group
Tame(Sle) and some of its subgroups admit some amalgamated productLses
reminiscent of Russian nesting dolls (see Figlde In Section4 we study in de-
tails some of these products. Then in Seciome give the proofs of Theorents
andC. Finally in Sectior6 we give some examples of elliptic, parabolic and loxo-
dromic subgroups, which appear in the proof of the Tits afteve. We also briefly
discuss the case of Tani&), and propose some open questions. Finally we gather
in an annex some reworked results frobv13] about the theory of elementary
reductions on the groups Tame(gland Tamg(c“).
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1. PRELIMINARIES

We identify C* with the space of % 2 complex matrices. So a polynomial
automorphismf of C# is denoted by

. fotf
fr 8% - (¢ 7).
where f; € C[x1, X2, X3, Xa] for 1 < i < 4, or simply byf = (g ;j) We choose

to work with the smooth fine quadric given by the equatian= 1, whereq =
X1X4 — XoX3 IS the determinant:

Sl ={(3d 2); XaXs — XoXg = 1}.

We insist that we use this point of view for notational corneece, but we are
interested only in the underlying variety of SLn particular Aut(Sl) is the group
of automorphism of Si.as an &ine variety, and not as an algebraic group.

We denote by Ata(c“) the subgroup of Autf*) of automorphisms preserving
the quadratic forng:

Autg(C* = (f € Aut(C*; qo f = q}.

We will often denote an elemerit Autq(C“) in an abbreviated form such as
f = (g fz) Here the dots should be replaced by the unique polynoifgialich
that f1fs — fofs = XX — XoXs. We call Tamg(C*) the subgroup of Ay(C*)
generated by @andE2, where Q = Autq(C"') N GL4 is the complex orthogonal
group associated wity, and Eﬁ is the group defined as

2 P(x1, .
E% = (3 2epies)s P el xal).

We denote by : Autq(C4) — Aut(SLy) the natural restriction map, and we define
the tame group of SL,, denoted by Tame(Sl, to be the image of Tarq@“)

by p. We also define STagéC*) as the subgroup of index 2 in Tagt€*) of
automorphisms with linear part in {and thespecial tame groupSTame(Sk) =
p(STamg(C%).

Remark 1.1. The morphisnp is clearly injective in restriction to ©and to Ei:
This justifies that we will consider £and Ef1 as subgroups of Tame(gL On
the other hand it is less clear gf induces an isomorphism between Tal(m?é)
and Tame(Sp): It turns out to be true, but we shall need quite a lot of miaehy
before being in position to prove it (see Propositad. Nevertheless by abuse
of notation iff = ({ ) is an element of TaméC*) we will also considerf as an
element of Tame(S1), the morphisnp being implicit. See also Sectidh2.2for
other questions around the restriction morphism

The Klein four-group \ will be considered as the following subgroup of:O
Va={id, (55 ). (& %) (6 )b

In particular V4 contains the transpose automorphise (X ).



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD 6

1.1. Tame(SLy). We now review some results which are essentially contained i
[LV13]. However, we adopt some slightlyftirent notations and definitions. For
the convenience of the reader, we give self-contained probéll needed results
in an annex.

We define a degree function @[ x1, Xo, X, Xa] with value in N* U {—co} by
taking

deg;4 X1 = (2, 1,1, O) dqu Xo = (1, 2,0, l)
degs x3=(1,0,2,1) deg. x4 =(0,1,1,2)
and by convention deg0 = —co. We use the graded lexicographic order on

N* to compare degrees. We obtain a degree function on the al@§Bt,] =
C[x1, X2, X3, X4] /(q — 1) by setting

degp = min{degr; r=p mod Q- 1)}.
We define two notions of degree for an automorphisea ( g :‘:21) € Tame(Sly):

degsunmf = Z degf;.
1<i<4

degmaxf = max degf;.
1<i<4

Lemma 1.2. Let f be an element ilame(SLk).

(1) For any ue O4, we havedegmaxf = degmaxuo f.
(2) We have e O, if and only ifdegmaxf = (2,1, 1, 0).

Proof. (1) Clearly degmaxio f < degmaxf, and similarly we get degmaix=
degmaxu o (uo f) < degmax o f.

(2) This follows from the fact that iP € C[x1, X2, X3, Xa] with deg-a P =

@i, j, k1), then the ordinary degree Bfis the averagé(i +j+k+1). O

The degree degsum was the one usedLWl1B], with a different choice of
weights with value inN3. Because of the nice properties in Lemma we pre-
fer to use degmax, together with the above choice of weigdfite. choice to use a
degree function with value iN* is mainly for aesthetic reasons, on the other hand
the property that the ordinary degree is recovered by takiegn was the main
impulse to change the initial choice. From now on we will rrevge degsum, and
we simply denote deg degmax.

An elementary automorphism (resp. ageneralized elementary automor-
phism) is an elemené € Tame(SLk) of the form

_ X1 Xz+le(X1,Xa)) -1
€= U(X’s xa+xaP(x1,x3) ) U

whereP € C[Xg, X3], U € V4 (respu € O4). Note that any elementary automor-
phism belongs to (at least) one of the four subgrdiss Esa, E3, E2 of Tame(Sl)
respectively defined as the set of elements of the form

( X1+>Q%(X3,X4) X2+X48§>%,X4)) X X2 ) , ( X1+%Q(X2,Xa) X2 ) , ( Xy Xo+X1Q(X1,%3) ),

’(X3+X1Q(X1’X2) Xa+X2Q(X1,X2) X3+X4Q(X2,%a) Xq X3 Xq+X3Q(X1,%3)

whereQ is any polynomial in two indeterminates.
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We say thatf € Tame(Slp) admits anelementary reductionif there exists an
elementary automorphismsuch that dego f < degf. In [LV13], the definition
of an elementary automorphism is slightlyfdrent. However all these changes —
new weights, new degree, new elementary reduction — doffemttahe formulation
of the main theorem; in fact it simplifies the proof:

Theorem 1.3(see TheorerA.1). Any non-linear element dame(Sk) admits an
elementary reduction.

Since the graded lexicographic orden¥f is a well-ordering, Theorerh.3im-
plies that any elementt of Tame(Sk) admits a finite sequence of elementary re-
ductions

foeof 5eogof—---—>e,0--rogof
such that the last automorphism is an element of O

An important technical ingredient of the proof is the foliogy lemma, which
tells that under an elementary reduction, the degree of &telcted components
decreases strictly.

Lemma 1.4 (see LemmaA.8). Let f = (g Ii) € Tame(Sk). If e € E} and
ot

eo f :(f, ¢ ),then
3 4
degeo f<degF < degf/«degf; < degf;<degfs
for any relation< amongx<, >, <, > and=.

A useful immediate corollary is:

Corollary 1.5. Let f = (g Ij) e STame(Sk) be an automorphism such that
f1 = x¢. Then f is a composition of elementary automorphisms pvasgrg. In
particular, , and § do not depend ongxand we can view(f,, f3) as defining an
element of the subgroup éfutcyy,; C[x1][ X2, X3] generated by(xz, X2) and auto-
morphisms of the forrfax, + x;P(x1, X3), a1x3). In particular, if f3 = xs, there
exists some polynomial P such that=f x, + x;P(x1, X3).

Remark 1.6. We obtain the following justification for the definition ofelgroup
E2: Any automorphismf = (g Ii) in Tame(SL) such thatf; = x; and f3 = X3

belongs toE3.

Lemma 1.7 (see LemmaA.12). Let f € Tame(Sl), and assume there exist two
elementary automorphisms

12 P(x2, 1
o= (noge) Qo) c B and ¢ = (LREE %) < E)

such thatdegeo f < degf anddege’ o f < degf.
Then we are in one of the following cases:

(1) Q= Q(xs) € C[xa];
(2) P=P(x4) € C[x4];
(3) There exists B4) € C[x4] such thatdeg(f, + f4R(f4)) < degfy;
(4) There exists By) € C[x4] such thatdeg(fs + f4R(f4)) < degfs.
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1.2. Orthogonal group.

1.2.1. Definitions. Recall that we denote by Qhe orthogonal group af* asso-
ciated with the quadratic formg = X1X4 — XoX3. We have Q = (SOy, 1), Where
7 = (% %) denotes the involution given by the transposition. The 2 atphism
of groups

SL2XSL2—>SO4
(AB) —A (%) B

is the universal cover of SOHere the produch - (% X2) - B! actually denotes the

usual product of matrices. Howeverfit= ({: £)andg = (§ &) are elements of
QOg4, their composition is

_ ( f1og f2og
f og_(fsog fog) € O

which must not be confused with the product of the 2 matrices( g ;j) and
(& &) (see also Remark.8below).

1.2.2. Dual quadratic form.We now study the totally isotropic spaces of a qua-
dratic form on the dual of®* in order to understand the geometry of the group
O4.

In this section we se¥ = C* and we denote by* the dual ofV. We denote
respectively byei, e, e3, &, andxy, X2, X3, X4 the canonical basis of and the dual
basis ofV*. Sinceq(xX) = x1X4 — XoX3 iS @ non degenerate quadratic form\dn
there corresponds tQ a non degenerate quadratic fogh on V* such that for
any endomorphisni of V, the endomorphisni belongs to the orthogonal group
O(V, g) if and only if its transpose! belongs to the orthogonal group \D( o).

In other words, we havgo f = qif and only if g* o f' = g*. Since the matrix

00 01

of g in the canonical basis i = %(8 93 8), then, the matrix ofy* in the dual
0o o1 10 00

basis isA™ = 2(8 94 8). We denote by:, -) the bilinear pairing/* x V* — C
10 00

associated witq* (so that its matrix in the dual basisj&1 = A).

Remark 1.8. In this paper, each element of,@ denoted in a rather unusual way

as a 2« 2 matrix of the formf = ({ ), where eachf; = 3 f,jx;, fij € C, is an
j

element oV*. The corresponding more familiax4 matrix isM := (fj j)1<ij<4 €
M,4(C) and it satisfies the usual equallty*AM = A.

Lemma 1.9. Consider f= ( g ;j) where the elementg Ibelong to V. Then, the

following assertions are equivalent:
(1) feOq
(2) (fi, fj) = (%, xp) foralli, j € {1,2,3,4}.

Proof. Observe first thaf'(x) = fi(x1,...,%s) fori = 1,...,4. Then, we have
seen thatf € Oy if and only if f' belongs to the orthogonal group \D( %q*), i.e.
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if and only if for anyx, y € V*, we have( f'(x), fi(y)) = (x,y). This last equality is
satisfied for allk, y € V* if and only if it is satisfied for any, y € {X1, X2, X3, X4}. O

Recall that a subspad¥ C V* is totally isotropic (with respect tay*) if for all
XyeW,(Xy) =

Lemma 1.10. Let f;, f, be linearly independent elements of.VThe following
assertions are equivalent:

(1) Vect(fy, f2) is totally isotropic ;

(2) There existssf f4 € V* such that( g Ij) € O4.

Proof. If (fl fz) € 04, then by Lemmal..9for anyi, j € {1,2} we have(f;, f;) =
(X, Xj) =

Conversely, i fi, f;) = (X, xj) = 0 for anyi, j € {1, 2}, by Witt's Theorem (see
e.g. [Ser77h p. 58]) we can extend the mag — f1, xo — f, as an isometry
V* — V*. Then denoting byfs, f4 the images oks, x4, we have(f;, f;) = (x;, Xj)
foralli, j € {1,2,3,4}. We conclude by Lemma.9. O

If (£ £) € O, the planes Vectq, f2), Vect(fs, f4), Vect(fy. fs) and Vect(. )
are totally isotropic. Moreover the following decompaits hold:

F = Vect(f1, f2) ® Vect(fs, f;) and F = Vect(f, f3) ® Vect(fy, fs).
We have the following reciprocal result.

Lemma 1.11. Let W and W be two totally isotropic planes of\such that V/ =
W& W'. Then for any basiéfi, f,) of W, there exists a unique basis, f;) of W
such that(f f4) € Og4.

Proof. Existence By Witt's Theorem, we may assume tht= x; and fo = xo.
Let f3, f4 be a basis ofV'. If we express them in the basks, X, X3, X4, We get
f3 = a1X) + aoXe + agXz + auXq and f4 = byxg + boXo + bsXs + byxs. Since
X1, X2, f3, f4 IS @ basis oV*, we get de(?3 ﬁj) # 0. Therefore, up to replacing

fz and f4 by some linear combinations, we may assume (faf; ) = (3 9), i.e.
f3 = ayXg + axXo + Xz and f4 = byxg + boXxo + Xa.

Since(fs, f3) = —ap and(fy, f4) = by, we geta, = by = 0. Finally, (fs, f4) =
3(a1 — by), so thatay = b2, f3 = X3+ a;xg and f4 = X4 + a1 Xo.

Now it is clear tha( >@,+a1xl x4+a1X2) € Oq.
Unicity. Let (f3, f) and (s, f4) be two basis oV’ such thaf { ) and( ]':1 ;2)
belong to Q. From fyfy — fof3 = f; f4 - f2f3, we getfz(fg - f3) = f1(f4 - f4) and
sincef; and f, are coprime, we get the existence of a complex numiserch that
f3 - f3 = Af; and f4 — f4 = Af,. This proves thaf3 - fzand f4 - f4 are elements
in WnNW = {0}, and we obtainfs, fz) = (f3, f4) O

Lemma 1.12. For any nonzero isotropic vector bf V*, there exists exactly two
totally isotropic planes of V¥ containing §. Furthermore, they are of the form
Vect(fy, f) and Vect(fy, f3), where( ! f f2) is an element 0D;.
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Proof. By Witt's theorem, we may assume thit = x;. Any totally isotropic
subspacéV in V* containingx, is included intox; = Vect(x, X2, x3). Therefore,
there existsy, az € C such thatV = Vect(x1, axxx + azxs). Finally, sinceq*(axx, +
azX3) = —4dapaz = 0 (recall thatg*(u) = 4u,u) for anyu € V*), W is equal to
Vect(x1, X2) or Vect(Xy, X3). O

Lemma 1.13. Let W and W be two totally isotropic planes of Vv Then there
exists fe O4 such that fW) = Vect(xs, X4) and f(W’) is one of the following three
possibilities:

(1) f(W’) = Vect(xs, Xa);

(2) f(W) = Vect(xs, X2);

(3) f(W’) = Vect(xz, Xa);

Proof. By Witt's theorem there exist§ € O4 such thatf(W) = Vect(xs, X4). If
W' =W we are in Case (1), andWnW’ = {0} then we can apply Lemntallto
get Case (2). Assume now thatn W’ is a line. Again by Witt's theorem we can
assume thatvV N W’ = Vect(x4), and then we conclude by Lemrial 2that we are
in Case (3). O

We can reinterpret the last two lemmas in geometric terms.

Remark 1.14. The isotropic cone off is given byajas — aaz = 0, wheref =
ai1xy + -+ -+ agXq € V. In particular this is a cone over a smooth quadric surface
S in P(V*) ~ P3. Totally isotropic planes correspond to cones over a ling,in
but S is isomorphic tdP* x P, and lines inS correspond to horizontal or vertical
ruling. From this point of view Lemma.12is just the obvious geometric fact that
any point inS belongs to exactly two lines, one vertical and the otherzontial.
Similarly Lemmal.13is the fact that @acts transitively on pairs of disjoint lines,
and on pairs of secant lines.

Corollary 1.15. Let e € be two generalized elementary automorphisms. Then, up
to conjugation by an element 6f, we may assume that e E% and that e belongs

to either B, EZ or E*2.

Proof. Each generalized elementary automorphisifixes pointwise (at least) a
totally isotropic plane o¥/* (note thak acts naturally OIT[ X1, X2, X3, X4]). Observe
furthermore that the plane Veg( x4) is fixed if and only ife belongs toE!2,
Therefore, the result follows from Lemnial3 O

In the next definition, the quadr® is identified toP! x P! via the isomorphism
P x P! — Ssending (¢ : B), (v : 6)) to C (ayXy + ByXo + adX3 + B6Xa).

Definition 1.16. A totally isotropic plane oV* is said to be horizontal (resp. ver-
tical), if it corresponds to a horizontal (resp. verticafel of P x P

The map sendinga(: b) € P! to Vect@x, + bxs, axe + bxs) (resp. Vectéx, +
bx, axs+bxy)) is a parametrization of the horizontal (resp. verticaially isotropic
planes ofv*. Let f be any element of Pand let Vect(, v) be any totally isotropic
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plane ofV*. The group Q acts on the set of totally isotropic planes via the follow-
ing formula
f. Vect(u, V) = Vectluo f~1,vo f71).

Lemma 1.17. Any element 080, sends a horizontal totally isotropic plane to a
horizontal totally isotropic plane, and a vertical totallyotropic plane to a vertical
totally isotropic plane. Any element 6% \ SO, exchanges the horizontal and the
vertical totally isotropic planes.

Proof. The set of totally isotropic planes ¥f is parametrized by the disjoint union
of two copies of?!. The group S@being connected, it must preserve e&thThe
elementr of O4 \ SOy exchanges the horizontal totally isotropic plane Viegtky)
and the vertical totally isotropic plane Vexi(xs). The result follows. O

Remark 1.18. Let A := {(x,X), x € P!} denote the diagonal &' x P*. Identify
the set of horizontal totally isotropic planeskb. Remark that the map SO-

(PIxPH\A, f = (g g) — (Vect(fy, f2), Vect(fs, f4)) is a fiber bundle, whose fiber

is isomorphic to Gk. Indeed, by Lemmad.11, any element = (8; 8§) of SOy
satisfying Vect@:,g2) = Vect(f1, f2) and Vect@s, 94) = Vect(fs, f4) is uniquely
determined by the basigy( g») of Vect(fy, o).

In the same way, we obtain a fiber bundig C8Q; — (FYx BY)\ A, (£ £) -
(Vect(fy, f3), Vect(f, f4)).

2. SQuare COMPLEX

We now define a square compl€xwhich will be our main tool in the study of
Tame(Slp), and we state some of its basic properties.

2.1. Definitions. A function f; € C[SLy] = C[X1, X2, X3, X4]/(q — 1) is said to be
acomponentif it can be completed to an elemeht= (g ;i) of Tame(Sl). The
vertices of our 2-dimensional complex are defined in termarbits of tuples of

components, as we now explain. For any elemiest ( g ;j) of Tame(Sk), we

define the three verticesy]. [f1. f;] and| {: | as the following sets:

o [f1]:=C"-fy={afy; ae C"};
o [f1. f2] := Glo-(f1, f2) = {(@f + b, cfy + dfy); (2 §) € GLoJ;
s i]=out,
Each bracketf] (resp. [f1, f2], resp.[ g ]fj ]) denotes an orbit under the left action
of the groupC* (resp. Glp, resp. Q). Vertices of the form f1] (resp. [f1, f2],
resp. [ g Ii]) are said to be ofype 1 (resp.2, resp.3). Remark that our notation
distinguishes between:

o ( {2)which denotes an element of TamegBL

o g }ci] which denotes a vertex of type 3.

The set of thevertices of the complexC is the disjoint union of the three types of
vertices that we have just defined.
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We now define the edges 6f which reflect the inclusion of a component inside
a row or column, or of a row or column inside an automorphisneciBely the set
of theedgesis the disjoint union of the following two types of edges:

e Edges that link a vertexf{] of type 1 with a vertex {1, fo] of type 2;

e Edges that link a vertexf{, fo] of type 2 with a verte>{ g ;j of type 3.

The set of thesquaresof C consists in filling the loop of four edges associated
with the classesff], [ 1. f2], [f1. fs] and| £ |forany f = ({ £) e Tame(Sk)
(see Figure2). The square associated with the classe$ [ x1, x2], [X1, X3] and

X %2 ] will be called thestandard square
Observe that to an automorphisim= (% ;j) we can associate (by applying the

above definitions to- o f with ¢ in the Klein group \4):

Four vertices of type 1:1], [f2], [ f3] and [f4];

Four vertices of type 2:1f, fo], [ f1, f3], [ T2, fa] and [f3, f4];
One vertex of type 3:1].

Twelve edges and four squares (see Fi@)re

We call such a figure thikig square associated with. For any integersn,n > 1,
we callm x n grid any subcomplex o€ isometric to a rectangle @ of size
mx n. So a big square is a particular type ak 2 grid.

We adopt the following convention for the pictures (see fatéance Figureg,
3 and4). Vertices of type 1 are depicted withoa vertices of type 2 are depicted
with ae, vertices of type 3 are depicted witma

[fi] [f1,f2] [xa] [x1,%2]
o o

[f1.f3] fi f2 [x1.%a] X1 X2
% 1] % x|

Ficure 2. Generic square & standard square.

The group Tame(S)) acts naturally on the compleX For instance the action
on the vertices of type 1 is given by the following formula.

g-[fi]:=[fiog™]
It is an action by isometries, whe¢gis endowed with the natural metric obtained
by identifying each square to an euclidean square with edigiesgth 1.

2.2. Transitivity and stabilizers. We show that the action of Tame(8Lis tran-
sitive on many natural subsets©f and we also compute some related stabilizers.

Lemma 2.1. The action ofTame(Sly) is transitive on vertices of type 1, 2 and 3
respectively. The action @Tame(Sk) is transitive on vertices of type 1 and 3
respectively, but admits two distinct orbits of verticesype 2.
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[f1] [f1,fo] [f2] [xl] [x1,%2] [x]
O O [e] O
[f1.fa] " i [f2,fa] [X1,%3] [id]. [x2.%4]
[fl= f3 fAJ
O O O o)
[fa] [f3,1a] [f4] [xa] [x3.X4] [xa]

Ficure 3. Generic big square & standard big square.

[X2—X4]
0]

[x1—x2]
[X1—X2,X3—X4] ¢ - [ X1+X2,X3+X4]
\[X2+X4]
Damdd s+l

Ficure 4. A few other squares...

Proof. Let vy (resp. v, v3) be a vertex of type 1 (resp. 2, 3). There exibts
(f£ £) e Tame(Sk) such thatvy = [f1] (resp. v = [f1, f2], v3 = [f]). Then
[X1] = [fro 73 = f-[fy] (resp. Ky, xo] = f-[f1, fo], [id] = f-[f]). If fisnotin
STame(Sk) theng = 7o f = ({£ £)isin STame(Sk). We also haves] = g-[ 1]
and [id] = [r] = g- [f], butg-[f1, f2] = [Xq, X3].

It remains to prove thatq, x3] and [x;, Xz] are not in the same orbit under the
action of STame(Sy). Assume thagy € Tame(Sk) sends ki, X3] on [x1, 2], and
leth € Oy4 be the linear part af. We still haveh-[xq, X3] = [X1, X2], and by Lemma
1.17we deduce thah € O4\ SOy, henceg € Tame(Sle) \ STame(Sk). O

Definition 2.2. (1) We say that a vertex of type 2liwrizontal (resp.vertical) if

it lies in the same orbit a({, Xo] (resp. 1, X3]) under the action of STame(g)L.
(2) We say that an edge liwrizontal (resp.vertical) if it lies in the same orbit

as the edgexi] — [x1, Xo] (resp. k1] — [X1, X3]) under the action of STame(gL.



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD a4

We will study in§4.1the structure of the stabilizer Stak{]). In particular we
will show that it admits a structure of amalgamated product.
Of course by definition the stabilizer of the vertex [id] op&y/3 is the group @

Lemma 2.3. The stabilizer inTame(SkL) of the vertexx;, X3] of type 2 is the
semi-direct producStab(xi, x3]) = Eﬁ =~ GLy, where
b ' Xp+b’ . WAV -

GLe = (B0 Beig); abcdab.c.dec, (4 ¥)(28)=(59).
Proof. Let g = (8; 8§) e Stab(i, x3]. We have §1,93] = g1 - [X1, X3] =
[x1, X3]. Hencegs, gz are linear polynomials iy, X3 that define an automorphism
of Vect(xy, X3), in other words we can view, gz as an element of GL By com-
posingg by a linear automorphism of the forf:15% 2X275¢) we can assume

x1+dxz ¢’ Xo+d'Xq4
01 = X1, g3 = X3. Then, the result follows from Remaik®é. O

We now turn to the action of Tame(glLand STame(Sh) on edges.

Lemma 2.4. The action ofTame(SLk) is transitive respectively on edges between
vertices of type 1 and 2, and on edges between vertices o2tgpé 3. The action
of STame(Sk) on edges admits four orbits, corresponding to the four edddse
standard square.

Proof. If there is an edge betweesn a vertex of type 1 ang, a vertex of type 2,
then there exists = ({: ) e Tame(Sk) such thaty = [fi] andvp = [f1, fo].
Thenf -vy =[x ]and f - vo = [Xg, Xo].

Similarly if there is an edge betweega vertex of type 3 and, a vertex of type
2, then there exist$ = (: ) e Tame(Sk) such thavs = [f] andv, = [fi, f2].
Thenf -vg =[id] and f - vo =[x, X2].

In both cases, iff ¢ STame(Sk), we changef by g = 7 o f and we obtain
g-v1=[xl], 9- V2 =[x, %3], g- v = [id]. m

Lemma 2.5. (1) The stabilizer of the edge betwele] and[x, X3] is the semi-
direct product

2 d? :
SR {( d)é‘ftxl a‘1X4+ca)‘(§d‘1xz ) acdeC, ad# 0}.
(2) The stabilizer of the edge betwden, xo] and[id] is the following subgroup of
SOy
{A- (& %)-B, ABeSL, Ais Iowertriangular}.
Proof. (1) This follows trivially from Lemma2.3.
(2) Recall that Stab([id])= O4. By LemmaZ2.l, we have Stabff, x»]) C

STame(Sk). Therefore, the stabilize$ of the edge betweerx{, xo] and [id] is
included into SQ. By 1.2.1, any element of S@is of the form

f=A-(% %) B, whereA BeSL,.

An obvious computation would show thatbelongs taS if and only if A is lower
triangular. O
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Lemma 2.6. Let w = [y, f5] be a vertex of type 2, ar#l be the path of length 2
through the verticeff1], [f1, fo], [f2]. Then:
(1) The pointwise stabilize8tab® is isomorphic to
Eix{(gz ij)? abe c*}.
(2) The grougtabP acts transitively on the set of vertices of type 3 at distance
1 from w.
(3) If[f], [g] are two vertices of type 3 at distance 1 frogy then there exists
a generalized elementary automorphism h suchfiflag [ho f].

Proof. Without loss in generality we can assunfie = X3, f, = X3. Then (1)
follows from Lemma2.5. By definition of the complex, i3 is at distance 1 from
Vo = [Xq, X3], thenvs = [e] with e = (% &) € Tame(Sl). By Remarkl.6 we get
ee Ef1 and (2) follows. Now if [f], [g] are two vertices of type 3 at distance 1 from
Vo = [X1, X3], we can assumef] = [id] and [g] = [€] for somee € Eﬁ. Thus there
exista,b € O4 such thag = aeandf = b. Then

[g] = [ad] = [be] = [beb* f]
andh = beb! is a generalized elementary automorphism. O

Lemma 2.7. The groupTame(Sly) acts transitively on squares. The pointwise
stabilizer of the standard square is the following subgro@ifOy:

S:{(a 0 )‘(xl xz)‘(a’ b’ ), a.a eC, b,b’EC}

b al X3 X4 0 at
- {( b‘l(zxidxl) b(xzicxl)), ab,cdeC, ab# 0}.

Proof. By definition, a square corresponds to vertiegs= [f1], vo = [f1, f2],
vs = [flandv, = [fy, fs] where f = (! £) € Tame(Sk). Thenf -vi = [xy],
f-vo =[x1, %], f-vz=[id]and f -V, =[x, X3]. The computation of the stabilizer
of the standard square is left to the reader. O

Remark 2.8. The squares containing [id] are parametrizedPByx P!, i.e. by
points of the quadri& in Remarkl.14). The parametrization is the following. The
square corresponding tay(( B), (v : 6)) € Pt x P! is shown on Figuré.

[id] [a X1 +B %2, a X3 +p %]

[y X1 +6 X3, ¥ X2 + 6 X4q] [ay X1 +By X2 +ad X3+ 6 X4]

Ficure 5. The square corresponding te ((8), (y : ¢)) € Pt x PL.

We have seen that any elemdnof Tame(SL) defines a big square centered at
[f] (see Figured). We have the following converse result:
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Lemma 2.9. Any2 x 2 grid centered at a vertex of type 3 is the big square associ-
ated with some element ddme(Sly).

Proof. By LemmaZ2.7, we may reduce to the case where the 2 grid contains
the standard square. By Rema8, there exist elementsi( b) and @ : b’) in P*
such that the grid is as depicted on Figére

[xl] [x1,%2] [axi+bx]
o o

[x1.%3] T d]. [axg +bxp, axz+bx]

o o
[ x1+b'x3] [ x1+b' X3, & xo+b'xq]  [U]

Ficure 6. A 2 x 2 grid containing the standard square.

Note thatu = &' (ax + bx) + b'(axs + bXxy) = a(@ xg + b'x3) + b(a’ %o + b’ Xa).
Since the verticesalx + bx] and [@'x; + b’x3] are distinct from k4], we have
bly # 0. We may therefore assume thxt = 1. If we setf; = xq, fo = axg + bx,
f3 = axy + b'xs, f4 = u, we havef, f; — fofs = b/ (X1 x4 — XoX3) = XgX4 — XoX3,
so thatf = (% ;j) € Q4. Finally, our 2x 2 grid is the big square associated with

f. O

Corollary 2.10. The action ofTame(Sle) on the set oR x 2 grid centered at a
vertex of type 3 is transitive.

Proof. By Lemma2.9, any 2x 2 grid centered at a vertex of type 3 is associated
with an elementf of Tame(SL). Therefore, by applyindg to this big square, we
obtain the standard big square. O

The following lemma is obvious.

Lemma 2.11. The (point by point) stabilizer of the standard big squariegroup
(e ) abec.

2.3. Isometries. If f is an isometry of a CAT(0) spack, we define Minf) to be

the set of points realizing the infimum idfx, f(X)). The set Minf) is a closed

convex subset oK (see BH99, p. 229)). If X is a CAT(0) cube complex of finite

dimension, then for any € Isom(X), the set Min€) is non empty (BH99, 11.6,

6.6.(2), p. 231)).

We say thatf is elliptic if inf d(x, f(x)) = O (there exists a fixed point faf),
and thatf is hyperbolic otherwise. The numbéi(f) = inf d(x, f(X)) is called the
translation length of f. Note that in the elliptic case, Miffj is the fixed locus of
f.
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In a CAT(0) space, an isometry is elliptic if and only if one itf orbits is
bounded, or equivalently if any of its orbits is bounded (ERE99, Proposition
11.6.7]). Recall also that for any isometry £(fX) = |k| x £(f) for each integek.

For subgroups, we introduce a similar terminology. Xebe a CAT(0) cube
complex, and” c Isom(X) be a subgroup of isometries acting without inversion
on edges:

e ["is elliptic if there exists a vertex € X that is fixed by all elements i;

e ['isparabolic if all elements of" are elliptic, there is no global fixed vertex
in X and there is a fixed point ifiX;

e ["isloxodromic if I" contains at least one hyperbolic isometry and there is
a fixed pair of points idX.

We we will also use the following less standard terminologie say that an isom-
etry f is hyperelliptic if f is elliptic with Min(f) unbounded. Here is a simple
criterion to produce hyperelliptic elements.

Lemma 2.12. Any elliptic isometry of &CAT(0) space commuting with a hyper-
bolic isometry is hyperelliptic.

Proof. Assume thatf is such an elliptic isometry commuting with an hyperbolic
isometryg. By [BH99, 11.6.2], the set Minf) is globally invariant byg. Sinceg is
hyperbolic, this set is unbounded. O

The following criterion is useful in identifying hyperbolisometries.

Lemma 2.13. Let X be aCAT(0) space, xe X a point, and ge Isom(X). Then
x € Min(g) if and only if x) is the middle point of x and?¢Xx).

Proof. If x € Min(g), it is clear thaty(x) is the middle point ok andg?(x). Con-
versely, assume thaj(x) is the middle point ofx and g?(x). We may assume
furthermore thak is different fromg(x). The orbit of the segmenk][g(x)] forms

a geodesic invariant undgr on whichg acts by translation. Then, one can apply
[BH99, 11.6.2(4)]. m|

2.4. First properties. Sectionl.2on the orthogonal group yields some basic facts
on the square complex:

Lemma 2.14. Assume v, vare two vertices at distance/2 in C, that is v and
V' are opposite vertices of a same square. Then the squareinimgas and V is
unique.

Proof. There are two cases to consider (up to exchangiagdv’):

(1) vis of type 1 and/ is of type 3;
(2) vandyv are both of type 2.

In Case (1), we can assumie= [ Xt X2 ]. Thenv = [f;] with f; € V* an isotropic

vector, and by Witt's Theorem we can assuffae= x;. We conclude by Lemma
1.12that the unique square containmgndV’ is the standard square.
In Case (2), let” a vertex of type 3 that is at distance 1 framandv’. We can

assume that” = [} X ]. Then, there exist linear fornis, I, 17, I, in V* such that
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v =[lg, Izl andVv’ =[], 1%]. In particularv” is the unique vertex of type 3 that is at
distance 1 fronv andv’. Thenv andv' correspond to two totally isotropic planes
in V*, with a 1-dimensional intersection. L&t € V* be a generator for this line.
By Witt's Theorem we can assunfe = x;, and the standard square is the unique
square containing bothandv'. O

Corollary 2.15. The standard square (hence any square) is embeddéxl amd
the intersection of two distinct squares is either:

(1) empty;
(2) asingle vertex;
(3) asingle edge (with its two vertices).

Proof. The first assertion is just the obvious remark that ko] # [X1, X3], hence
the corresponding vertices are distinctin

Assume that two squares have an intersectidferdint from the three stated
cases. Then the intersection contains two opposite vertita square, hence the
two squares are the same by Lem2nb4 O

2.5. Tame(AR ) acting on a simplicial complex. Let K be a field. In this section
we construct a simplicial complex on which the group of tam&morphisms
of AR acts. Our motivation here is twofold. On the one hand we siesld the
definition forn = 2, K = C(x) in the study of link of vertices of type 1 i@. On
the other hand the construction for= 3, K = C is very similar in nature to the
construction ofC, and gives rise to interesting questions about the tamepgobu
C3 (see Sectio$.2.1).

2.5.1. A general constructionFor any 1< r < n, we callr-tuple of components
amap

K" - K'
X=(X1,..., %) = (f1(X), ..., (X))
that can be extended as a tame automorpHisen(fy, ..., f,) of A}. One defines

n distinct types of vertices, by consideringuple of components modulo compo-
sition by an #ine automorphism on the ranges 1,...,n:

[f1ees Bl = A(fr ..y fo) = (@0 (fr,..., fr);a e A

whereA; = GL,(K) < K" is ther-dimensional fiine group.

Now for any tame automorphisnfy(..., f,) we glue a i — 1)-simplex on the
vertices [f1], [ f1, f2], ..., [f1,..., fa]. This definition is independent of a choice of
representative and producesia-(1)-dimensional simplicial complex on which the
tame group acts by isometries.

2.5.2. Dimension 2.Let K be a field. The previous construction yields a graph
Tk. In this section we show th&tk is isomorphic to the classical Bass-Serre tree
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of Aut(AzK). We use the fiine groups:
Ar={t— at+b; ae K* be K};
A, = {(tl,tz) b (@t + bty + caty + bt +¢); (3 f)eGlacc e K}

The vertices of our grapfik are of two types: classes; f; where f;: K2 —
K is a component of an automorphism, and clas&gd1, f;) where (f, fo) €
Aut(AZ). For each automorphisnfy( f;) € Aut(AZ), we attach an edge between
A;f; and Ag(fl, f2) Note thatAg(fl, f2) = Ag(fg, fl), so there is also an edge
between the vertice&y(f1, fo) andA; .

Recall that AutAzK) is the amalgamated product 5 andE, along their inter-
section, wherdc, is the elementary group defined as:

E; = {(xy) = (ax+ P(y),by+c; a,be K*,ce K}.

The Bass-Serre tree associated with this structure censistking cosetsy( f1, f2),
E,(fy, f2) as vertices, and cosetdy N E»)(f1, f2) as edges (we use right cosets for
consistency with the convention f@rk, the classical construction with left cosets
is similar).

Proposition 2.16. The graph7k is isomorphic to the Bass-Serre tree associated
with the structure of amalgamated productﬁojt(Aﬁ).

Proof. We define a map from the set of vertices of the Bass-Serre tree to the
graph7k by taking

Ao(f1, F2) = Ax(fy, f2),
Ea(f1, f2) = Arfo.

Clearlyg is a local isometry. Moreover is bijective, since we can defigel(A; f,)

to beEx(fy, f2) where (fy, f2) is an automorphism. Indeed any other way to extend
f, is of the form &f; + P(f,), f2), and so the clasg,(f;, f2) does not depend on
the extension we choose. O

Remark 2.17. If two verticesA; f1 and A fo are at distance 2 i@, then (fy, f2) €
Aut(AzK). Indeed, by transitivity of the action we may assume thattimtral vertex
is Ao(x,y). Then fori = 1,2 we can writef; = g;x + by + ¢;. Observe thatfg, ;)
is invertible if and only if de( g; E;) # 0. This is equivalent té\; f; # A; fo.

3. GEOMETRY OF THE COMPLEX

In this section we establish Theorémthat is that the compleg is CAT(0) and
hyperbolic. First we study the local curvature of the comtig studying the links
of its vertices.

3.1. Links of vertices. Letv be a vertex (of any type) i@. The link aroundv is
denoted by/(v). By definition this is the graph whose vertices are the westin

C at distance exactly 1 from and endowed with the standard angular metvic:
andv, are joined by an edge of lengthi2 if they are opposite vertices of a same
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square, which necessarily admithas a vertex (seBH99, §1.7.14, p. 102] for
details).

A path P in £(v) is a simplicial map [0nr/2] — £L(v) which is locally injective
(“no backtrack”). We calh thelength of £, and we denot® = vy, ..., Vv, where
Vi is the vertex image dir/2. We say thaP is aloop if vp = v,. By a slight abuse
of notation we will often identifyP with its image inZ(v).

Remark 3.1. Note that any loop in£(v) has length at least 3. Indeed a loop
Vo, V1, Vo Of length 2 in £(v) should correspond to two distinct squares sharing
Vv, Vg andv; as vertices. This would contradict Coroll&2yl5 Similarly there is no
self-loop inL(V).

3.1.1. Vertex of type 1We study the link of a vertex of type 1, and show that its
geometry is closely related to the geometry of a simplicied t

Recall that in§2.5.2we constructed a tregx on which Ath%ZK) acts. We use
this construction in the cad€ = C(f,), wheref; is a component. Without loss in
generality we can assunfe = x;. We note£(x;) instead of£([x1]).

Lemma 3.2. The graph£(x;) is connected.

Proof. Any vertex of £(x;) is of the formv = [x, f,], where f = (% Iﬁ) €
Tame(Sle). Note that the verticesx{, f;] and [x;, f3] are joined by one edge in
L(X1). By Corollary 1.5, f can be written as a composition of elements which are
either equal ta- or which are of the fornﬁ a_ﬁl)% axﬁxl'.jl(xl”“)). Since we have

>

( X1 axp+x1P(x1.x3) )

X1 alx )
alxz

- (a><a+X1P(X1,Xz)
it follows that f or rf is a composition of automorphisms of the form

(Xl a><2+X1P(X1,>%)) or ( X1 a’lxz)
alxg axg+x1 P(x1,%2) :

This gives a path i (x;) from v to either [x1, xo] or [ X1, X3]. O

We define a simplicial map
n: L(X1) = To)

by sending each vertex{, fo] € £L(x) to the vertexA;f, € T¢(y). This defi-
nition makes sense because of Corollary f, is a component of a polynomial
automorphism irxz, x3 with codficients inC(xy).

If (3¢ 2) e Tame(Sk), note thad % ;i] is the middle point in£(x,) of the

edge between;, f,] and [xy. f5], so thatr ([ ¢ 2 ]) = Ax(f2. f3) € Ty

f4

Lemma 3.3. (1) The action o6tab(f1]) on£L(x;) admits the half-edglxi, X2],
[id] as a fundamental domain. In particular, the action is trdivei on ver-
tices of type 2 of’(xy).

(2) Let vV be two vertices of£(x;) and let h be an element &tab(f]).
Then, the equalityt(v) = #(v') implies the equalityr(h(v)) = 7(h(V')).
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Proof. (1) This is again a direct consequence of Corolthfy

(2) We can assume= [xq, Xo], and sov’ = [, X2 + X1P(x1)] for some polyno-
mial P € C[x1]. We can writeh™* = (a)él Xffa) ( 5 Ij ) where (f, f3) € Aut(A,
Thenh(v) = [ax, f2] andh(V') = [ax, T2 + axgP(axy)], so

n(h(v)) = Ao = Ay(f2 + ax P(axy)) = n(h(Vv)). O

Point (2) of the last lemma means that the natural actionaf(@4]) on £L(x1)
induces an action om(£L(x1)) such thatr: £(x1) — 7(L(X1)) is equivariant.

Lemma 3.4. (1) The setr(L(x1)) is a subtree of ¢(x,).
(2) Letw= A;f, and W = A; f3 be two vertices at distance 2 in the image of
n. Then the preimage byof the segment between w antlisva complete
bipartite graph between1(w) and 2~ (w’).

2
<c(><1))'

Proof. (1) Together with the fact thaf(x;) is connected (see Lemn3a2), this is
just the remark that is a simplicial map: If{ %* _f?_) e Stab(f]), then A f, and
A; f3 are at distance 2 in the imagenf

(2) By transitivity of the action of Tame(S).on squares we can assurfze= X,
and f3 = x3. Then any vertex im1(w) has the formv = [xq, %o + X1P(x1)].
Similarly any vertex int~1(w’) has the formv = [xy, X3 + x1Q(x1)]. But then for
any choices oP, Q we remark that

_ ( X1 Xo+X1 P(x1) )
9= (e Q) xa+xaP(xa)+30Q(x1)+x1 P(x1)Q(x1)

is a tame automorphism, heneg/ are linked by an edge ifi(x1), with midpoint
[d]- o

Recall that vertices of type 2 are called horizontal or zaitdepending if they
lie in the orbit of [x1, Xo] or [xy, x3] under the action of STame(3)-

Lemma 3.5. Any loop in£(v1) has even length.

Proof. This follows from the simple remark that the vertices of thed must be
alternatively horizontal and vertical. O

3.1.2. Vertex of type 2 or 3The link of a vertex of type 1 projects to a tree, in
particular this is an unbounded graph. This is completefgdnt for the link of a
vertex of type 2 or 3: We show that both are complete bipagtiéphs.

Proposition 3.6. Let w be a vertex of type 2. Then any vertex of type L({w) is
linked to any vertex of type 3 ifi(v2). In other wordsL(v») is a complete bipartite
graph.

Proof. Let v; (resp.vs) be a vertex of type 1 (resp. 3) ii(v»). By transitivity on
edges, we can assume that= [x;, xo] andvz = [} ¢]. Then ifv; = [f;], we
completef; in a basis {1, f») of Vect(x, xo). By Lemmal.1], there exists a unique
basis 5. f4) of Vect(xs. xs) such thatf = ({* ) belongs to Q. Itis then clear
thatv, andvs are linked in£(v2): v1, v, v3 belong to a same square, as illustrated

in Figure?. O
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Vi s [f1]  va=[x1, %] =[f1,f]

[fl, f3] X1 X2 fi1 fo

V3=l& X4]= fa f4J
Ficure 7. The square containing, Vo, V3.

Proposition 3.7. Let 3 be a vertex of type 3, and let,w;, € £L(v3) be two distinct
vertices (necessarily of type 2). Thefvdv,) = n/2 or = in £L(v3), and precisely:
e either \, v, belong to a same square (which is unique);
e or for any Vj in £(v3) such that @v2, Vv;) = 7/21in L(v3), then ¢, V,,V, is
a path in£(vs).
In particular £(v3) is a complete bipartite graph.

Proof. Without loss in generality we can assume= [ 3} ; |. Thenv, andv, cor-
respond to totally isotropic plan®, W’ in V*, and by Remari.14they correspond
to lines in a smooth quadric surfaceRa.

There are two possibilities:

() The two lines intersects in one point, meaning that theesponding totally
isotropic planes intersect along a one dimensional spactfyg and then
by Lemmat.12we can writev, = [f1, fo, v, = [f1, f3] with ({ 2) € O,

(i) The two lines belongs to the same ruling, and taking edthine in the other
ruling, which corresponds to a verte¥ € £(x1), we can apply twice the

previous observation: first i@, v/, and then t0/’2,\/2’. m|

In the second case of the proposition, the verti¢es,, v; are part of a unique
“big square” (see Figurd): This follows from Lemmal.11

3.1.3. Negative curvature As a consequence of our study of links we obtain:

Proposition 3.8. Let v e C be a vertex. Then any (locally injective) loop in the
link £(v) has length at least 4. In particular the square complaxas non positive
local curvature.

Proof. By Remark3.1 we know that any loop has length at least 3. So we only
have to exclude loops of length 3. Clearly such a loop canxist i the link of a
vertex of type 2 or 3, since by PropositioB$ and3.7these are complete bipartite
graphs: Any loop inf(v) has even length for such a vertex. This leaves the case of
a vertex of type 1, and this was covered by Lengra

For the last assertion seBHI99, 11.5.20 and 11.5.24]. O

3.1.4. Faithfulness. As a side remark, we can now show that the action of Tamg(SL
on the square comple3 is faithful. In fact, we have the following more precise
result:
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Lemma 3.9. The action offame(SLk) on the set of vertices of type 1 (resp. 2, resp.
3) of C is faithful.

Proof. If g € Tame(Slk) acts trivially on vertices of type 3, then by unicity of the
middle point of a segment in a CAT(0) space, it also actsdilivion vertices of
type 2.

Similarly, if g € Tame(SLk) acts trivially on vertices of type 2, then it also acts
trivially on vertices of type 1 (which are realized as midd@ent of vertices of type
2).

So it is suficient to consider the case gf € Tame(Slk) acting trivially on
vertices of type 1. Sincgy, X, andx; + X are components of Tame(l-g must
act by homothety on each of these three lines. This impl@sTtame(Sk) acts by
homothety on the plane Vegi(, x2). Similarly, Tame(Sk) acts by homothety on
Vect(xp, X3) and Vectks, X4). Therefore, there exists a nonzero complex number
such thag = A (% ). Finally, sincex; + x% is a component of Tame($), g acts
by homothety on the line Veot{ + x%). We get? = 1 andg = id. O

3.2. Simple connectedness.

Proposition 3.10. The complex is simply connected.

: fy f
W@=10=¢ | [t ie2)-(eot
[ |

[fa]
[f3.f4] ® [ f3+ 4 P(f2,fa), fa]

A2 =l I il

Ficure 8. Initial situation around the maximal verteK][

Proof. Lety be a loop inC. We want to show that it is homotopic to a trivial loop.
Without loss in generality, we can assume that the imageisfcontained in the
1-skeleton of the square complex, thyas locally injective, and thag(0) = [ 3]

is the vertex of type 3 associated with the identity.

A priori (the image of)y is a sequence of arbitrary edges. By Lemsng we
can perform a homotopy to avoid each vertex of type 1. So novasgeme that
vertices iny are alternatively of type 2 and 3: Precisely for eaci(2i) has type 3
andy(2i + 1) has type 2.

For each vertex = [ f] of type 3 ofC, we define deg := degf. This definition

is nhot ambiguous, since by Lemma2 we know that deg does not depend on
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the choice of representativie Leti be the greatest integer such that ¢€8j) =
max; degy(2j). In particular, we have

degy(2i + 2) < degy(2i) and deg/(2i - 2) < degy(2i).

Let f = ({ ) be such thay(2i) = [f].

By Lemma2.6there exist generalized elementary automorphigressuch that
v(2i — 2) = [eo flandy(2i + 2) = [€¢ o f]. Observe that for any elemeate O4 we
have [f] = [ao f],[eo f] =[aceocaloao fland[g o f] =[ac€ catoao f].
In consequence, by Corollafyl15we can assume that

¢ - (B )
andeis of one of the three forms given in the corollary.

Observe thae = (1728029 %) would contradict that the loop is locally injec-
tive, since the vertex of type 2 just after and just befdiewWould be [f,, f4]. The
casee = (¢ 2128&123) is also impossible: Sinck is not constant, by Lemma
1.4we would get dedi > degf,, degfs > degfs and finally deggo f > degf, a

contradiction. So we are left with the third possibility
e= (X1+x3§(2(x3,X4) X2+X4(X?4(X3,X4)).
3
In particular the vertices of type 2 before and aft€2i) belong to a same square,
as shown on Figur8; and we are in the setting of Lemmiay.

_ f]_ f2 _ f1+f2P(f2,f4) f2
(71| 3 AR [e’°”—_[f3+f4p(fz,f4> 7l

[fa]
[f3,fa] [fa+f4P(f2,f4), fa]

[eof] =

fi+f3Q(fa) f2+14Q(fa) |4 u[Eo€of] =[€0eof]
fs fa [f2+£4Q(fa), fa] N
f3+f4P(f2,14) f4

Ficure 9. Local homotopy in Case (1) € C[ f4].

In each one of the four cases of Lemmd&, we now explain how to perform a
local homotopy aroundff] such that the path avoids the vertex of maximal degree
¥(2).

Consider first Case (1), that @ € C[x4] (see Figure9). Theneo € =
(sorxaPiang 27409, Remark thako € = €” o e, where

& = (xaaPto xQ0w ) %)
is elementary. Thus we can make a local homotopy ixx& grid around f4] such
that the new path goes througvle’ o f]instead of [f]. Since degf, + f4Q(f3)) <
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f f
=6 2] (htg (eon
[ o

[fa]
[fs.fa] [fa+f4P(fs), fa]

[eof]® .
[f2+14Q(f3,T4), Ta] fo+14Q(f3,T4) J
f3+f4P(fs) fa

Ficure 10. Local homotopy in Case (2l € C[ f4].

fi+12P(f2,4) T2

[€0f]=| f51 £4P(f,.fa) m]

[f] [ f2,f4]
. 2

[fs.fa] [Tl [fa+TaP(f2.1a). fa]

[eof] = [Eof] [Eo€/of] =
f1+f3(]?(f3,f4) f2+f4(f?(f3,f4) [f2+f4F€(fZ),f4]l]c B f2+f4f1R(f4)
P(f2,
’ ‘ [f2+ 4 Qfa.fa). T srlPf)

Ficure 11. Local homotopy in Case (3).

degf,, we have dego € o f < deg€e o f. Recall also that degf o f < degf. So
we get
degleo € o f] < degf o f] < deg]f].

Case (2) is analogous to Case (1) (see Fidye

Consider Case (3): see Figurg There exist®(xs) € C[x4] such that degf, +
f4R(fs)) < degfa. Seté'= (440 x22uR) ) We have:

éO f — ( f1+f?3R(f4) f2+f4f14R(f4)) .

By LemmaA.8, the inequality dedgt + f4R(f4)) < degf, is equivalent to any of
the following ones: ded{ + f3R(f4)) < degf; and degee f < degf. So we get

degfo f] < deg|f].

We conclude by applying Case (1) to the path fr@amf[J to [€ o f] passing through
[f].

Case (4) is analogous to Case (3) (see Fiddje

The result follows by double induction on the maximal degied on the num-
ber of vertices realizing this maximal degree. O
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[f] [ f2, fa] [€of]
|

[f3,fa] [fa]

O [ f3+f4P(fo, f4), 4]
\ [e(lo f]

[eof]

| S ———
[f2+12Q(fa\a). fal N[5+ f4R(fa), Ta]

f2+14Q(f3,14)
f3+f4R(fs) fa

Ficure 12. Local homotopy in Case (4).

We obtain the first part of Theoref:
Corollary 3.11. Cis aCAT(0) square complex.

Proof. Using Proposition8.8and3.10 this is a consequence of the Cartan-Hada-
mard Theorem: sed8H99, Theorem 5.4(4), p. 206]. O

3.3. Hyperbolicity. We investigate whether the compléxcontains largen x n
grid, that is large isometrically embedded euclidean sgialWe start with the
following result, that shows that¥ 4 grids do exist but are rather constrained.

Lemma 3.12.1f N, S, E, W are polynomials in one variable, then we can construct
a4x4gridin C as depicted on Figuré3. Moreover, up to the action Game(Slk),
any4 x 4 grid in C centered on a vertex of type 3 is of this form.

Proof. Consider a 4 4 grid centered on a vertex of type 3. By Lem&aQ we
may assume that the:>2 2 subgrid with same center is the standard big square
(Figure 3). By Lemma2. 6the upper central vertex of type 3 is of the forr,[
where f = (4 1xNpus) xeNpux) ) € Eas for some polynomiaN - for North -
in C[x1, X2]. Similarly there exist elementary automorphisms of otlypes asso-
ciated with polynomialss, E, W, whicha priori are polynomials in 2 variables, as
depicted on Figur&3. But now the upper left square in Figut8 exists if and only
" ( X1 X+ X1 W(Xq,X3) )

X3+X1 N(X1,%2)
is an automorphism. In particular, the Jacobian deternmimarst be equal to 1, so
that §% &% = 0, i.e. W or N is in C[x;]. Up to exchangingc, andxs (that is up to
conjugating by the transpose automorphism), we can asSurm&[x;]. Then by
using the same argument in the three other corners we dbtaii[x3], E € C[X4]

andN € C[xz]. O
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X1 Xo+X3 W X1 X2
x3+XIN  Xg+Xo N+xaW+x; NW X3+Xx1N(x2) Xa+x2N(X2)
| L L
| = f2
_[m+x1N f4+foN
[x] [xa]
[x1.x2]

X1 X2+X1W(X1)]:[X1 fz]. . . X1 +X2E(Xg) X2
X3 X4+X3W(X1) X3 f4 [X1,X3] [§1 ;i [%2,%4] X3+ X E(x) X4
3

[x3.%4]
[xa] [xa]
| L o

X1+X3S(X3) X2+X45(X3)]
X3 X4

Ficure 13. 4x 4 grid associated with polynomiald S, W andE.

Now we show that arbitrary large grids do not exist. In paitic flat disks
embedded i are uniformly bounded.

Proposition 3.13. The complexC does not contain ang x 6 grid centered on a
vertex of type 1.

Proof. Suppose now that we have suchyeBgrid. By Lemma3.12we can assume
that the lower right 4 4 subgrid as the form given on Figut8. Then we would
have a lower left 4« 4 subgrid centered on the vert{a% E] where we denote
f2 = xo+ x1W(Xx1) and fs = x4 + XxsW(X1). With the same notation, the center of the
upper left 4x 4 subgrid can be rewritten %%f}(l,\, fAJf%ZN ] Then again by Lemma

3.12we should havé\ € C[x1] or N € C[ f], in contradiction withN € C[x2]. 0O

We obtain the last part of Theorefm
Corollary 3.14. The complex is hyperbolic.

Proof. Since the embedding of the 1-skeleton®finto C is a quasi-isometry,
it is suficient to prove that the 1-skeleton is hyperbolic (sB&199, Theorem
I11.H.1.9]). Considerx, y two vertices, and define the interyit, y] to be the union
of all edge-path geodesics fromto y. Then[x,y] embeds as a subcomplex of
7? ([AOS12 Theorem 3.5]). Since there is no large flat grid in the compleit
follows that the 1-skeleton @f satisfies the “thin bigon criterion” for hyperbolicity
of graphs (seeWis12 page 111],Pap93y). O
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4. AMALGAMATED PRODUCT STRUCTURES

There are several trees involved in the geometry of the caxr(pl We have
already encountered §8.1.1the tree associated with the link of a vertex of type 1.
We will see shortly in§4.2 that there are trees associated with hyperplanes in the
complex, and also with the connected components of the @maits of two fam-
ilies of hyperplanes. Atthe algebraic level this trandatto amalgamated product
structures for several subgroups of Tame(Sisee Figurel4 for a diagrammatic
summary of the products studied in this section.

4.1. Stabilizer of [x1]. Inthis section we study in details the structure of Sta)[
First we show that it admits a structure of amalgamated mtodihen we describe
the two factors of the amalgam: the grodp in Proposition4d.5andH> in Propo-
sition 4.9. We will show in Lemma&4.8that H, is itself the amalgamated product
of two of its subgroup¥; andKj; (see Definitiord.7) along their intersection. It
turns out thatH,; N Hy, = Ky, Therefore, the amalgamated structure of Staby|
given in Propositiort.1 can be “simplified byK,". This is Lemma4.11

4.1.1. A first product. Recall from §3.1.1 that there is a mag from the link
L([x1]) to a simplicial tree. In this context it is natural to inthace the follow-
ing two subgroups of Stab({]):

e The stabilizeH; of the fiber ofr containing [id].

e The stabilizeH, of the fiber ofr containing K1, X3].

Proposition 4.1. The groupStab(j;]) is the amalgamated product of;knd H
along their intersection:

Stab(ki]) = Hi #nynn, Ho.
Proof. Consider the action of Stab{[]) on the image ofr, which is a connected
tree by Lemmé&3.4. By Lemmag3.3, a fundamental domain for this action is the
edgeAu(x, X3), A1x3. By a classical result (e.g.Spr77al.4.1, Th. 6, p. 48)])
Stab(jx1]) is the amalgamated product of the stabilizers of thesevevtices along
their intersection: This is precisely our definitiontéf andH,. O

4.1.2. Structure of H. If Ris a commutative ring, we put
BR =(51)NGLa(R) ={(38);adeR, beR].

For exampleB(C[x)]) = {(3 8). a.d e C*, be C[x]}.
We also introduce the following three subgroups of(&L[x1]):

e The groupM; of matrices(§ 2. )and( 2. §),beC*;

o The groupM, of matrices ) “74%)), b e C*, P e C[xy];
e The groupM generated by, and M.

The following result is classical (se8ér77aTheorem 6, p. 118]).

Theorem 4.2(Nagao) The groupGL»(C[x;]) is the amalgamated product of the
subgroupsGL,(C) and BC[x1]) along their intersection B&):

GL2(C[x1]) = GL2(C) *g(cy B(C[x4]).
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SinceM; N B(C) = {(§ 1) b e C*} is independent of, the following result is

a consequence o08er77aProposition 3, p. 14]:
Corollary 4.3. The group M is the amalgamated product of &hd M, along their
intersection:

M = My #mynm, Mo

Remark 4.4. We did not find any simpler definition d¥l. Let ev: GLy(C[x1]) —
GL>(C) be the evaluation at the origin. One could check tas strictly included
into ev-(My).
Proposition 4.5. The group H is the set of automorphisms=f ( g fz
there exists & C*, Ae M and P, P, € C[x;] satisfying:
f P

fi=an (£)=AG)+(ir)-

In particular Hy is generated by the matrices

()2, bxﬁxlp(xll)_."”le(xl)),a, beC*, P,QeC[x] and 7= (} ).

) such that

Proof. By definition, Hy is the set of elements = ( ! ) of Stab(f,]) such that

(f2, f3) induces anfiine automorphism Q&é(xl). By Corollary1.5, (fo, f3) defines

an automorphism oAé[Xﬂ. The linear part of this automorphism corresponds to

the matrixA. The form of the translation part comes from the fact thatelaynent

of Tame(Sl,) is the restriction of an automorphism ©f fixing the origin.
Conversely, we must check that any elemént (g :‘:21) of the given form

defines an element of Tame(gLThis follows from the definition oM. O

The following lemma gives a condition under which the amalgted structure
of a groupG = G; #a Gy is extendable to a semi-direct prodi@s«, H.

Lemma 4.6. Let G = G; xa G, be an amalgamated product, where,G, and
A are subgroups of G such that:AG1 N G,. Assume thap: H — Aut G is an
action of a group H on G, which globally preserves the subgsoG;, G, and A,
then we have:

GxH = (G1 = H) #a.n (G2 < H).

Proof. We may assume that all the groups involved in the statemerddrgroups
of the groupK := G x H and thatH acts onG by conjugation, i.e¥he H, Vg €
G, ¢(h)(g) = hgh. SetK; = G1H, K> = GoH andB = AH (sinceGy, G, andA
are normalized by, the setK,, K, andB are subgroups df).

We want to prove thak = Ky g Ko.

For this, we must first check thit is generated b¥; andK». This is obvious.

Secondly, we must check thatvif = uju,...u, is a word such thaty, ..., U
belong alternatively td&; \ K, andKj \ K1, thenw # 1.

Assume by contradiction that = 1. Write u; = gjh;, whereg; belongs to
G1 U Gz andh; belongs toH. Setg; = 01, g/ = (he...hi)gi(hy...h_g)™ for
2<i<randh=hy...h,then we have

w=(g;...9)h
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Sinceg; ...g = hleGnH = {1}, we getg;...gr = 1. We have obtained a
contradiction. Indeed/ := g ... gy is a reduced expression Gf xa G2 (meaning
that theg; alternatively belong td; \ Gz andG; \ Gy), so that we cannot have
w =1. O

Definition 4.7. We introduce the following two subgroups ldf:
e The groupK; of automorphisms of the form

axy bxo+x1 P(x1) axy bxs+x1 P(x1) ® .
(b‘1>@,+le(xl) ) or (b‘1Xz+X1Q(X1) ),a, beC’, PQeCha]

e The groupK, of automorphisms of the form

axg bxe+x1 P(X1)X3+%1 Q(X1) *
(bt R ).abeC’, P.QReC[x].

Lemma 4.8. The group H is the amalgamated product ofikand K, along their
intersection:
Hi = Ky #k;nk, K2

Proof. SinceHy is the semi-direct product @ := {h = (% [2) € Hy, hy = X}

andH := {(a)g1 a_ﬁzm), a e C*}, it is enough, by Lemma4.6, to show thaG is the
amalgamated product &7 := K1 N G andG; := K, N G along their intersection.

Now consider the normal subgroup®f whose elements are the “translations”:

T:= {(mx)l(b(xl) X2+X.1.~P(Xl) ) P.Qe C[Xl]}'

Note thatG; andG, both containT. It is enough to show thds/T is the amalga-
mated product o61/T andG,/T along their intersection.

This follows from Corollary4.3. Indeed, the natural isomorphism frd&'T to
M sendsG;/T to M;. O

4.1.3. Structure of H.
Proposition 4.9. The group H is the set of automorphisms of the form
(bt oy E7P09%)) @ b e, PeClx,xg]. Qe Clxl.

b~1x3+x1 Q(%1)
Proof. The proof is analogous to the one of Propositths. The elementf =
(g ;i) of Stab(i]) belongs toH; if and only if (fo, f3) induces a triangular au-
tomorphism ofAé(Xl). This implies the existence @ € C*, a,y,d € C[x1] and
B € C[X1, X3] such that
fl = axy, f2 = axy +,3, f3 =vYX3 + 0.

Since (f2, f3) defines an automorphism Afé[xl], its Jacobian determinanty is a

nonzero complex number. This shows thaindy are nonzero complex numbers.
Replacingx; by 0 in the equatiorf; f4 — f2f3 = X X4 — XoX3, We get:
(axz + B(0, X3))(yX3 + 6(0)) = XoX3.

Therefore, there exists € C* such thatr = b, y = b~ and we haves(0, x3) =
6(0) = 0. The result follows. O

As a direct corollary from Propositions5and4.9we get:
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Corollary 4.10. The group K is equal to the intersection +1 Ho.

4.1.4. A simplified product.Finally we get the following alternative amalgamated
structure for Stabg]) (See Figureld):

Proposition 4.11. The groupStab(]) is the amalgamated product of,land H
along their intersection:

Stab(f]) = Ky #k,nH, Ha.

Proof. By Proposition4.1, Lemma4.8 and Corollary4.10, the groupsK; and
H, clearly generate Stab{({]). To obtain the amalgamated product structure it
is enough (using conjugation) to show that any word

w=aib;...aby, (l)

with g; € K1\ Hy andb; € Ho\ Ky is not the identity. St :={i € [1L,r]; b € H1}.
Write | (which may be empty) as the disjoint union of intervals

I = [[il’ Jl]] Uu...U [[is, jS]],

wherej; +2 <y, ..., Js1 + 2 < is. Then, for each intervdliy, jk1, set

a{( = a;kbik ... ajkbjkajk+1, (2)
where we possibly take,.1 = 1 in casea .1 appears in the formula. Since the
elementdy,, ..., bj belong toH; N Hy = Ky, they also belong t&; \ K;. Since
the elements,, ..., a; belong toK; \ Ho = K; \ Ky andaj,,1 € Ki, we get
a, € H1\Kz by Lemma4.8. SinceH; \ Ky = Hi\ Hy, it follows thata, € Hy\ Ho.
For 1 < k < s, make the substitution given b@)(in (1). Then, observe that all
letters appearing in this new expressionnofuccessively belong th; \ H» (the

lettersa; or &) or toH, \ Hy (the letterdy;, i ¢ I). We obtainw # 1 by Proposition
4.1 o

Alternatively, Propositiort.11follows from the following remark. Le, By, B
andC be four groups and assume that we are given three morphisgioaps:
C - A, C - B; andB; — By. Then, we have a natural isomorphism

(Axc By) *B, B2 = Axc Bo.

This isomorphism is a direct consequence of the universgigoty of the amalga-
mated product (e.gJer77al.1.1]).

4.2. Product of trees. Following [B’sgq we construct a product of trees in which
embeds the compleg.

Recall that ehyperplane in a CAT(0) cube complex is an equivalence class of
edges, for the equivalence relation generated by declariogdges equivalent if
they are opposite edges of a same 2-dimensional cube. Wefydeyperplane
with its geometric realization as a convex subcomplex offitlsé barycentric sub-
division of the ambient complex: consider geodesic segsieetiween the middle
points of any two edges in a given equivalence class. B&€LP, §2.4] or [Bé99
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§3] (where hyperplanes are named hyperspaces) for altesreduivalent defini-
tions.

In the case of the compleaX, hyperplanes are 1-dimensional CAT(0) cube com-
plexes, in other words they are trees. The action of STamg(&@k the hyper-
planes ofC has two orbits, whose representatives are the two hypeplgmough
the center of the standard square. We call them horizontantical hyperplanes,
in accordance with our convention for edges (see Definiidh We define the
vertical tree 7y as follows. We callvertical region a connected component of
C minus all vertical hyperplanes. The vertices7qf correspond to such vertical
regions, and we put an edge when two regions admit a commarpigpe in their
closures. Thénorizontal tree 7y is defined similarly.

We denote byry: C —» 7y andny: C — Ty the two natural projections. Any
elementf € STame(Sk) induces an isometry ony and on7, which we denote
respectively byr,(f) andzy(f).

Lemma 4.12. Let f be an element iBTame(Sk). Then f is elliptic orC if and
only if f is elliptic on both factorsy and 7.

Proof. If x € C is fixed, thenmy(x) andry(x) are fixed points for the induced
isometries on trees.

Conversely, assume thay € 7y andxy € 74 are fixed points for the action of
f. Thenx = (xv,Xn) € Tv X TH is a fixed point in the product of trees. Consider
d > 0 the distance fronx to C, and consideB C C the set of points realizing
this distance. This is a bounded set (because the embe@dingy x T4 is a
guasi-isometry), hence it admits a circumcenter which roagtxed byf. O

Lemma 4.13. Let f be an elliptic element i8Tame(Sk). Then f is hyperelliptic
on(C if and only if f is hyperelliptic on at least one of the factarg or 7.

Proof. Assumef hyperelliptic, and lety()i~o be a sequence of fixed points of
such that lim.,. d(Yo,Y;) = oo. Then one of the sequencdéry (o), mv(Y;)) or
d(my(Yo), mH(Yi)) must also be unbounded.

Conversely, assume thétis hyperelliptic on one of the factors, say 9g. Let
(2)i>0 be an unbounded sequence of fixed point&yn Then for each, n\‘,l(a)nC
is a non-empty convex subset invariant undlerin particular it contains a fixed
pointy; of the elliptic isometryf. The sequencey)i-o is unbounded, henckis
hyperelliptic. O

The vertical elementary group Ey is the stabilizer of the vertical region con-
taining [x¢]. The vertical linear group Ly is the stabilizer of the vertical region
containing [id]. We can similarly define horizontal groups andLy, by consid-
ering the stabilizers of horizontal regions containingshene vertices.

Proposition 4.14. The groupSTame(Sk) is the amalgamated product of,Eand
Ly along their intersection &N Ly. The same result holds for{zand Ly:

STame(Sk) = Ev *gynLy Lv = EH *EynLy LH.

Proof. An edge in7y corresponds to a vertical hyperplane. Since STamg(SL
acts transitively on vertical hyperplanes, we obtain thedr8e(SL) acts without
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inversion, with fundamental domain an edge, on the frge Hence STame(Sl)
is the amalgamated product of the stabilizers of the vestafean edge, which is
exactly our definition oy andLy. O

We denote by SStab(]]) the group Stab¢f;]) N STame(Sk). Remark that
Stab(jx1, X2]) and Stab(ky, x3]) are already subgroups of STamefsL

Proposition 4.15. The group k is the amalgamated product &Stab(k;]) and
Stab(x1, X3]) along their intersectiorStab(j.], [X1, X3]).

The group b, is the amalgamated product Stab(f;, x2]) and SO, along their
intersection.

Similar structures hold for g and Ly.

Proof. Let R be the vertical region containingq]. To prove the assertion for
Ev, it is suficient to show thaEy acts transitively on vertical edges contained
in R (clearly it acts without inversion). But this is clear, sn§Tame(Sk) acts
transitively on vertical edges between vertices of typed 2n

The proofs of the other assertions are similar. O

In turn, the groufEy N Ly admits a structure of amalgamated product.

Proposition 4.16. The group ENLy is the amalgamated product of the stabilizers
of edgesStab(fx1], [ X1, X2]) and Stab(fx1, x3], [id]) along their intersection S.

Proof. The groupEy N Ly acts on the vertical hyperplane through the standard
square, which is a tree. Since STamef{Bacts transitively on squares, the funda-
mental domain of the action is the standard squareEamulLy, is the amalgamated
product of the stabilizers of the horizontal edges. O

On Figureld we try to represent all the amalgamated product structhissate
have found in this section. By a diagram of the form

A/G\B
N,/

with the four edges of the same color we mean (& the amalgamated product
of its subgroupsA and B along their intersectio®© = AN B. For example, on
the left hand side of Figuré4, we see that StalbX{]) admits two structures of
amalgamated productsl #p,nn, H2 andKy #k,nH, H2 (See Propositiond.1and
4.11).

We are now in position to prove that the groups Ta{@i&) and Tame(Sk) are
isomorphic. We use the following general lemma.

Lemma4.17. Let G= Axang B be an amalgamated product agd G’ — G be a
morphism. Assume there exist subgroupBAin G’ such that G = (A’, B’) and
such thaty induces isomorphisms’ A~ A, B = Band AN B’ = AN B. Then
@ is an isomorphism.
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Proof. By the universal property of the amalgamated product, thharaamor-
phismsya: A — G’ andyg: B — G’ give us a morphisng: G — G’ such that
p oy =idg. Itis clear thaty is an isomorphism, so thatalso. O

Recall that we have a natural morphism of restricyi;onAutq(C“) — Aut(SLy).
We denote byr the induced morphism on Tara(é‘}“).

Proposition 4.18. The mapr: Tam%(c“) — Tame(Sk) is an isomorphism.

Proof. Clearly the group Tamféc"') contains subgroups isomorphic (via the re-
striction map) toH,, Ky, Ky, Eﬁ and Q. By Lemma4.17 applied to the vari-
ous amalgamated products showed in Figldewe obtain the existence of sub-
groups in Tamg(C?) isomorphic to Stabg]), Ev, Ly and finally Tamg(C*) =~
Tame(Sl). O

Remark 4.19. By [LV13], any non-linear element of Tame(gLadmits an ele-
mentary reduction (see Theordn8). However, even if the groups Tame(Sland
Tameﬁ@“) are naturally isomorphic, we cannot deduce at once thahalogous
result holds for Tamf{c"'). Such a result is the aim of the Annex (see Theorem
A.l).

We recall that an elemerff of C[SL;] is called a component if it can be com-
pleted to an element = (g Ij) of Tame(Sly) (see§2.1). In the same way, an
elementf; of C[xy, X, X3, X4] Will be called a component if it can be completed
to an element of Tarraqec“). In the same spirit as Propositignl8 we show the
following stronger result.

Proposition 4.20. The canonical surjection

C[x1, X2, X3, X4] — C[SL2] = C[Xq, X2, X3, X4]/(q — 1)

induces a bijection between the componeni§[&f, X, X3, X4] and the components
of C[SLz].

Proof. We can associate a square compiexo the group Tam-gc“) in exactly
the same way we associated a completo Tame(Sk) in §2.1. The canonical
surjection, alias the restriction map, defines a continuoap p: ¢ — C. One
would easily check that is a covering (the verification is local), so that the simple
connexity ofC (Proposition3.10) and the obvious connexity of implies thatp is

a homeomorphism. In particulap,induces a bijection between vertices of type 1
of C andC. Assume now that, v are two components @f[ X1, Xo, X3, X4] such that
u=v mod @-1). The verticesd mod (- 1)] and v mod (- 1)] of C being
equal, the vertices)] and [v] of C are also equal. This implies that= Au for some
nonzero complex numbet. Sinceu andv induce the same (nonzero) function on
the quadric, weget=1,i.e.u=. m|
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5. APPLICATIONS

In this section we apply the previous machinery to obtainbasic results about
the group Tame(S): the linearizability of finite subgroups and the Tits afiztive.

5.1. Linearizability. This section is devoted to the proof of Theor@nfrom the
introduction, which states that any finite subgroup of TeBhe) is linearizable.
This is a first nice application of the action of Tamegybn the CAT(0) square
complexC.

The following lemma will be used several times in the prooheTidea comes
from [Fur83 Proposition 4]. In the statement and in the proof, we usa#teral
structure of vector space on the semi-group of applicatains vector spac¥/,
given by @f + g)(v) = Af(v) +g(v) forany f,g: V - V,1€C,ve V.

Lemma 5.1. Let G be a group of transformations of a vector space V thatiesdm
a semi-direct product structure & M < L. Assume that M is stable by mean (i.e.
for any finite sequence .., m; in M, the mean% Yjmisin M) and that L is
linear (i.e. LC GL(V)). Then any finite subgroup in G is conjugate by an element
of M to a subgroup of L.

Proof. Consider the morphism of groups

p:G=MxL-—>L
g=mol{

For anyg € G we haveg(g)™t o g € M. Given a finite groug” C G, define
m = ﬁ 2ger ¢(g)~! o g. By the mean propertyn € M. Then, for eachf € T, we
compute:

1

mo f = —
Tl

Dle@ ™t ogof

gell

D URTOREIC LTS
gell

=¢(f)om.

HencemI'm™? is equal top(I"), which is a subgroup df. O

As a first application, we solve the problem of linearizationfinite subgroups
in the triangular group of Auff"). Recall thatf = (f1,..., ;) € Aut(C") is
triangular if for eachi, fi = gjx + P; whereP; € C[X41, ..., Xn].

Corollary 5.2. LetI’ € Aut(C") be a finite group. Assume thBties in the trian-
gular group ofAut(C"). ThenI is diagonalizable inside the triangular group.

Proof. Apply Lemmab5.1by takingG the triangular group.,. the group of diagonal
matrices andM the group of unipotent triangular automorphisms, that il
a =1 |
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Proof of TheorenB. LetT be a finite subgroup of Tame(gL The circumcenter
of any orbit is a fixed point under the action Iof thereforel” also fixes a vertex.
Up to conjugation, we may assume tidixes [id], [X1, Xa] or [X1].

If T fixes [id], this means thdf is included into Q: There is nothing more to
prove.

If T fixes [x1, X3], recall that Stabffy, Xs]) = E2 = GL, (Lemma2.3). We con-
clude by Lemma.1, using the natural embedding Stat([xs]) — Aut(C?*).

Finally, assume thdt fixes [x1]. The group Stab]) being the amalgamated
product of its two subgroupi§; andH, along their intersection (see Lemmd.l),
we may assume, up to conjugation in Stab|), thatI" is included intoK; or Hy
(e.g. Ber77al.4.3, Th. 8, p. 53)).

By forgetting the fourth coordinate, the groka may be identified to the sub-
groupK; of Aut(A3) whose elements are of the form

(axg, bxo+ax P(x1), b xa+ax Q(x1)) or (ax:, b txg+axiQ(x1), bxo+ax P(xy)).
Then we can apply Lemntal, using the embedding; — Aut(C3) and the semi-
direct productk; = M =< L, where

M = {(X1, X2 + X1P(x1), X3 + x1Q(x1)) ; P, Q € C[x1]};

L = {(axs. bxo. b™xs) or (axg, b 'xs, bx,); abeC}.

Similarly, the grougH, may be identified to the subgroup of triangular automor-
phisms of Aut(C3) whose elements are of the form

(X1 Xa. X2) > (@0, b7xg + x1Q(x1). b + X1 P(x1. Xg))
Then we can apply Corollary.2 O

5.2. Tits alternative. A group satisfies th&its alternative (resp. theweak Tits
alternative) if each of its subgroups (resp. finitely generated subgpidsatisfies
the following alternative: EitheH is virtually solvable (i.e. contains a solvable
subgroup of finite index), ol contains a free subgroup of rank 2.

It is known that AutC?) satisfies the Tits alternativeLgmO01], [Bis04), and
that Bir(P?) satisfies the weak Tits alternativeCgn1]). One common ingredient
to obtain the Tits alternative for Tame(§Lor for Bir(P?) is the following result
(see Pinl2, Lemma 5.5]) asserting that groups satisfying the Titgadteve are
stable by extension:

Lemma 5.3. Assume that we have a short exact sequence of groups:
1-A->B—->C-—>1,

where A and C are virtually solvable (resp. satisfy the Titeraative), then B is
also virtually solvable (resp. also satisfies the Tits altgive).

We shall also use the following elementary lemma about beha¥ solvability
under taking Zariski closure.

Lemma5.4. Let A2 B be subgroups dL,.
(1) We havdA: B] <[A: B];
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(2) We have BA) c D(A);
(3) If Ais solvable, ther also; B
(4) If Alis virtually solvable, ther also.

Proof. (1) If [A : B] = +o0, there is nothing to show. If4 : B] is an integem,
there exist elementa, .. ., a, of A such thatA = | J; aB. By taking the closure,
we obtainA = | J; & B and the result follows.

(2) Fix an elemena of A. For any elementh of A, the commutatord, b] belongs
to the closureD(A) of the derived subgroup ok. This remains true if we only
assume thalb belongs toA. Now we fix an elemenb of A. For any elemena of
A, we have & b] € D(A). This remains true if we only assume tlagtelongs toA.

(3) There exists a sequence of subgroups of Slch that

A=A)2A;12---2A,={1} and D(A) < A, foreachi.
By the last point, we immediately obtain
A=Ro2A;2---2A,={1} and D(A)cA, foreachi.
(4) This is a direct consequence of points (1) and (3). O

We apply now the following general theorem by Ballmann émiiatkowski
[BS99 Theorem 2].

Theorem 5.5. Let X be an d-dimensional simply connected foldable culsicain-
ber complex of non-positive curvature ang Aut(X) a subgroup. Suppose thiat
does not contain a free nonabelian subgroup acting freel)Xoifhen up to pass-
ing to a subgroup of finite index, there is a surjective homguiism h ' — ZK
for some ke {0, ..., d} such that the kerned of h consists precisely of the elliptic
elements of" and, furthermore, precisely one of the following three ubtes
occurs:

(1) T fixes a point in X (then k 0).

(2) k > 1 and there is al-invariant convex subset E X isometric to k-
dimensional Euclidean space such thafixes E pointwise and such that
I'/A acts on E as a cocompact lattice of translations. In paragul fixes
each point of Eco) C X(c0).

(3) T fixes a point of Xx), butA does not fix a point in X. There is a sequence
(Xm) iIn X which converges to a fixed pointldin X(co) and such that the
groupsAp = A N Stabg,) form a strictly increasing filtration of\, i.e.
An & App1 andJ A = A

In our situation, the result translates as

Corollary 5.6. LetT" ¢ Tame(Sl;) be a subgroup which does not contain a free
subgroup of rank 2, and consider the derived gratip= D(I'). Then one of the
following possibilities occurs:
(1) 17 is elliptic.
(2) There is a morphism:h”" — Z such that the kernel of h is elliptic or
parabolic.
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(3) I'” is parabolic.

Proof. By Lemma2.1the complexC admits four orbits of vertices under the action
of STame(Sk), which are represented by the four vertices of the stansigudre.
This implies thatC is foldable. ThusC satisfies the hypothesis of Theorénb
with d = 2. Furthermore, since by Propositi8r3C does not contain a Euclidean
plane, we must have= 1 in case (2). Now we review the proof of the theorem in
order to see where it was necessary to pass to a group of fidi&.i The argument

is to project the action di” on each factor, and to use the classical fact that a group
that does not contain a free group of rank 2 and that acts oaeaidrelliptic,
parabolic or loxodromicRV9]]. In the loxodromic case, in order to be sure that
the pair of ends is pointwise fixed, in general we need to tadkgbgroup of order

2. But in our casd” is a derived subgroup hence this condition is automatically
satisfied. O

Now we are essentially reduced to the study of elliptic an@lpalic subgroups
in Tame(Sly).

Proposition 5.7. Let A € Tame(SLk) be an elliptic subgroup. Theh satisfies the
Tits alternative.

Proof. e If the globally fixed vertew is of type 1, we may assume that [xq].
The stabilizer Stabg]) of v is equal to the set of automorphisnis= (% ;i)

such thatf; = ax; for somea € C*. The natural morphism of groups:
Stab(]) — C*, (3¢ 2)—a

is surjective. By Corollaryl.5, its kernel is a subgroup of Ag,) C(X1)[X2, X3].
By [LamO7]], Autc C[xo, X3] satisfies the Tits alternative, but the proof would be
analogous for Aut K[Xp, x3] for any field K of characteristic zero. Therefore,
Lemmab.3shows us that Stab({]), hence alsa@\, satisfies the Tits alternative.

o If the vertexv is of type 2, we may assume that= [x;, X3]. The stabi-
lizer Stab(k,, x3]) of vis equal to the set of automorphisrs= (% Ii) such that
Vect(f1, f3) = Vect(xy, x3). By Lemma2.3, the natural morphism

Stab(f. xs]) — Aut(Vect(a. x3)) = Gla, (1t )+ (fu. o)

is surjective, and its kernel is the groE@. The group Gk is linear, hence satisfies
the Tits alternative and the gron!ﬁj is abelian. Therefore, by Lemn&a3the group
Stab(jx, X3]) satisfies the Tits alternative.

o If the vertexv is of type 3, we may assume that [ %2 ]. The stabilizer of/
is the orthogonal group Hwhich is linear hence satisfies the Tits alternativen

Proposition 5.8. LetA € Tame(SLk) be a parabolic subgroup. Thexis virtually
solvable.

Proof. The case of a parabolic subgrotgorresponds to Case (3) in Theorérb,
from which we keep the notations. We may assume that all pajptare vertices
of C (replacexqy by one of the vertices of the cell containing,). For eachm,
consider the geodesic segm@&at joining Xm t0 Xme1. Let Uy, be the union of the
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cells of C intersectingSy,,. Take Sy, an edge-path geodesic segmentCgbining
Xm 10 Xmy1 included intoUr, such thatSy, ¢ S/, for all m. By considering the
sequences of vertices on the succesSije we obtain a sequence of verticgs

i > 0 such that:

e The sequenca, is a subsequence gf,
e Foreach > 0, d(y;, Yi+1) = 1.

For eachm > 0 we set
A=AN ﬂ Stabg;).

i>m
By construction the\, form an increasing filtration oh. For 1< j < 3, letX;
be the set of integelissuch thaly; is a vertex of typg. One of the three following
cases is satisfied:

a) X1 andXs are infinite;
b) X; is infinite andXs is finite;
c) X is finite andXs is infinite.
In case a), there exists an infinite sub&aif N such that for ala € A, the ver-
ticesya, Ya+1, Yar2 are of type 12, 3 respectively. Note thatthe group(\  Stabg;)

. . a<i<a+2
is conjugate to the group

S = Stab(fi]) N Stab(fi, x]) N Stab([id])

which is the stabilizer of the standard square. Recall framina2.7 that

S= {( b—l()zxidxl) b(xztcxl)), ab,cdeC, ab# 0}

and so the second derived subgroupSofs trivial: D»(S) = {1}. Therefore,
D2(A7) = {1} for eacha € Aand sinceA = |J A}, we getDy(A) = 1.
acA
In case b), changing the first vertex we may assumexhat 0, that the vertices
Yo of even indices are of type 2 and that the vertigges, of odd indices are of type
1. Note that the group N Staby;) is conjugate to the group

2a-1<i<?2a+l

E2 = Stab(fu]) N Stab(f, xs]) N Stab(ks]).

By Lemma2.6we have

=2 _ J{ax b lxp+axiP(x,x3) \. *
E2 = {( b b art ) ) abeC, PeClx, Xs]}

and thusD, (E3) = (1). Therefore;

he 1 = 1 and finallyDp(A) = 1.

In case c), we may assume thét = 0, that the verticegy; of even indices are
of type 2 and that the vertices;,; of odd indices are of type 3. Note that the group
(\  Stab§,) is conjugate to the group

2a<i<2a+2

Stab(f, %2]) N Stab([id]) N Stab(fs, xa]) ~ GL.
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Up to passing again to the derived subgroup, we can assuralltiag are con-
jugate to subgroups of SLwhere Sk, is identified to a subgroup of SQvia the
natural injection Sk — SOy, (28) - (28)- (3§ ). Since Sk satisfies the
Tits alternative, allA,, which by hypothesis do not contain free subgroups of rank
2, are virtually solvable. By Lemm?&.4, the Zariski closure\, is again virtually
solvable.

If Ay is finite for all n, since there is only a finite list of finite subgroups of,SL
which are not cyclic or binary dihedral, we conclude thatAgllare contained in
binary dihedral groups hence solvable of index at most 3.

Now if dimA, > 1 for n sufficiently large, then up to conjugacy the identity
component4,)° of A, is equal to one of the following three groups:

T=((3 2). aec). A=((4). nec) orB={(3 A) aec uec),
Therefore A, is contained in the normalizer in $lof these groups. Since

NouM = (¢ %), e u[(§5). 1<)

and Ns, (A) = Nsi,(B) = Bare solvable of index 2, we conclude thgtis solvable
of index at most 2.
Finally in all cases\ = UA,, is solvable of index at most 3. O

We are now ready to prove Theorethfrom the introduction, that is the Tits
alternative for Tame(S)).

Proof of TheorenC. LetT be a subgroup of Tame(3), and assume that does
not contain a free subgroup of rank 2. We want to proveThatirtually solvable.
By Lemmab.3, without loss in generality we can replak®y its derived subgroup.
By Corollary 5.6 we have a short exact sequence

15A->T 751

with k = 0 or 1. By Lemmab.3, it is enough to prove that is virtually solvable.
WhenA is elliptic the result follows from Propositidb.7, and whem is parabolic
this is Propositiorb.8. O

6. COMPLEMENTS

In this section we first provide examples of hyperbolic ordrglliptic elements
in Tame(SLk), and also an example of parabolic subgroup. Then we disaiss
eral questions about the usual tame group of theespace, the relation between
Autq(C4) and Aut(Sly), and finally the property of infinite transitivity.

6.1. Examples.



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD 2

6.1.1. Hyperbolic elementsThe following lemma allows us to produce some hy-
perbolic elements in Tame(3), which are very similar to generalized HEnon map-
ping onC? from an algebraic point of view.

Lemma 6.1. Let Py,...,Pr € C[Xo, X4] be polynomials of degree at least 2, and
—1 . "
as,bi,....a.b € C* be nonzero constants. Setg [ 02 &xraxrPiex) )

- _ _ —a7tx —bixa—bixsP(X2.Xs)
Then the composition@ - - - o g; is a hyperbolic element dame(SLk).

Proof. We have

g :( brlxs  axa+axeP(X2.Xa) )
I —a % —bixs—bixaP(x2.x4)

_( b ax ) (X1+XzPi(Xz,><4) Xz)
-a7'xa —bixg ’

X3+XaPi(X2,%4) X4

Sinc _b;j_lf; _a;)i)(; ) and( giﬁgggjx"‘;g 2) preserve respectively the edges, [x-], [id]
and [x], [X2, X4], we get thaig; preserves the hyperplarté associated with these
two edges (see Figulb).

Recall thatH is one-dimensional convex subcomplex of (the first baryaent
subdivision of)C, in particularH is a tree. By BH99, 11.6.2(4)], sinceH is
invariant undemg;, the translation length @ onC is equal to the translation length
of its restrictiongi|, which is 2. Indeed Stai#{) is the amalgamated product of
the stabilizers of the edges| x;], [id] and [x], [ X2, X4], andg; is a word of length
2 in this product. Similarlyg; o---og; € Stab(@H) has length Rin the amalgamated

product, hence is hyperbolic with translation length eqo&r . O
[x] [x1. ] [Xo] [a+XPixe]  [X1+%Pi]
[x1,%6] fic] [X2,%d] [6]  [xa+XPiXs+xePl]

Ficure 15. Part of the hyperplane associated with the edgje[[x2, X4].

The previous examples induce hyperbolic isometries onéehigcal treery,, but
they project as elliptic isometries on the facfy. Here is an example which is
hyperbolic on both factors:

Example 6.2. Consider the following automorphisgiof Tame(Sk):
g= (X4+>gx§+xzxf+x§ X33 )

Xg+)3 X1

Its inverseg is:
= (1% ot e t-0o)

9 = D a-g-220e-1)-0a
The automorphisng is hyperbolic, as a consequence of Lem2nk3 If we com-
pute the geodesic througky|, g-[x1] andg?-[x:] we find the segmentq], [X4], -
[x4] (see Figurel6) on whichg acts as a translation of lengthv2.
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Ficure 16. Geodesic through{], g- [x1] = [xa] andg? - [x1] = g [Xa].

6.1.2. Two classes of examples of hyperelliptic elemeRiscall that an elliptic
element of Tame(S)) is said to be hyperelliptic if Min{) is unbounded. In this
section we gives some examples of hyperelliptic elements.

Definition 6.3. We say that two numbeig b € C* areresonantif they satisfy a
relationaPb¥ = 1 for somep, g € Z \ {0}. We say that a polynomid® € C[x, V] is
resonantin a andb if Ris not constant andbRax, by) = R(x, y).

Remark 6.4. (1) A polynomialR is resonant ira andb if and only if it is
resonant ira~! andb™1. On the other hand, the conditi®resonant ira
andb is not equivalent taR resonant irb anda.

(2) If R= Y rijXyl, the conditionabRaax by) = R(x,y) is equivalent to the
implicationr; ; # 0 = a+lpi*! = 1.

(3) There exist some polynomials that are not resonarag &nd b for any
(a,b) € (C*)? < {(1,1)}. ForinstanceP(x,y) = x* + X3 + y> + Y2 is such a
polynomial.

ax; b 1x

Lemma 6.5. If a,b € C* are resonant, then & (b 1
X3 atx

) is hyperelliptic.

Proof. By LemmaZ2.12 to prove thaff is hyperelliptic it is stficient to show that
commutes with some hyperbolic element. By assumption testp, g € Z \ {0}
such thataPb¥ = 1. We can assume that g have the same sign, by considering
7fr instead off if necessary, where is the transpose automorphism. Moreover,
up to replacingf by =1, hencea andb by their inverses, we can assumpgy > 1.

We setg = (‘X’f ;’;ﬂ‘x’;zpigz’;(’;‘;)), whereP € C[xp, X4] is a polynomial of degree at
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least 2 that is resonant manda. Denote
o= (:ﬁ ig), f=cflo= (2:12 ﬁf) andg = ogo.
We compute

gof= —b7hx —ax-bheP(bhea ) | | (b lx —axi-axP(e.x) | _ fog
alxy  bxstalxuP(b ixz.alx) alxy bxg+bxaP(x2,%s) :

Conjugating this equality by the involutiom we getg o f-1 = 10§, hence
fod =0go f. Finally f commutes withg™ g, which is hyperbolic by Lemma
6.1 O

Lemma 6.6. If a, b are roots of unity of the same order, then for anyxi?x3) €

g [ @ txe bxo+bx  P(x1,x3) \ o
C[ X1, X3] the elementary automorphlsm_f( b-lxs ax4+ax3P(x1,x3)) is hyperelliptic.

Proof. There exism, n > 2 such tha®™ = b andb™ = a. We will use the observa-
tion that in Aut@2), with AZ = SpeaC[xy, Xa], the automorphismsxg, x; + X3) o
(X3, x1 +X3) and @ 'x;, b~!x3) commute.

By Lemma6.1, the following automorphisms are hyperbolic, because firer
jections on7y are hyperbolic:

X3 —Xa4 X —Xq4
g1 = (X1+Xr§,1 —X2—><4X'3‘?‘1 ) ,» Oo= (xlfxg —xz—x4xg‘1) andg =01002.
The projectionry(g) is a hyperbolic isometrygy(f) is elliptic, andzy(g) and

my(f) commute. By Lemma&.12, Minny(f) is unbounded. We conclude by
Lemma4.13 O

Remark 6.7. We believe that any hyperelliptic automorphism in Tame{(Sk
conjugate to an automorphism of the form given in Lemi®&sor 6.6. However
we were not able to get an easy proof of that fact.

6.1.3. An example of parabolic subgroupVe give an example of parabolic sub-
group in Tame(Sk), where most elements have infinite order. This is in cohtras
with the situation of Aut(?), where a parabolic subgroup is always a torsion group
(see LamO1, Proposition 3.12]). Let
-1 " n
Hy, = {(32 Z—liﬁ)? abeC (ab? = 1}.
As in the proof of Lemm&.5, we set

_ (X X _ [ X2 —X1—=%2Pn(X2.x4) & _ _ [ X2 —X1+X%2Pn(X4.X2)
g = (—Xl Xz)’ On = ( Xi  Xa+xXaPo(Xo. ) ) and gn = ogno = ( Xi  Xa-XaPn(Xa. %) )

whereP(x,y) = (xy)2'"L. Then we observe that fgr < k, any elemenh € Hj
commutes wittgi o gk. On the other hand for arly> 1 and anyh € (Unso Hn) N
Hy-1, g;lhgk is a non linear elementary automorphism. We set

¢n=0no0ho---001001, Ap= SoﬁlHnSDn and A = UpsoAn.

ThenA is a parabolic subgroup of Tame(gL Indeed by Lemmd.12it is sufi-
cient to prove that the isometry groug(A) induced byA on the vertical tre€y,
is parabolic. This is the case, since for each 1, ¢! - ny[id] is a fixed vertex for
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mv(An), but not formy (Ans1), andd(ry[id], g5t - 7y[id]) = 4n goes to infinity with
n.

6.2. Further comments.

6.2.1. Tame group of the fine space.ln Section2.5.1we defined a simplicial
complex associated with the tame groukdt We now make a few comments on
this construction. We make the convention to céindard simplexthe simplex
associated with the verticegq|, [x1, Xo], ..., [X1, ..., Xn].

First observe that we could make the same formal construesang§2.5.1us-
ing the whole group Aui"). But then it is not clear anymore that we obtain a
connected complex. More precisely, recall thaXifs a simplicial complex of di-
mensionn, we say thatX is gallery connectedif given any simplexess, S’ of
maximal dimension irX, there exists a sequence of simplexes of maximal dimen-
sionS; =S,...,Sy = S’ suchthatforany=1,...,n—1, the intersectio®;NS;j;1
is a face of dimension— 1 (see BS99 p. 55]). Then the gallery connected com-
ponent of the standard simplex of the complex associatddAwit(K") is precisely
the complex associated to TarKé]. It is probable that the whole complex is not
connected, but it seems to be #idult question.

We now focus on the cad€ = C, n = 3. In the same vein as the above discus-
sion, observe that the Nagata automorphism

N = (X1 + 2X(%5 — X1Xa) + X3(X5 — X1X3)%, X2 + (X6 — X1X3), X3)

defines a simplex that shares the vertey Jvith the standard simplex, but sindé
is not tame these two simplexes are not in the same galleryeoctad component.
The question of the connectedness of the whole complexiassdavith AutC3)
is equivalent to the question whether AT} is generated by thefine group and
automorphisms preserving the varialse

We denote by’ the 2-dimensional simplicial complex associated with TEERE
The standard simplex has vertices][ [ X1, Xo] and [id], and the stabilizers of these
vertices are respectively

Stabki] = {(ax + b, f,9); (f,g) € Tameyy,;(SpecC[xz, X3])}
Stabfk, xo] = {(axq + bxe + ¢, @' Xy + b'xp + ¢, dxg + P(X1, X2))}
Stabf, X2, X3] = As.

By construction the group Tam&y) acts on the compleg’ with fundamental do-
main the standard simplex. To say that Ta@®(s the amalgamated product of the
three stabilizers above along their pairwise interseasaguivalent to the simple
connectedness of the complex. This is precisely the coofethie main theorem
of [Wri13], where the subgroups are denotedHby H, andHs;. Observe that the
proof of Wright relies on the understanding of the relationthe tame group and
so ultimately on the Shestakov-Umirbaev theory: This isilsirmio our proof of
Proposition3.10 which relies on an adaptation of the Shestakov-Umirbaearih
to the case of a quadric 3-fold.

Note that the naive thought according to which Tame[Stkould be the amal-
gamated product of the four types of elementary groupsse fdhdeed, iP, Q are
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non-constant polynomials @ x1], the two following elements belong toftkrent
factors and they commute (this is similar to a remark made Bye¥ a long time
ago about Aut(®), see Ale9s)):

(Xl X2+X1P(X1)) ( X1 X2 )
X3 Xa+x3P(x1) ) X3+X1Q(X1) X4+%2Q(x1) J

On the other hand, it follows from our study in Sectib(see also Figuré4) that
STame(Sk) is the amalgamated product of the four stabilizers of eactex of the
standard square along their pairwise intersections: kv wiethe result of Wright,
this is another evidence that the groups Tatieand Tame(Sh) are qualitatively
quite similar.

As mentioned at the end of\[ri13], there are basic open questions about the
complexC’: It is not clear ifC’ is contractible, or even if it is unbounded. In
view of what we proved about the compl@&associated with Tame($), a natural
guestion would be to ask @ is CAT(0). It turns out that it is trivially not the case.
Indeed any triangular automorphism (X, + P(X1), X3 + Q(X1, X2)) can be written
in two ways as a product of elementary automorphisms:

(X1, X2 + P(x1), X3 + Q(X1, X2)) = (X1, X2 + P(X1), X3) © (X1, X2, X3 + Q(X1, X2))
= (X1, X2, X3 + Q(x1, X2 = P(x1))) o (X1, X2 + P(X1), X3).
This corresponds to a loop of length 4 in the link af][ (this is similar to the
situation in Figure9), and a necessary condition for a triangular complex to be
CAT(0) would be that each such loop has length at least 6. ®rother hand,

it seems possible that the compléx is hyperbolic. Of course this question is
relevant only ifC” is unbounded, but we believe this to be true.

6.2.2. The restriction morphismRecall that we have natural morphisms of restric-
tion:

n: Tamg(C* — Tame(Sk) and p: Auty(C* — Aut(SLy).
We have proved in Propositigh18thatr is an isomorphism. On the other hand,
we havep (( ey )) = idsL,, so thatp is not injective.
If follows from the next remark that the automorphift 244”1 ) of Auty(C?)
does not belong to TamEC).

Remark 6.8. Any automorphismf = (3 ) of Tame(C*) is of the form f =

X1 Xo+X1 P(X1,X3) : : .
()é Xj+)ép(xi)®). This follows from TheorenA.1, that is, from the feX|stence of
X1 T2

elementary reduction. Indeed, if a non linear automorphise (& ) belongs

to Tam%,(c“), by LemmaA.8 it necessarily admits an elementary reduction of the
form (¢ 224810459 which in turn admits an elementary reduction of the same
form. We can continue until we obtain a linear automorphismd this proves the
result.

Note that any automorphisrh = ({£ £) in Aute(C*) such thatf; = x; and

f3 = X3 is necessarily of the fornfi = (2 ;3;5;5), whereP € C[xq, X3, q]. Indeed,
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sincexy f4 — x3f2 = q, there exists some polynomiBlin C[ X1, X2, X3, X4] such that
fo = Xo+x1Pandfs = x4+x3P. The Jacobian condition d«gﬁg)i,j = lisequivalent
to 5P = 0, wheres is the locally nilpotent derivation of[x1, X2, X3, X4] given by

0 = X10x, + X30x,. One could easily check that Kér= C[x1, x3, q]. Conversely,
for any elemen® of C[x;, xs, d], it is clear thatf = (% 2147 is an element of

X3 X4+X3P
Autq(C*) whose inverse i$ 71 = (2 200).

If we take P(x1, X3, ) = g, we obtain the famous Anick’s automorphism. Since
f3 actually depends ory4, Corollary 1.5 above directly implies that this automor-
phism does not belong to Tame(§L However in restriction to Si.the Anick’s
automorphism coincides with the linear (hence tame) autphism (i; ;31;;).

On the other hand there exist automorphisms inq(@ﬁ) whose restriction to
the quadricq = 1 does not coincide with the restriction of any automorphism
in Tame(Sly): see V13, §5] where it is proved that the following automorphism
is a concrete example:
2 ﬁ N ( X1—Xa(X1+X4) , X2 )
Xa+(X1—Xa) (X1 +Xa)—X2(X1+X4)" Xa+X2(X1+X4)

Observe that for the Anick’s automorphism the degrees ottmponents are
not the same when considered as elementS[&{, X2, X3, X4] or as elements of
C[SLy]. On the other hand it seems possible that in the case of amauphism
f=(f 1) e Tame(Sk), equalities deg; = deg. f; always hold for each compo-
nentfi. This is an interesting question, that we have not been aldelve. Let us
formulate it precisely. For any elemepte O(SLy) := C[X1, X2, X3, X4]/{q — 1), set

degp = min{degr, r € p}.

Note that de@ = degp if and only if p = 0 or q does not divide the leading part
p" of p (see V13, §2.5]).

Question 6.9.If p is the component of an element of Tae{(@“), do we have
degp = degp?

Note that a positive answer to Questiér® would immediately imply Propo-
sition 4.18 Indeed, iff = (g Ii) € Kern, there exists polynomialg such that
fi = % + (g — 1)gi. Butif degf; = degf;, we getg; = 0, so thatfi = x, and f = id.

Another natural but probably filicult question about the morphismis the fol-
lowing:

Question 6.10.Is the mapp: Autq(C"') — Aut(SLy) surjective?

6.2.3. Infinite transitivity. As a final remark we check that STamegphcts infin-
itely transitively on the quadric Sl.as a consequence of the resultsArK*13].
Consider the locally nilpotent derivati@h= x19y, + X3y, Of the coordinate ring
O(SLy) = C[Xq, X2, X3, Xa] /(g — 1). We have Keb = C[x, X3] and for any element
P of C[xy, X3], we have
exp(Pa) = (32 2TLP) € STame(Sh).

X3 Xg+XoP
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Therefore, the seV of locally nilpotent derivations on Slwhich are conjugate in
STame(Sk) to such derivations is saturated in the senseA6{*13, Definition
2.1]. Furthermore, one could easily show that STamg)&l_.generated byv. In-
deed, it is clear that any elementary automorphism is therexqtial of an element
of N. We leave as an exercise for the reader to check thatisSidcluded into the
group generated by. Finally, since STame(Sl. contains the group Sl.it acts
transitively on Sk, and we conclude byjFK*13, Theorem 2.2].

ANNEX

In this annex we prove that on both groups TamefSind Tamg(C?) there
exists a good notion of elementary reduction, in the spfrloestakov-Umirbaev
and Kuroda theories. In the case of Tame(Sthis was done inlV13]. The
purpose of this annex is twofold: We propose a simplifiedivarsf the argument
in the case of Tame(S), and we establish a similar result for the group Ta(ﬁé).

A.1l. Main result. In the sequelG denotes either the group Ta@(n@”') or the
group Tame(Sp), since most of the statements hold without any change ih bot

settings.
Recall that we define thgegreeof a monomial ofC[x1, X2, X3, X4] by
. 2110
degx; X, x5X, = (i,j,k,l)(}gg}) =Qi+j+ki+2j+1i+2k+1,j+k+2)eN*
0112

Then, by using the graded lexicographic ordenthwe define the degree of any
nonzero element afxy, X2, X3, X4]: We first compare the sums of the ¢beients
and, in case of a tie, apply the lexicographic order. For etaymve have
degfq + X2 + X3 + Xa) = (2,1,1,0), degfixe + x3) = (3,3,1,1),
degxi x4 = degxoxz = degq = (2,2, 2, 2).
By convention, we set deg —co, with —co smaller than any element df*. The
leading part of a polynomial
p= ) Pk XXX, € Clxt, X, Xa, Xa]
i, 1K
is denotedp”. Hence, we have
p¥ = D Pk XO0XEX,,
degx"lxéx‘éx'4 = degp
Remark thatp" is not in general a monomial. For instance, we hg¥e= q. We
define thedegree of an automorphismf = ( g Ii) to be

degf = maxdegf; € N*.
|

We have similar definitions in the case of Tamefswhere the degree dfSL;],
also noted deg, is defined by considering minimum over allasgntatives.
An elementary automorphismis an element oG of the form

_ X1 Xz+le(X1,Xa)) -1
e= U(X’s xa+xaP(x1,%3) ) U
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whereu € Vg4, P € C[x1, X3]. We say thatf € G admits anelementary reduction

if there exists an elementary automorphissuch that dego f < degf. We denote
by A the set of elements @& that admit a sequence of elementary reductions to an
element of Q. The main result of this annex is then:

Theorem A.1. Any non-linear element of G admits an elementary reductioat,
is we have the equality & A.

A.2. Minorations. The following result is a close analogue &fyrl0, Lemma
3.3(i)] and is taken fromlV13, §3].

Minoration A.2. Let fi, f, € C[SL;] be algebraically independent and legfg, f,)
be an element dof[ f1, f,]. Assume that @y, fo) ¢ C[f,] and £V ¢ C[f,"]. Then

deg(f2R(f1, f2)) > degfi.

In this section we establish the following analogous mitiorein the context of
G = Tameg(C%).

Minoration A.3. Let (f1, ) € C[x1, X2, X3, X4]% be part of an automorphism of
C* and let R fy, fo) be an element of[ f1, f2]. Assume that @, f2) ¢ C[f,] and
f\V ¢ C[f,"]. Then

deg(f2R(f1, f2)) > degf;.

We say that {1, f) € C[x1, X2, X3, X4]? is part of an automorphism of C#, if
there exists {3, f4) € C[X1, X2, X3, Xa]? such that {y, f,, f3, f4) is an automorphism
of C4.

We follow the proof of MinoratiorA.2 given in [LV13, §3]. The only non-trivial
modification lies in LemmaA.5 below, but for the convenience of the reader we
give the full detail of the arguments.

A.2.1. Generic degreeGiven fy, fy € C[xq, X2, X3, X4] \ {0}, consider
R= )" R jXiX} € C[X1, Xg]
a non-zero polynomial in two variables. Generically (onc¢beficientsR; ; of R),

degR(f1, f2) coincides with gde® where gdeg (standing fageneric degreg is
the weighted degree df X3, X,] defined by

gdegX; = degfi € N4,
again with the graded lexicographic order. Namely we have
R(f1, f2) = Rgen(f1, f2) + LDT(f1, f2)
where o
Reelfn )= > Ryfif)
gdegxilxi =gdegR
is the leading part oR with respect to the generic degree drldT represents the
Lower (generic) Degree Terms. One has

degLDT(fy, f2) < degRgen(f1, f2) = gdegR = degR(fy, f2)
unless Ben(f1", f2") = 0, in which case the degree falls: d&(;, f2) < gdegR.
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Let us focus on the conditioRgen( 1", f2") = 0. Of course this can happen only
if £, andf," are algebraically dependent. Remark that the ideal
| ={S € C[Xqg, Xo]; S(f%, f,) = 0}

must then be principal, prime and generated by a gdeg-hameogs polynomial.
The only possibility is that = (X}* — 1X3?) whered € C*, s degf; = s, degf,
ands;, s, are coprime. To sum up, in the case whéré and f," are algebraically
dependent one has

degR(f1, f2) < gdegR & Ryen(f1", 12") =0 © Rgene (H) )
whereH = XJ* — AX32.
A.2.2. Pseudo-Jacobianslf fy, fo, f3, f4 are polynomials inC[xq, Xo, X3, X4], we
denote by Jad(, f,, f3, f4) the Jacobian determinant, i.e. the determinant of the
Jacobian 4 4- matrix ﬂ). Then we define thpseudo-Jacobiarof fy, o, f3 by

')Xj
the formula
j(f1, f2, f3) 1= Jacq, f1, o, f3).

Lemma A.4. Assume 4 fp, f3 € C[X1, X2, X3, X4]. Then
degj(f1, f2, f3) < degfi + degf, + degfs — (2,2, 2, 2).

Proof. An easy computation shows the following inequality:

degJacty, f2, fs, fa) < )" degfi — > degx = )" degfi - (4,4,4,4).
i i i
Recalling the definitions of j and deg we obtain:

degj(f1, f2, f3) = degJadq, f1, f2, f3)
<degq+ ) degfi - (4,4,4,4) = " degf -(2222). O
i i

We shall essentially use those pseudo-Jacobians fwith Xx;, X2, X3 Or X4.
Therefore we introduce the notatiog(j-) := j(X.-,-) for all k = 1,2,3,4. The
inequality from LemmaA.4 gives

deg(f1, f2) < degf; + degf, + degxk — (2,2, 2,2)
from which we deduce
degj(f1, f2) < degf; + degf,, Yk=1,23,4. 4)
We shall also need the following observation.

LemmaA.5. If (fy, f,) is part of an automorphism @f*, then the elemenig( 1, f2),
k=1,...,4, are not simultaneously zero, i.max deg |(f1, f2) # —co Or, equiva-
lently,

maxdeg (fy, f2) € N4,



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD 5

Proof. Assume that jx, f1, f2)) = 0 for eachk. This means that the elements
g, f1, f> are algebraically dependent. But, sindg () is part of an automorphism
of C4, the ringCJ[ f1, f,] is algebraically closed ifi[x1, Xo, X3, X4] (indeed, there ex-
ists an automorphism of the algeliEpx;, Xo, X3, X4] sendingC[ f1, f2] to C[xg, X2]).
Therefore, there exists a polynomRisuch thag = R(f1, f»). We now prove that
this is impossible. Indeed, we may assume thaand f, do not have constant
terms. Letl; andl be their linear parts. WritR = 3, ; R ;X'Y. Itis clear that
Roo = 0 (look at the constant term) and tHafo = Ro1 = O (look at the linear
part and use the fact thht, |, are linearly independent). Therefore, looking at the
quadratic part, we get

2 2
q= R2,0|1 + R1’1|1|2 + Ro,z |2.

We get a contradiction since the rank of the quadratic fqrism4 and the rank of
the quadratic form on the right is at most 2. O

A.2.3. The parachute.n this paragraphfg, f,) € C[xq, %o, X3, X4]? is part of an
automorphism of®4, and we setl, := degf, € N*. We define theparachute of
f1, fo to be

V(fy, f2) =dy+dy — mlflxdeg k(f1, f2).

By LemmaA.5, we getV(fy, f2) < di + do.

Lemma A.6. AssumelegZR(f1, f2) coincides with the generic degreglegdh.
2 2

Then
dz - degy, R— nV(fy, f2) < degR(fy, f2).

Proof. As already remarked Jac, j and ngwas well areC-derivations in each of
their entries. We may then apply the chain rule gy} -) evaluated irR(fy, f2):

R . .
87(1:1, 2) Jk(f1, f2) = Ji(f1, R(f1, 12)).
2

Now taking the degree and applying inequality (with R(f1, f;) instead off,),

we obtain oR
degzs(f1. f2) + deg(f, f2) < di + degR(fy, f2).
2

We deduce
deg (1. ) + o — (ch + ch ~ maxdeg (f. £)) < degR(f1, ).
2

=V(f1.f2)

By induction, for anyn > 1 we have
IR
X3
Now if the integem is as given in the statement one gets:

O"R "R 0"R

a_Xg(fl’ fy) = gdega—xg > dp-deg;, a_xg = dp-(deg,, R—n) = dp-deg,, R-dyn
which, together with the previous inequality, gives thaules O

deg_5(f1. f2) + ndz — nV(fy, f2) < degR(fy, f2) .

deg
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Lemma A.7. Let H be the generating relation betweed' fand £" as in the
equivalenced) and let ne N be such that Rn € (H") \ (H™?1). Then n fulfills the
assumption of LemnmA.6, i.e.

d"R
deg (f1, f2) = gdegaxn-

0%

Proof. It suffices to remark tha(tl;’—g)gen = aRge" and thatRgen € (H") \ (H™?)

implies — Rge” e (H™1) < (H"). One concludes by induction. ]
Remark that, by definition afin LemmaA.7 above, we have:

deg,, R > deg, Rgen > NS
Together with Lemma\.6 and recalling that;d; = s,dy, this gives:
dins — nV(fy, f2) < degR(fy, f2). (5)

A.2.4. Proof of MinorationA.3

Letnbe as in Lemma.7. If n = 0, then dedr(fy, f2) = gdegR > degf; by the
assumptiorR(fy, f2) ¢ C[ f,] and then degbR(f1, f2)) > degf, + degf; > degf;
as wanted.

If n> 1 then, by §),

dis; — V(f1, f2) < degR(fy, f2)
and, sinceV(fy, fp) < dp + db,
dis; — dy — dp < degR(fy, f2).

We obtain

di(s1 - 1) < degR(fy, f2) + d = deg(f2R(f1, f2)).
The assumptionf," ¢ C[f,"] forbids s; to be equal to one, hence we get the
desired minoration. ]

A.3. Proof of the main result. In this section, we prove Theorefl. We need
the two following easy lemmas.

ffz
fa

Lemma A.8. Letf_(fl f2)eG Ifee EL and eo f _( ) then

degeo f<degf « degf/«degf; < degfj<degfs
for any relation< amongx<, >, <, > and=.

Proof. We havee = (2:%&;:;‘3 %2) whereP is non-constant. We first prove the
equivalence fok equal to<. One hasf; f4 — fof3 = g and the polynomiald; are
not linear hence the leading parts must cancel one anotiféef;"V — f," f3¥ = 0. It
follows: degf; +degfs = degf,+degfs. Similarly degf; +degf, = degf,+degf;.
So we obtain

degf;, — degf] = degfz — degf;.
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Assume dego f < degf. Thus degf = max(degfi, degfs), hence
max(degf;, degf;) < degeo f < degf = max(degf,, degfs),

which implies dedf; < degf; and degf; < degfs.

Conversely if one of the inequalities dég< degf; or degf; < degfs is satis-
fied then both are satisfied, and this implies fleg degf,P(f,, f4) = degf; and
similarly degfs < degfs. Hence dego f < degf.

We have proved the equivalence foequal to<. Sincef = e 1o (eo ), we also
obtain the equivalence forequal to>. The equivalences for the three remaining
symbols=, <, > follow. O

Lemma A.9. Any element of G can be written under the form

f=€og_10---0g 04,
where the elements are elementary and a belongs @.

Proof. Observe that any element of 3@ a composition of (linear) elementary
automorphisms. Since both STame¢yand STamgC“) are generated by SO
and the elementary automorphisms, it follows that any etemithese two groups
may be written

f=eoe 1008,
where the automorphisnes are elementary. The result follows. O

Since the setA obviously contains @ the following proposition joined to
LemmaA.9 directly implies Theoren\.1.

Proposition A.10. If f € A and e is an elementary automorphism, thenfes A.

In the rest of this section we prove the proposition by inaucond := degf e
N4,

If d=(21,10), thatis iff € O4, then either dego f = d and agaireo f €
O4 Cc A, ordegeo f > dandeo f admits an obvious elementary reduction to an
element of Q, by composing by .

Now we assume > (2,1,1,0), we setA.q = {g € A; degg < d} and we
assume the following:

Induction Hypothesis. If g € A. 4 and if e is elementary, thenogy € A.

We pick f € A such that ded = d, an elementary automorphisep and we
must prove thato f € A.

If degeo f > degf, this is clear, so we now assume that degf < degf.

Sincef € A, there exists an elementary automorph&rsuch that deg’of < d
and€¢ o f e A, i.e.€¢ o f € A_y.

List of Cases A.11.Up to conjugacy by an element of,\\ve may assume that:

g = (X1+X2P(X2,X4) Xz)
X3+X4P(X2,X4) X4

and that one of the three following assertions is satisfied:

(1) ec B ie.e= (D2s0e7 2 ) for some polynomial;
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(2) e B2, i.e.e= (1 2Di86a ) for some polynomial;
(3) ecE? ie.e= (X1+’@%(’@’X4) X2+X4§?j’@’x4)) for some polynomial.

Indeed, the fourth case whegavould belong tdEs, is conjugate to the third one.

The first two cases are easy to handle.

Case (1)ec E3.

Since€ o f € A.q andeo €1 € EJ, the Induction Hypothesis directly shows
us that €o € 1) o (¢ o f) = eo f belongs taA.

Case (2)e € EZ.

fi+fP(fo,fa) f f1 fo+ 1 Q(fy, f
We havee' o f = (I¢R(zi) 17) andeo f = (& 21Eder)).

By Lemmal.2 (1), the polynomialP(f,, f4) is non-constant, since otherwise we
would get de@ o f = degf. By LemmaA.8, the inequality deg’ o f < degf
is equivalent to ded( + f,P(fo, f4)) < degfy, so that ded; = deg(foP(f2, f4)) >

degf,. But then, degl, + f1Q(f1, f3)) > degf,, so that LemmaA.8 gives us
degeo f > degf, a contradiction.

Case (3)ee E12

We are in the setting of the following lemma, where Minoratf2-A.3 makes
reference either to MinoratioA.2 whenG = Tame(Slk) or to MinorationA.3
whenG = Tamg(C%).
Lemma A.12. Let f € G, and assume that

_ ( fu+TaP(f2,T4) 12 _ ( 1+ 13Q(f3,fa) T2+ 14Q(f3,Tg)
¢of=(ginnn ) and eof=(""53 B,

with dege’ o f < degf anddegeo f < degf. Then MinorationA.2A.3does not
apply to either Rfy, f4) or Q(fs, f4).

Proof. If Minoration A.2-A.3 applies to bothP(f,, f4) and Q(fs, f4), we would
obtain the following contradictory sequence of inequediti

degf, < deg(fsP(f2, f4))  (Minoration A.2-A.3 applied toP);

deg(f4P(f2, f4)) = degfs (deg€ o f < degf);
degfs < deg(f2Q(fs, f4))  (Minoration A.2-A.3 applied toQ);
deg(f4Q(fs, f4)) < degfs (degeo f < degf). m|

We conclude the proof of Propositigxi10 with the following lemma.

Lemma A.13. If Minoration A.2-A.3does not apply to either (., f4) or Q(fs, fs),
i.e. if one of the four following assertions is satisfied

(i) Q(fs, fa) € C[fq]; (ii) 2" € C[f,"]; (iii) P (f2, f4) € C[fa]; (iv) f3" € C[fs"],
then eo f € A.
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Proof. (i) AssumeQ(fs, f4) = Q(f4) € C[ f4].

Since€ o f € A.q ande is elementary, the Induction Hypothesis gives us
eo€ofeA.

Note thate o & " o e! belongs toEL. Therefore, it is enough to show that
eo€ o f € A_qy. Indeed, a new implication of the induction hypothesis wi#n
prove thatéo € 1oe1)o(eo€ o f) =eo f belongs taA.

However, we have degp f < degf, so that by applying two times LemnAa8,
we successively get defa(+ f4Q(f4)) < degf, and then dego € o f < dege o f.
Since de@ o f < degf, we are done.

(i) Assume " € C[f,"]. N
Then there exist®(fs) € C[f4] such that dedl + f4Q(f4)) < degf,. We take
&= (X1+>?%Q(X4) X2+X;1(4Q(X4)), and we haves f € A by case (i). Thug?s f € A_q.

Sinceeo &1 € E'?, the Induction Hypothesis shows us that &) o (8o f) = eo f
belongs taA.

(iii) AssumeP(f,, f4) = P(f4) € C[f4].

Note thate’ o e o &1 belongs toE!2. By the Induction Hypothesis, we get
(€oeoce)o(¢of)=¢oeofeA. Ifwecan prove deg oeo f < degf then
we can use the Induction Hypothesis again to obtainghat (¢ ceof) = eo f € A.

We argue as in case (i). We have d@tg f < degf, so that by applying
two times LemmaA.8, we successively get defg(+ f4P(f1)) < degf; and then
dege oeo f < degeo f. Since dego f < degf, we are done.

(iv) Finally assumefz” € C[ f4"]. )

There exist(fs) € C[f4] such that dedig + f4P(fs)) < degfs. We takee =
(giﬁggx"‘;g ii) and we have s f € A by the easy first case of List of Caskd 1.
Thus€o f € A.y. Therefore, we may replae by & and then we conclude by
case (iii). O
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