Lezione 8

Ricerche in banche dati (databases) attraverso l'uso di BLAST

BLAST: Basic Local Alignment Search Tool

Basic Local Alignment Search Tool. Altschul et al. 1990,1994,1997

- Sviluppato per rendere ancora più veloci le ricerche nelle banche dati rispetto a FASTA, senza perdere in sensibilità e selettività
- Metodo euristico per allineamenti locali
- Pensato specificamente per ricerche in database
- Basato sulle stesse assunzioni di FASTA: un buon allineamento contiene corti frammenti di match esatti

BLAST: Basic Local Alignment Search Tool

Basic Local Alignment Search Tool. Altschul et al. 1990,1994,1997

Input:

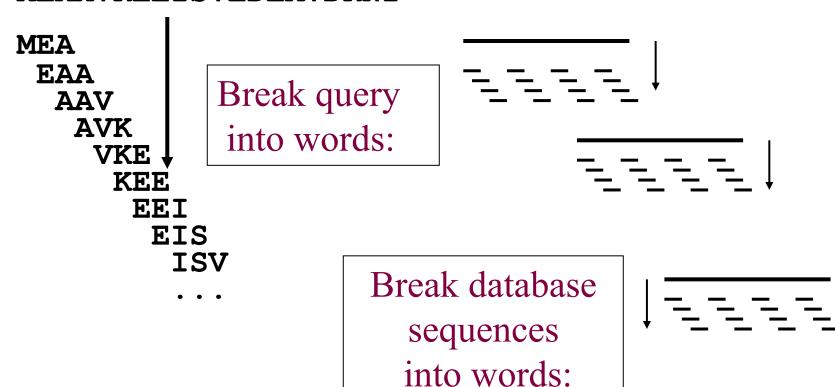
- Query sequence Q (la vostra sequenza!)
- Database of sequences DB
- Minimal score S

• Output:

Sequenze presenti nel DB (Seq), per le quali Q
 e Seq abbiano uno score > S

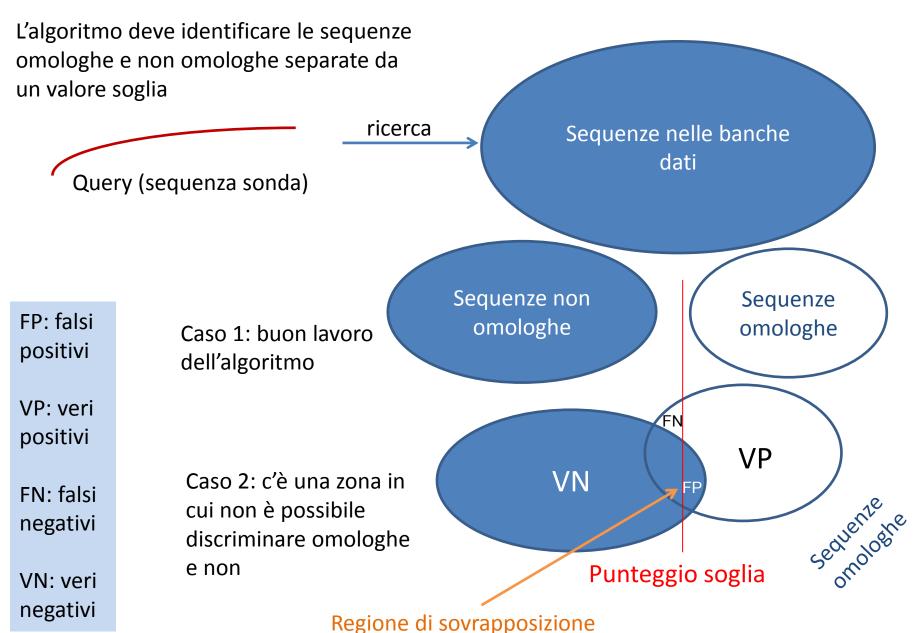
BLAST Fundamentals

- BLAST tells you about non-chance similarities between biological sequences.
- If similarities are not due chance then they must be due to something else!
 - Homology
 - Simple identification
- All BLAST searches begin with a sequence
 - protein or nucleotide
 - experimentally determined or one from database


What BLAST tells you

Here's my sequence.

- 1. What is it related to? (What does it do?)
 - Homology
 - Function
- 2. Is it already in the database? (Identification)
 - find the matching sequence in the database
 - organism of origin
- 3. Where is it located or how is it organized?
 - in a genome
 - other annotation problems
 - comparing sequences
 - looking for frame shifts


BLAST Word Matching

MEAAVKEEISVEDEAVDKNI

Alignment starts with initial word of 11 ACACTGAGTGA ACACTGAGTGA	Figure 3.1 Simple extension example for BLASTN. Starting with an initial match of "words," BLAST extends the alignment between query and hit, keeping	
Extension to the left has no mismatches, no penalty points Extension to the right has mismatches and penalty points GCACCTTTGCCACACTGAGTGAGCTGCTCTATG	track of penalty points against, and increasing significance for, extending the alignment.	
Extension to the left has no penalty points and can continue to grow Extension to the right accumulates too many mismatch penalty points; extension in this direction st	ops	
CAACCTCAAGGGCACCTTTGCC ACACTGAGTGA GCTGCTCTATGGTCCTTTGGGG		
If left side cannot grow any more, the final alignment looks like this:		
CAACCTCAAGGGCACCTTTGCC ACACTGAGTGA GCTGCTCTATG		

Ricerche in database

BLAST Statistics

```
Score = 18.5 bits (36), Expect = 47992
 Identities = 5/5 (100%), Positives = 5/5 (100%), Gaps = 0/5 (0%)
Query 1
             ELVIS
                                  Number of chance alignments = 48 thousand!
             ELVIS
Sbjct
             ELVIS
                      12
                                  Indistinguishable from chance
      The most important statistic: Expect value (e-value)
      Expected number of random alignments with a particular score or better
Score = 89.7 bits (204), Expect = 7e-18
Identities = 50/103 (49%), Positives = 54/103 (52%), Gaps = 18/103 (17%)
Query 1

    Number of chance alignments = 7 X 10<sup>-18</sup>

                        LL +CSLEGA V
Sbjct
           MKVL---VLAMVLLCVCSLEGAVVM .
                                        Not due to chance
       54 SPELOAEAKSYFEKSKEOLTPLIKKAGTELVNFLSYFVELGTO
Query
                            EO P K
                                                 F +L TO
                 +AK Y E
                                        TE
Sbjct
           The e-value depends directly on the size of the search space (database)
           Search the smallest database likely to contain the sequence of interest
```

Attesa (Expectation) di trovare PER CASO uno Score come quello osservato

NCBI Webinars

Scoring: Nucleotide

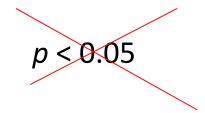
Number of Chance Alignments = 2 X 10⁻⁷³

```
Score = 288 bits (318), Expect = 2e-73
 Identities = 262/325 (81%), Gaps = 8/325 (2%)
 Strand=Plus/Plus
Query 1923
                                                                             1981
              TCAGCCTACCATGAGAATAAGAGAAAGA-AAATGAAGATCAAAAGCTTATTCATCTGTTT
Sbjct
Query
      1982
                CTTTTTCGTTGGTGTAAAGCCAACACCCTGTCTAAA
                                                                             2041
                                                                             33892
Sbjct
       2042
                                                                             2100
Query
                                                                             33952
                                                                 GTTCTGTGG
Query
      2101
              ACAGCACTGTTA-T
                                                                             2159
                             Gap
                                                                             34012
Query
       2160
                                                                 TTGTGGGCTA
                                                                             2219
Sbjct
       2220
              AT---TAAATAAATCATTAATACT 2240
Sbjct 34073
              ATTGCATAAAAGAAACATTAATACT
                                         34097
```

NCBI Webinars

Scoring: Protein

Number of Chance Alignments = 4 X 10⁻⁵⁰


```
Score = 176 bits (447), Expect = 4e-50, Method: Compositional matrix adjust.
 Identities = 98/232 (42%), Positives = 139/232 (60%), Gaps = 14/232 (6%)
Query
            MAKVLTLELYKKLRDKETPSGFTVDDVIOTGV--DNPGHPFIMTVGCVAGDEESYEVFKE
            + K LT +L+++ +D+
Sbjct
      26
            LOKCLTKDLWEOCKDRRDKYGFSFKOAIFSGSKWTNSG-----VGVYAGSHDSYYAFAP
            LFDPIISDAHGGYKPTDKHKTDLNHENLKGG---DDLDPNY
Query
                                                      LSSRVRTGRSIKGYTLPP
                                                                          144
      K
            MD
                           DKHIS
                                             PADED-KMINSTRIRVA
                                                                          137
    +5
                           ALNSI F
                                                                          204
            AVTRKERKEIEHLVTSALGEFTGELKGKYVCTEMA
Sbjct
                                         Gap
Query
            SGMARDWPDARGIWHNDNKSFLVWVNEEI
            +G+ RDWP+ARGI+HND K+FLVWVNEEI
                                         -(11 + 4(1)) = -14
Sbjct
            AGLERDWPEARGIFHNDAKTFLVWVNEE
```

Scores from **BLOSUM62**, a position independent matrix

- Same substitution gets the same score at all positions
- All positions equally likely to change

E value: significatività statistica

Non si interpretano come p values dove

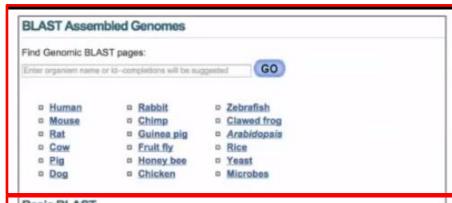
sono generalmente considerati significativi

Regola generale

E values < 10⁻⁶ sono molto probabilmente significativi.

10⁻⁶ < E values < 10⁻³ meritano una seconda occhiata.

E values < 10⁻³ andrebbero scartati (ci aspettiamo di trovare 0.001 sequenze non correlate alla nostra-falsi positivi- che ottengono un punteggio superiore a quell'S).


BLAST Programs

BLAST has five programs

Differ in the types of sequences they align and at what level

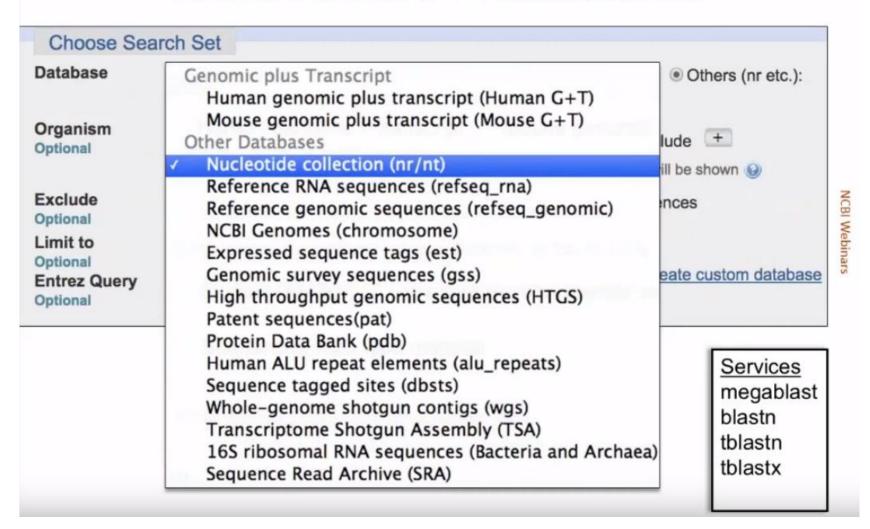
Program	Query Seq. Type	Database Seq. Type	Alignment Level
blastn	nucleotide	nucleotide	nucleotide
blastp	protein	protein	protein
blastx	nucleotide	protein	protein
tblastn	protein	nucleotide	protein
tblastx	nucleotide	nucleotide	protein

Six-frame translation

Specialized BLAST

Choose a type of specialized search (or database name in parentheses.)

- Make specific primers with Primer-BLAST
- Cluster multiple sequences together with their database neighbors using MOLE-BLAST

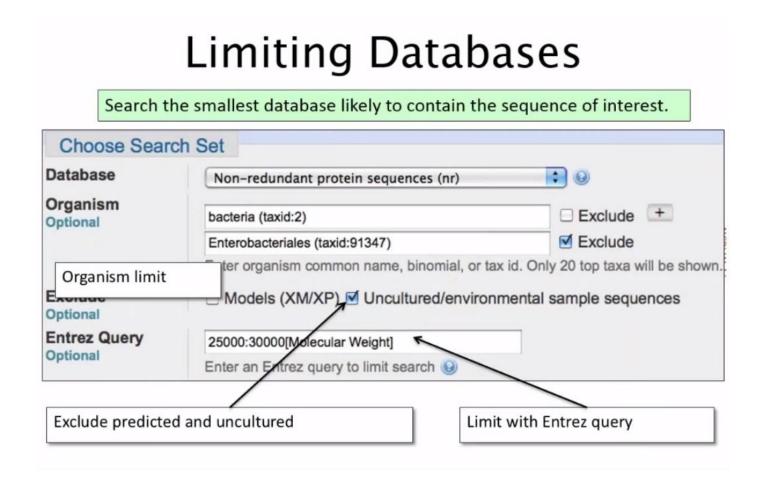

tblastx Search translated nucleotide database using a translated nucleotide query

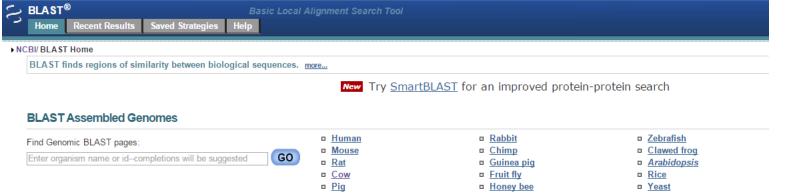
- Find conserved domains in your sequence (cds)
- Find sequences with similar conserved domain architecture (cdart)
- Search sequences that have gene expression profiles (GEO)
- Search <u>Immunoglobulins</u> and T cell receptor sequences (IgBLAST)
- Screen sequence for vector contamination (vecscreen)
- a Align two (or more) sequences using BLAST (bl2seq)
- Search protein or nucleotide targets in PubChem BioAssay
- Search SRA by experiment
- Constraint Based Protein Multiple Alignment Tool
- Needleman-Wunsch Global Sequence Alignment Tool
- Search RefSegGene
- Search trace archives
- Search bacterial and fungal rRNA sequences with <u>Targeted Loci BLAST</u>

BLAST Homepage

blast.ncbi.nlm.nih.gov

Nucleotide Databases

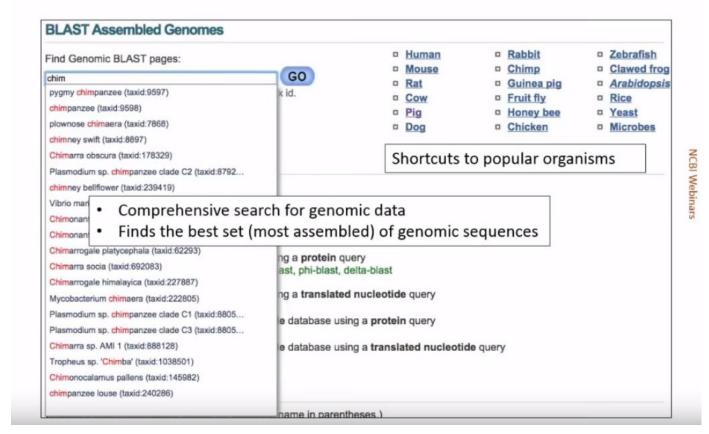



Nucleotide Databases

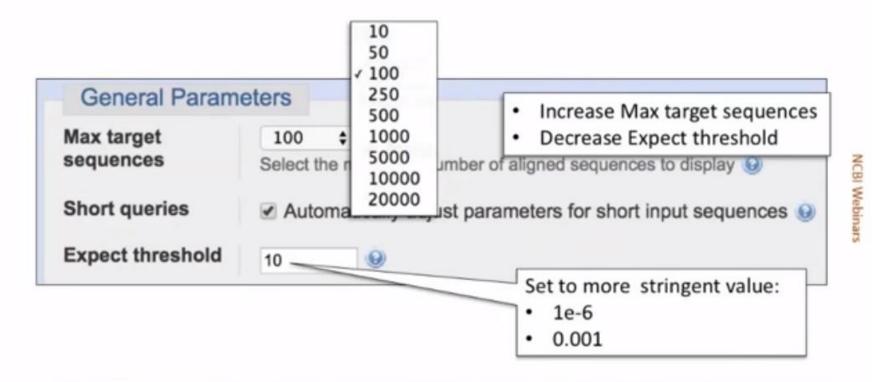
- Default database (nr/nt) is not comprehensive
 - Traditional GenBank and RefSeq RNA
 - Useful subsets: RefSeq RNA, 16S rRNA reference sequences
- What is <u>not</u> in nr/nt? the majority of nucleotide data
 - Bulk sequences (EST, GSS, HTGS, STS)
 - RefSeq Genomic Sequences (Chromosome, RefSeq Genomic)
 - US, European and Asian Patents (pat)
 - Whole Genome Shotgun Contigs (WGS) (Second Largest)
 - Transcriptome Shotgun Assemblies (TSA)
 - Next-Gen Reads (SRA) (Largest set of data)

25

Ricordiamo che l'efficienza della ricerca aumenta se limitiamo il database che interroghiamo

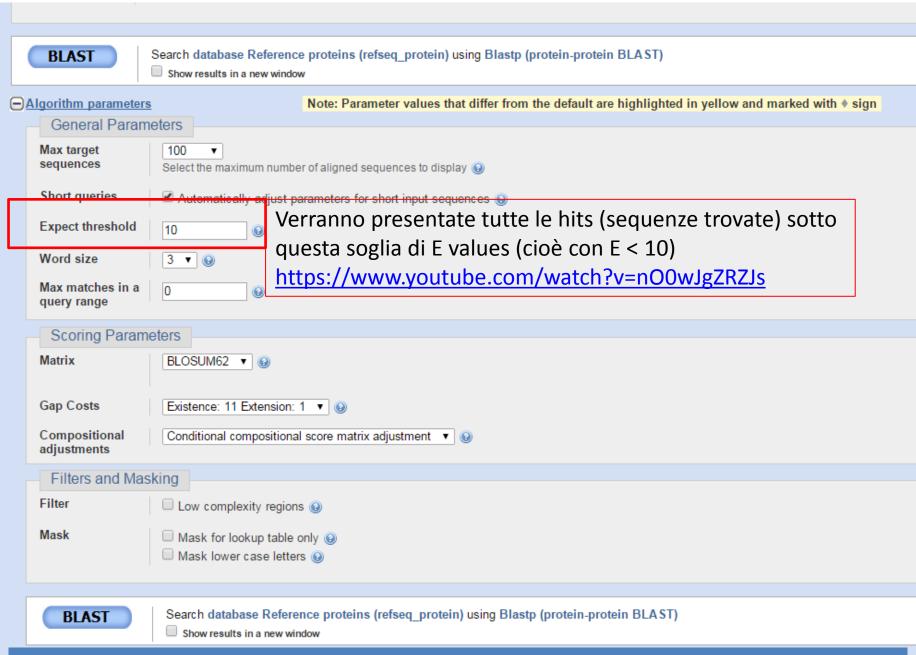


Dog

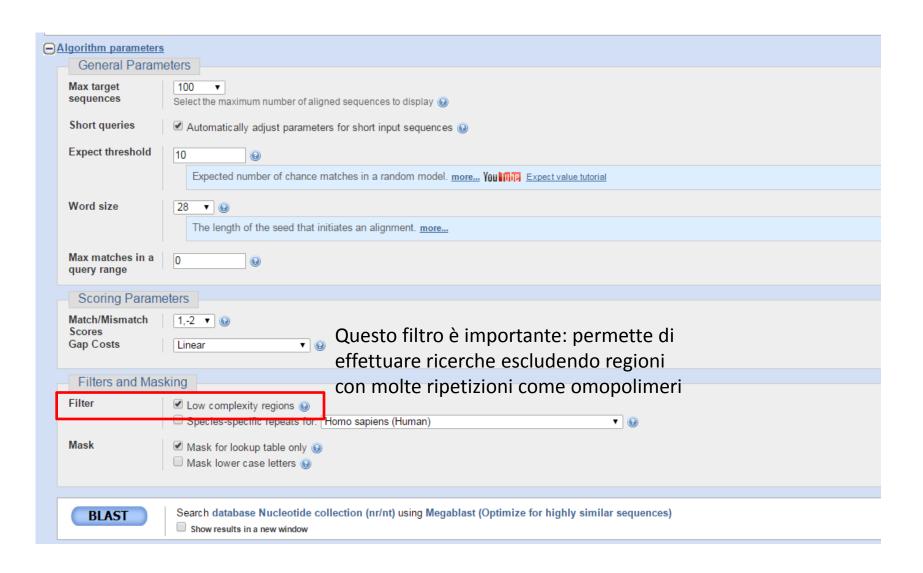

Genome Databases

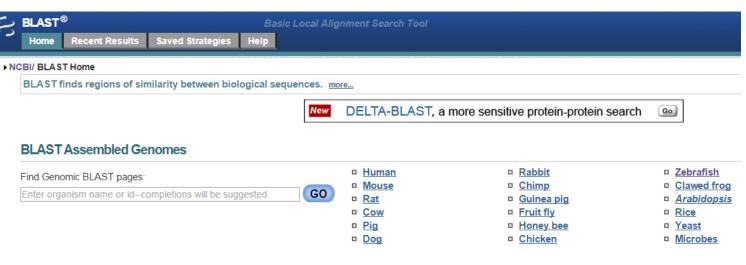
Microbes

Chicken

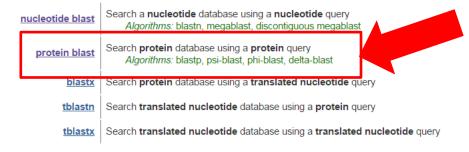


Algorithm Parameters: General



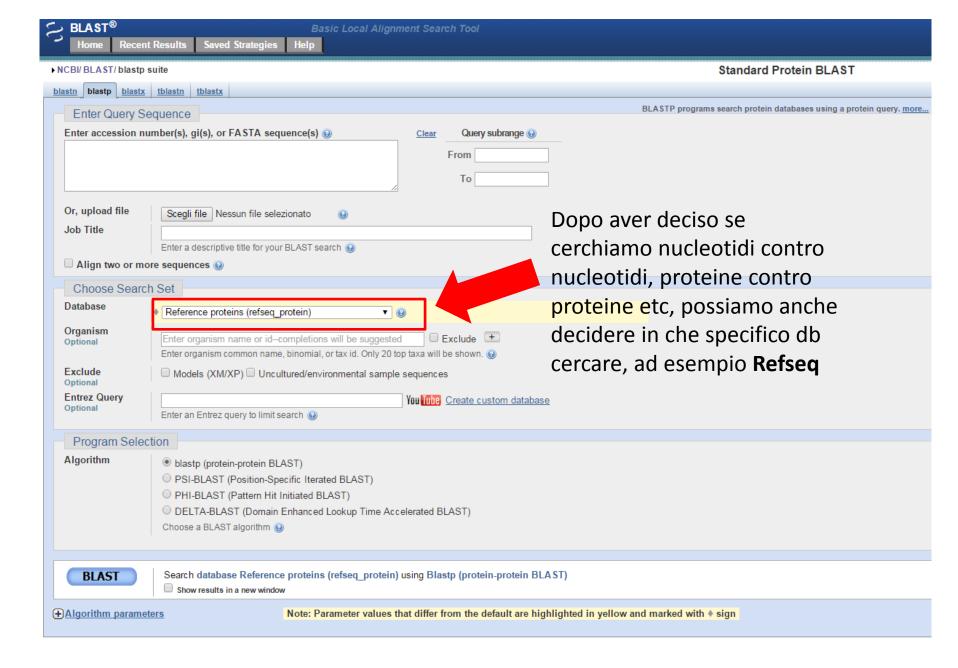

Let Expect threshold govern output not Max target sequences

Threshold = soglia (vedi diapositiva 5)


Ricordiamo che l'E risponde alla domanda: quante sequenze mi aspetto che abbiano **per caso** uno score maggiore o uguale a quello che ho osservato (falsi positivi!)

Basic BLAST

Choose a BLAST program to run.



Scegliere il tipo di ricerca sulla base delle nostre esigenze

Specialized BLAST

Choose a type of specialized search (or database name in parentheses.)

- Make specific primers with <u>Primer-BLAST</u>
- Cluster multiple sequences together with their database neighbors using MOLE-BLAST
- Find conserved domains in your sequence (cds)
- Find sequences with similar conserved domain architecture (cdart)
- Search sequences that have gene expression profiles (GEO)
- Search immunoglobulins and T cell receptor sequences (IgBLAST)
- Screen sequence for <u>vector contamination</u> (vecscreen)
- Align two (or more) sequences using BLAST (bl2seq)
- E. Soarch protein or publication torgets in DubChem BioAccay

NCBI RefSeq Database

- Goal: Provide a single reference sequence for each molecule of the central dogma (DNA, mRNA, and protein)
- Distinguishing features
 - Non-redundancy
 - Updates to reflect the current knowledge of sequence data and biology
 - Includes biological attributes of the gene, gene transcript, or protein
 - Encompasses a wide taxonomic range, with primary focus on mammalian and human species
 - Ongoing updates and curation (both automated and manual review),
 with review status indicated on each record

Pruitt et al., Nucleic Acids Res. 42: D756-D763, 2014

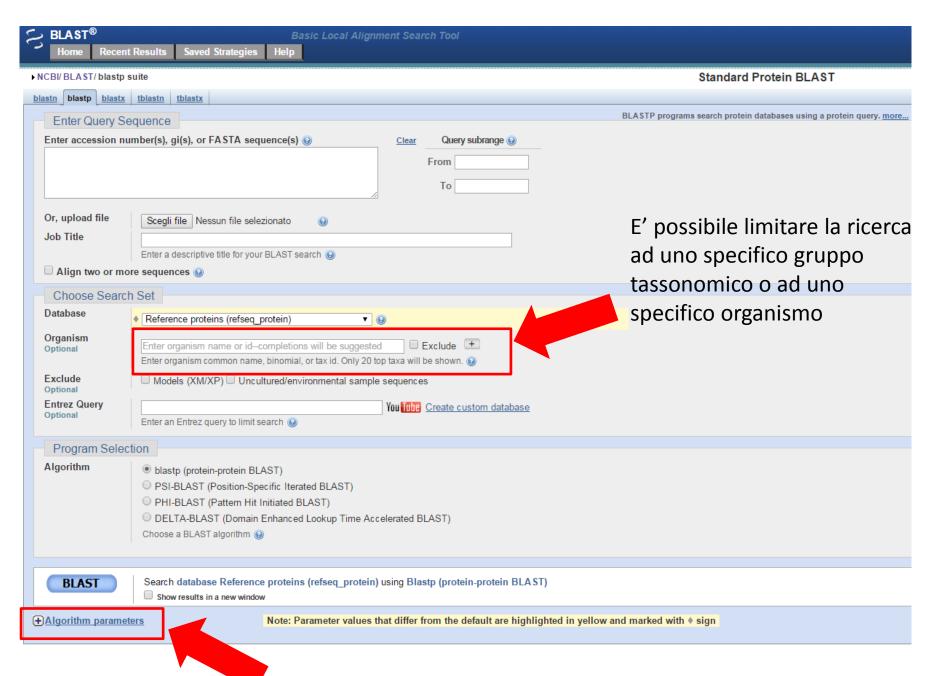
RefSeq Accession Number Prefixes

From curation of GenBank entries:

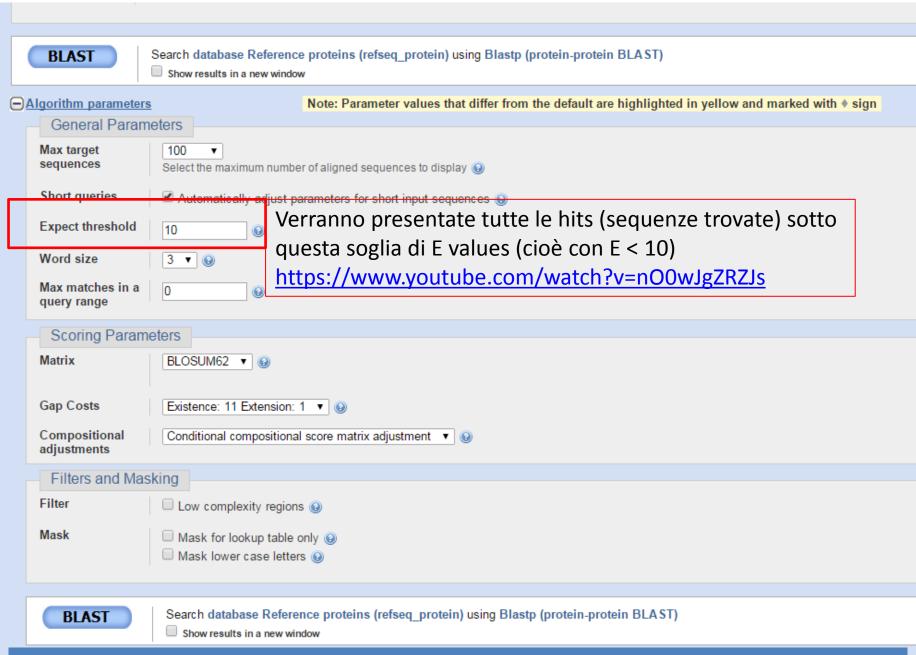
NT_ Genomic contigs

NM mRNAs

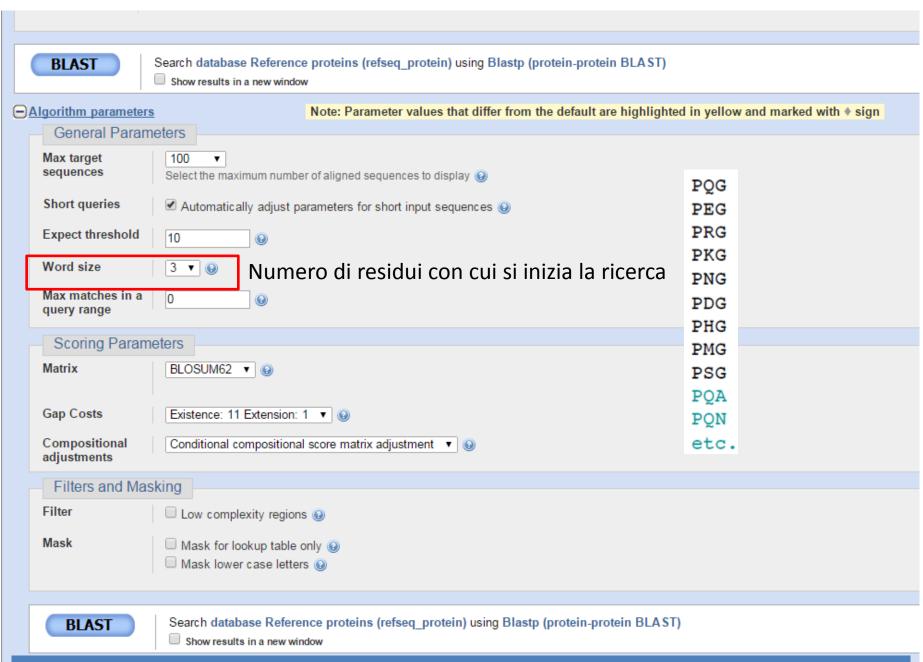
NP Proteins


NR_ Non-coding transcripts

From genome annotation:


XM Model mRNA

XP_____ Model proteins


Complete list of molecule types in Chapter 18 of the NCBI Handbook http://ncbi.nlm.nih.gov/books/NBK21091

E' possibile definire specifici parametri per la ricerca

Ricordiamo che l'E risponde alla domanda: quante sequenze mi aspetto che abbiano **per caso** uno score maggiore o uguale a quello che ho osservato (falsi positivi!)

Ricordiamo che l'E risponde alla domanda: quante sequenze mi aspetto che abbiano **per caso** uno score maggiore o uguale a quello che ho osservato (falsi positivi!)

	Search database Reference proteins (refseq_protein) using Blastp (protein-protein BLAST) Show results in a new window					
<u>-</u>	— <u>Algorithm parameters</u> Note: Parameter values that differ from the default are highlighted in yellow and marked with ♦ sign					
	General Parameters					
	Max target sequences	Select the maximum number of aligned sequences to display				
	Short queries					
	Expect threshold 0					
	Word size 3 ▼ (a)					
ſ	Scoring Param	neters	Vedi lezioni precedenti per matrice e gap			
	Matrix	BLOSUM62 ▼				
	Gap Costs	Existence: 11 Extension: 1 ▼	Questa terza voce permette di			
	Compositional adjustments	Conditional compositional score matrix adjustment ▼	controllare per la composizione AA delle sequenze analizzate			
Filters and Masking						
	Filter	☐ Low complexity regions ❷	Questo filtro è importante: permette di			
	Mask	☐ Mask for lookup table only <a> 回	effettuare ricerche escludendo regioni			
		☐ Mask lower case letters ❷	con molte ripetizioni come omopolimeri			
	Search database Reference proteins (refseq_protein) using Blastp (protein-protein BLAST) Show results in a new window					

Low-Complexity Regions

- Defined as regions of "biased composition"
 - Homopolymeric runs
 - Short-period repeats
 - Subtle over-representation of several residues
- May confound sequence analysis
 - BLAST relies on uniformly-distributed amino acid frequencies
 - Often lead to false positives
- Filtering is advised (but *not* enabled by default)

Esercizi con BLAST

- Proviamo ad effettuare una ricerca con le sequenze disponibili nel file
- BLAST

- Basic BLAST
 - blastp, creatine kinases
 - · COBALT extension
- Genome BLAST
 - blastn, tomato ETR2
 - · Potato genome BLAST
 - · Formatting options
 - · Genome context

- SRA BLAST
 - Potato RNA-Seq
- Primer BLAST
 - BRCA1 Exon Primers
- Microbial Genomes BLAST
 - Chicken Gut 16S
- MOLE-BLAST
 - Clustering Bovine Rumen
 16S