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Abstract. This paper heuristically tackles a challenging schedulingproblem aris-
ing in the field of hydraulic distribution systems in case of acontamination event,
that is, optimizing the scheduling of a set of tasks so that the consumed volume
of contaminated water is minimized. Each task consists of manually activating a
given device, located on the hydraulic network of the water distribution system.
In practice, once contamination has been detected, a given number of response
teams move along the network to operate each device on site. The consumed vol-
ume of contaminated water depends on the time at which each device is operated,
according to complex hydraulic laws, so that the value associated to each sched-
ule must be evaluated by a hydraulic simulation.
We explore the potentials of Genetic Algorithms as a viable tool for tackling this
optimization-simulation problem. We compare different encodings and propose
ad hoc crossover operators that exploit the combinatorial structure of the feasible
region, featuring hybridization with Mixed Integer LinearProgramming.
Computational results are provided for a real life hydraulic network of average
size, showing the effectiveness of the approach. Indeed, wegreatly improve upon
common sense inspired solutions which are commonly adoptedin practice.
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1 Problem Description

The geo-political scenario arising from 9/11 has spurred research concerning infrastruc-
tures protection policies and recovery procedures from intentionally induced service
disruptions, e.g., because of a terrorist attack. Water distribution systems are among
the most vulnerable infrastructures, due to the distributed physical layout of their net-
works, and to how critical is the commodity they supply: drinking water. People rely on
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water quality for a number of crucial activities, such as cooking, washing and bathing
in private households, while clear water is essential in operating restaurants, hospitals,
and some manufacturing. Adding deadly contaminant into an hydraulic network can
rapidly cause huge damage in terms of human losses, since contaminant quickly spreads
through the network and is consumed by the users. In this framework, monitoring and
promptly recovering is more viable than securing the whole water distribution system,
which often has a vast planimetric extent, e.g., a small citynetwork may reach 200km
and a thousand of pipes and nodes. The common policy followedin the deployment of
contamination warning systems consists of installing several sensors along the network,
strategically located according to optimization procedures [10], and periodically check-
ing water quality. As soon as a sensor has detected a contaminant, an ad hoc recovery
procedure is started, in order to mitigate the impact on the population. Besides popu-
lation alerting, two kinds of operations can be performed onnetwork devices: opening
hydrants in order to expel contaminated water, and isolating pipes by closing theirisola-
tion valvesin order to prevent contaminated water to flow toward denselypopulated ar-
eas. The objective is to minimize the impact on the population, usually measured as the
volume of contaminated water consumed by the users during a given period after con-
tamination. This value, which heavily depends on devices activation times, can neither
be computed nor approximated by simple analytical calculus, whereas it can be simu-
lated. A simulator such as EPANET [11] takes as input the network configuration, the
open/closed status of devices, and the time at which each device is operated, and returns
the volume of consumed contaminated water. For real world networks, each simulation
may take various seconds of computing time on a modern computer, (5′′ for a network
of about 800 nodes and 1100 main pipes) so that the total number of simulations cannot
exceed some threshold to be practically usable, even in an off line procedure such as
ours. In most networks, devices can only be operated manually, so teams of workers are
dispatched on the network to open hydrants and close valves on site. This introduces
significant delays and forbids to operate a large number of devices. The hydraulic en-
gineering literature provides several approaches to select the most suitable subset of
devices, given the location of the first alerted sensor: both[1] and [8] propose a multi-
objective approach minimizing the numbern of operated devices as well as the impact
on the population. However, the next major decision concerning the actual schedule of
devices activations has never been fully addressed. Indeed, [1] supposes to activate all
the selected devices instantaneously and simultaneously,while [8] builds a schedule
heuristically according to common sense criteria. However, there is no assurance that
this approach gives a (near) optimum scheduling, i.e., a scheduling that minimizes the
volume of consumed contaminated water.

This problem has some similarities with the multiple Traveling Salesman Problem
(mTSP), wherem salesmen visit the nodes of a graph minimizing total traveled dis-
tance. However, while themTSPobjective function is easily computed, being the sum
of traveled distances, ours requires an expensive simulation. Moreover, whilemTSP’s
good quality solutions tend to visit the nodes as soon as possible, in our problem, the
early closure of a valve may divert contaminant towards highconsumption/demand ar-
eas, so that a delay in the schedule sometimes improves the objective function value.



In this work, that extends [2], we propose a genetic algorithm that addresses ex-
plicitly the problem of assigning devices to teams (for a given numberm of teams) and
scheduling the teams operations, in order to minimize the volume of contaminated wa-
ter consumed by the users. Let us call this problem Response to Contamination Problem
(RCP). The genetic algorithm is coupled with an hydraulic simulator, that computes the
objective function. We implemented three different chromosome representations and
corresponding genetic operators. One representation is original and it is built on the
mathematical models developed for themTSPand for vehicle routing problems (VRP)
[12], while the other two come from the literature on themTSP, namely the Two Chro-
mosome and the Two Part representations [5]. The latter has been extended to insert
pauses in the schedules while the new one encompasses pausesnaturally. We experi-
mentally compare all these representations on the real instance of a medium sized city.

2 Genetic Algorithms for the Scheduling of Operations

Defining a Genetic Algorithm (GA) basically amounts to definethe structure of chro-
mosomes, the selection operator, the recombination operators (crossover and mutation),
besides fitness measures and termination conditions. In RCP, the evaluation of an indi-
vidual fitness requires a long hydraulic simulation, so the main obstacle to obtaining
good solutions is limited computing time. Therefore, our termination condition is a
fixed number of invocations to the hydraulic simulator. Since each call is expensive, we
store the input/output data of each call in a sort of caching mechanism with respect to
a unique coding of the solution, the activation times vectortF . If the objective func-
tion has been invoked before with the same arguments, its value is not re-computed
but retrieved from the cache. Thus, the number of invocations is not proportional to the
number of generations. Other features common to all theGA families further introduced
are: a classicalroulette wheelprocedure for parent selection, anelitist generational re-
placement scheme, mutation of clones, and random generation of the initial population.

2.1 A Genetic Algorithm Based on Sequences

As mentioned, RCP shares the feasibility structure of anmTSPdefined on a graph
where the mobilization point corresponds to the depotd and each client node to one of
then devices to operate. Then we can borrow from the encodings used for themTSP.
One of the first TSP encodings representing the sequence of the visited nodes in a vector
extends to the case ofm teams by adding a second row, the team identifiers.

3 4 1 2 8 5 7 6
1 2 1 3 2 3 2 2

(1)

In the chromosome shown in (1), team number 1 visits nodes 3 and 1 (in this order);
team 2 visits 4, 8, 7, and 6, while team 3 visits 2 and 5. This representation is namedtwo
chromosome technique, we call the relatedGA 2C, and the size of its solution space is
n!mn [5]. This encoding, as all those based on permutations, is affected by redundancy
which slows downGA’s convergence. In fact, the first row of the 2C encoding describes
a total order on the nodes but it gets decoded into a partial order, which is total only



within each route. So, any total order complying with this partial order yields the same
activation sequence. So far with the cons. Regarding the pros, this encoding supports
simple crossover operators, thanks to the representation into a linear data structure. For
example, one can use theone-point ordered crossover[7]. Given two parents,f andm,
for each integeri in the interval[1,n] two offsprings are generated as follows: the first
child inherits the firsti columns fromf and fills the other columns with the remaining
elements taken fromm in that order. In the example depicted in (2),i is equal to 4 so the
first 4 columns of the child are inherited fromf , while the remaining devices, namely
7, 3, 8, and 5, are taken fromm in such order, together with the team information.

f =
6 4 1 2 8 5 7 3
1 2 1 3 2 1 2 2

m=
2 7 3 8 4 6 1 5
2 1 3 3 1 2 1 2

⇒
6 4 1 2
1 2 1 3
︸ ︷︷ ︸

f

7 3 8 5
1 3 3 2
︸ ︷︷ ︸

m

(2)

The idea behind this operator is the following. The aim of a good crossover operator is
having offspring inherit those features that made its ancestors successful. We have no
information about what influences the value of our objectivefunction, lacking a simple
analytic formulation: we can only make reasonable assumptions. A possible assump-
tion is that the sequence of activations could influence suchvalue. So, if a sequence
is successful, keeping parts of this sequence could make theoffspring successful as
well. Note that, using a single point crossover, the offspring always inherits the firsti
elements from one of its parents. This is done on purpose, since devices operated as
first strongly influence contaminant spreading, and the firsti elements of the sequence
are likely to determine which devices are operated first, at least for one team. Figure 1
shows the tree representation of the offspring in (2): in thechild tree, the rooted subtree
in bold,Td, comes fromf , while the routes ofm, after the shrink due to the deletion of
the already selected nodes, are randomly appended toTd according to the team nam-
ing adopted inm. Symmetrically, the second child is generated by inheriting the firsti
columns frommwhile the remaining devices are activated in the order and bythe teams
as in f . Each solution (each tree) is associated with an equivalence class of individu-
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Fig. 1. An example of the tree representation of a crossover

als, each with a different chromosome representation, and this representation impacts
on the crossover results. In order to reduce this impact, before crossover we shuffle the
columns of each parent while preserving the partial order. In other words, we randomly
pick another representative for the same tree in the equivalence class. A further level of



redundancy comes from team names; by renaming teams we get different representa-
tions of the same solution. To deal with this symmetry, that may generate very different
offspring from very similar parents, we adopt a standard team naming approach: the
team operating device 1 takes name 1; the team that operates the device with smallest
identifier amongst the remaining devices takes name 2, and soon.

2.2 Two-part Chromosome

In [5] a so called two-part chromosome is proposed, with lower redundancy with respect
to the other encodings so far proposed in the literature. Thepermutation part of the
chromosome,Cdev, made ofn integers as usual, is followed by a second part,Cpart,
being a string ofm integers summing up ton. Its kth value tells how many elements are
part of thekth tour. For example, the same solution depicted in (1) would become (3).

2
︷︸︸︷

3 1

4
︷ ︸︸ ︷

4 8 7 6

2
︷︸︸︷

2 5
︸ ︷︷ ︸

Cdev

2 4 2
︸ ︷︷ ︸

Cpart

(3)

This way, the size of the representation space is lowered to the order ofn!
(n−1

m−1

)
. As in

[5], we adopt the above mentioned one-point ordered crossover for the first chromosome
partCdev, and a single point asexual crossover (a random rotation) for the second one
Cpart. Both are closed with respect to this encoding and yield feasible solutions.

As already mentioned, in RCP introducingdelaysin the schedule may improve the
objective function value. To this purpose, a vectorCpauseis added to the chromosome
assigning a pause to each device, ranging from 0 to an upper boundU . This can be
equivalently thought of as the teams moving atVariable Speed. For this reason the
relatedGA is named 2PVS, as opposed to the constant speed version called 2PCS. In case
of variable speed, also the third partCpauseis handled by one-point ordered crossover.

While this encoding has a lower redundancy if compared to traditional permutation
based encodings, redundancy can not be completely avoided.Indeed, redundancy is in-
herent into this kind of representation, since the encodingdistinguishes among salesmen
in the representation space, while they are all identical inthe solution space.

In 2CCS (i.e., the basic 2C), 2PCS and 2PVS GAs, we adopt the same mutation op-
erator, i.e., swapping two columns of the chromosome, applied randomly with given
probability. Such probability has a base value of 2%, it is increased of 1% in case of
no improvement for 3 consecutive generations, and reset to the base value in case of
improvement.

2.3 A Genetic Algorithm Based on Activation Times

The previous encodings support schedule feasibility sincethey encodemTSPsolutions,
and any such solution identifies a feasible schedule. However, they do not allow to di-
rectly propagate the activation time of a device, that is, the basic piece of information
in our problem, which can not be transmitted unless the wholesequence is inherited. A
straightforward encoding, which emphasizes the scheduling information, encodes ac-
tivation times directly in the chromosome, with geneith modeling activation time of



devicei. Such encoding, being the direct representation of the solution, is redundancy
free. The absence of redundancy, however, goes to the detriment of feasibility, which is
no longer guaranteed and must be explicitly restored after crossover and mutation. In-
deed, a generic vector of activation times does not carry along with it any knowledge of
the tours followed in the graph, nor the number of teams, therefore there is no straight-
forward crossover operator which can preserve feasibilitysince the encoding itself lacks
the necessary information. Consider for example the well known uniform crossover op-
erator (UX), which selects genes from the two parents based on a randomly generated
binary mask. A time-basedGA based on UX may yield vectors spanning the whole
spaceRn (the most obvious relaxation of the feasible region) but thereturned solution
may not only be infeasible but also quite different from the closest feasible one. Thus,
restoring feasibility after the application of each genetic operator ensures that each indi-
vidual during the search represents a feasible scheduling,and only feasible schedulings
are allowed to reproduce (Algorithm 1). In the following, weintroduce a Mixed In-

Algorithm 1: A genetic algorithm that restores feasibility through a MILP solver
Pop←generate initial population;
while not(termination condition) do

for Npop/2 timesdo
Select a pair( f ,m) of population individuals;
Temp1← Crossover(f,m);
Child1←call MILP solver(Temp1);
Temp2← Crossover(m,f);
Child2←call MILP solver(Temp2);
randomly apply mutation to individualI ;
I ← call MILP solver(I);

Pop←{Child1, ...,ChildN pop} ;

return best;

teger Linear Programming (MILP) model mapping any vector ofactivation times to
its closest feasible point. It will be used to restore feasibility at every step after the
UX crossover, and this approach will be denoted asUX with a posteriori feasibility re-
store(UXPF). Furthermore, we extend this idea and integrate the MILP model directly
within the genetic operator, giving raise to a second approach denoted asMILPX.

An Integer Programming Model to Restore Feasibility. Let t be a generic vector of
activation times. Ift is not feasible, i.e., it cannot be obtained by any scheduling of the
teams, we propose to repair it by turning it into the feasiblepoint tF closest tot by
normL1. As an example, consider a small network with 4 devices plus the mobilization
pointd, 2 teams and the following traveling time matrixτ:

τ =









d 1 2 3 4

d − 1 1 1 1
1 1 − 1 3 1
2 1 1 − 4 7
3 1 3 4 − 3
4 1 1 7 3 −











Vectorsm= [1,1,4,8] and f = [2,5,1,1] model feasible schedules but the UX operator,
by using the binary mask [1,1,0,0], yields the infeasible child t = [1,1,1,1]; the restoring
procedure returnstF = [2,1,1,3] as the closest feasible vector, which is indeed at 3
units distance fromt by L1.

Several MILP models can be adopted to findtF , building on those developed for the
mTSP[4] and routing problems in general, among which the following 2-index flow-
basedformulation [12]. The constraints extend themTSPmodel with traveling times
information, the objective function minimizes the distance fromt. The unknowns are:

X a matrix(n+1)× (n+1) of 0-1 variables.xi j = 1 iff j is activated right afteri by
the same team;i is activated first by its team iffxdi = 1; xii = 0∀i (no self loop arcs).

tF a vector ofn+1 activation times;tFi is the time at which devicei is activated, and
tFd is the departure time from the depotd.

δ a vector ofn differences: it is defined asδi = ti− tFi .

The input parameters are:

t a vector ofn ideal activation times.
τ a matrix(n+ 1)× (n+ 1); τi j represents the time that a team takes to move at a

given constant speed from the location of devicei to that of devicej.

The constraints:

∀i ∈ {1..n} tFi ≥ τdi (4)

∀i ∈ {1..n} δi = ti− tFi (5)

tFd = 0 (6)

∑
i∈{1..n}

xdi = m (7)

∀i ∈ {1..n} ∑
j∈{1..n}

xi j = ∑
h∈{1..n}

xhi (8)

∀i ∈ {1..n} ∑
j∈{1..n}

xi j = 1 (9)

∀i ∈ {1..n} tFi ≤M+ xdi(τdi +U−M) (10)

∀i, j ∈ {1..n} tFi + τi j ≤ tFj +(1− xi j )M+ x ji (τi j + τ ji +U−M) (11)

Constraint (4) says that devicei can be activated no earlier than the time it takes to reach
it from d. Eq. (5) is the definition ofδ . Teams leave the depot at time 0 (6). All teams
depart from the depot (Eq. (7)). For each nodei, the total number of teams arriving toi
is equal to the number of teams leavingi, (8), the so called flow balance constraints. All
nodes exceptd are visited exactly once (9). Constraint (10) is the linearization of the
implicationxdi = 1=⇒ tFi ≤ τdi +U (whereM is a sufficiently large positive number
andU the upper bound for the potential pause before each activation), so that, together
with (4), it imposes that the starting time of the first devices be equal to their traveling
time fromd plus a potential pause. Constraint (11) links the activation timestF to the
ordering between devices given by matrixX; indeed, (11) linearises the implications:

xi j = 1 =⇒ tFi + τi j ≤ tFj xi j = 1 =⇒ tFi + τi j +U ≥ tFj .



If U = 0 then (11) imposes that the arrival time at devicej equals the starting time from
i plus the traveling time fromi to j, thus implementing the constant speed variant of the
time-basedGA. Conversely, ifU > 0 the same constraint allows for a maximum pause of
U , thus implementing the variable speed variant of the algorithm. The objective function
associated to problem (4-11) is the minimization of||δ ||1, i.e. min

(

∑i∈{1..n} |δi |
)
. To

linearise this function, we introduce new unknownsδ+ that represent the absolute value
of δ , and minimize their sum.

Tighter Integration GA-MILP. Restoring feasibility after crossover may yield chil-
dren quite different from their parents, since feasibilityrestoring could disrupt those
patterns responsible for parents’ fitness. For this reason,we moved the call to the MILP
solverinsidethe crossover operator, giving raise to a new operator that we callMILPX.
In this way,MILPX generates directly a new individual proven to be feasible and, at
the same time, resembling the most to its parents among all their feasible children.

More precisely, given the chromosomes of the mating individuals f ≡ ( f1, . . . , fn)
andm≡ (m1, . . . ,mn), we generate the childc that minimizes the quantity

n

∑
i=1

min(|ci− fi |, |ci−mi|).

Stated otherwise, we can consider each chromosome as a pointin a n-dimensional
space. The two chromosomesf andm of the mating individuals define a hyper-par-
allelepiped that hasm and f as two verteces, and with sides parallel to the coordinate
axes (Figure 2). The MILP solver selects the feasible point in then-space closest to

f

mδ

c

(f1, f2, m3)

Fig. 2. Graphic representation of the crossover in a 3D space. Crosses represent feasible points,
mand f are the mating individuals;c is the closest feasible point (at distanceδ ) to a vertex of the
parallelepiped.

any vertex of the hyper-parallelepiped. In this way, if there exists a feasible point in the
n-space that inherits each coordinate from one of the two parents, it will be generated
(or, if there exist more points with such feature, one of themis definitely generated as



a spawn). Otherwise, the feasible point closest to one of such points is the spawned
individual. This is implemented by slightly modifying the MILP model (4-11), by in-
troducing a vector of unknownsW to range on the verteces of the hyper-parallelepiped;
wi = 1 iff the i-th coordinate of childc is inherited fromf (i.e., ci = fi) andwi = 0
otherwise (ifci = mi). The definition (5) of the displacementδ becomes (12)

∀i ∈ {1..n} δi = fiwi +mi(1−wi)− tFi (12)

Summing up, for theGA based on activation times, we propose two crossovers,UXPF
andMILPX, which can be used within the same algorithm, being invoked with different
probability, yielding the so calledtime-based Hybrid GAs. Finally, mutation is applied
when a generated offspring already belongs the current population (a clone), and con-
sists of swapping the activation time of two devices, restoring feasibility if necessary.

3 Computational Results

We applied the presentedGAs to the water distribution network of Ferrara, Italy, pop-
ulation 130,000. A previous work on the same network [8], selected the set of devices
to be operated after contamination detection by way of a multi-criteria GA, targeting
both minimal number of devices and minimal volume of consumed contaminated wa-
ter, supposing to have as many teams as devices, all departing at the same time. From
the Pareto front provided in [8], a point associated with a good trade-off was selected,
yielding then = 13 devices to be operated. Commonly, the response procedurestarts
as soon as a sensor raises the alarm. As stated in [8], an alarmevent detects a danger-
ous toxicity plausibly due to several contamination’s locations and times; in our case,
42 contamination scenarios exist which can be simulated andthen optimized. Among
those, we selected the 5 the most equally spread w.r.t. to theobjective function value
associated to the scheduling computed according to theas soon as possiblecriterion
(ASAP). This scheduling, in turn, is obtained by solving a MILP model for themTSP
with constraints (4), (6-11), andU = 0, minimizing the maximum among the devices
activation times{tFi , i ∈ 1..n}, which is also called themakespan.
CBC COIN-OR [6] is the MILP Solver used to tackle the optimization problems in the
Hybrid GAs and to compute the makespan. The hydraulic simulations were performed
by EPANET [11], an open-source software developed by the U.S. Environmental Pro-
tection Agency (EPA). Each simulation requires on average about 5 seconds. Since we
use a cutoff of 500 invocations to the hydraulic simulator, the average computational
time of eachGA is 5×500 seconds. Other parameters are the population sizeNpop= 20,
and the team numberm= 3 (a value set by the managers of the utility company operat-
ing the Ferrara network). With these parameters, CBC running time is negligible w.r.t.
EPANET.
Overall, we ran 13GAs. The first 10 belong to the time-based HybridGAs family (sec-
tion 2.3) and differ from each other regarding speed configuration, i.e. constant speed
(CS) and variable speed (VS), and the chance of using theMILPX method rather than
UXPF as the crossover operator at the current iteration. More specifically, we tested
five MILPX probability values, namely{0,25,50,75,100}%. The other threeGAs be-
long to the sequence-based family (section 2.1), namely, 2CCS, 2PCS, and 2PVS GAs.



For each scenario, we run eachGA 10 times. EachGA at each run shares the same
initial population as the otherGAs. Fig. 3 shows, for eachGA in ascending order, the
average of the objective function values achieved in the 5×10 runs.

All the time-based HybridGAs rank first, preceding all the sequence-based ones.
The last stack, at the far right of the histogram, representsthe average cost of the five
solutions returned by the ASAP policy computed on the 5 chosen scenarios.
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Fig. 3. Average of all the optimal candidates for eachGA configurations and of the A.S.A.P.
known solution

The histogram in Figure 3 allows us for several important considerations:
(a) the ASAP policy neither provides a lower bound for RCP nora near-optimal solu-
tion, since its average volume of consumed contaminated water is much higher than any
proposedGAs.
(b) Time-based encodings find better solutions than those based on sequences; this is
probably due to the fact that the time-based HybridGAs work in the same solution space
of the hydraulic simulator.
(c) Constant speed encodings find better solutions than variable speed encodings; this
may be due to the fact that the search space of the variable speed encodings is quite
larger due to pauses. Nevertheless, all variable speed Hybrid GAs outperform the con-
stant speed sequence-basedGAs.
(d) For both variable speed and constant speed, a mixedUXPF andMILPX policy for
the HybridGAs finds, on average, better solutions than totally unbalanced policies.

The histogram in Figure 3 shows that hybrid MILP-GAs based on a time represen-
tation have on average a better performance with respect to the encodings known in the
literature. However, in principle this result could be due to luck: indeed, we can only
experiment on a limited number of instances and all algorithms are based on some ran-
domness. For this reason there exists a probability that thenew time-based algorithm
is worse than the others, despite of its better performance in the finite number of the
performed experiments. In order to disprove such conjecture, one should use asignifi-



cance test[3]. We apply it to the five algorithms described earlier, namely theHCS, HVS,
2CCS, 2PCS and 2PVS. For the first two, we selected the best configuration with respect
to the percentage of the two crossovers, i.e., 50% for theHCS and 75% for theHVS. A
common test used to compare multiple algorithms is the Friedman test [9]. In our case it
affirms, with a confidence less than 10−4, that there are some algorithms which perform
significantly differently. In order to find the significantlydifferent pairs, one should use
the so-calledpost-hoc analysis; we adopted the Nemenyi procedure [9], that consists
of pair-wise tests within the whole set of groups. For each pair of algorithms, Table 4
reports the confidence level (the so-calledp-value) when assuming the two algorithms
have different behaviour. As we can see, such confidence is very low, and in many cases
below 10−4.

HCS HVS 2CCS 2PVS 2PCS

HCS 1 0.0193 < 0.0001 < 0.0001 < 0.0001
HVS 0.0193 1 0.0499< 0.0001 < 0.0001
2CCS < 0.0001 0.0499 1 0.0054 0.0016
2PVS < 0.0001 < 0.0001 0.0054 1 0.7043
2PCS < 0.0001 < 0.0001 0.0016 0.7043 1

Fig. 4. Thep−valuefor each pair-wise Nemenyi test. The bold
p−valuesare less thanα∗.

2C (CS)

2P (CS)

2P (VS)

H (CS) H (VS)

Fig. 5. The dominance graph

However, although single confidence levels are low, the probability of havingat
least one errorincreases with the number of comparisons (i.e.,Ncomp=

5×4
2 = 10).

Conventionally,p-values are considered significant when they are belowα = 5%. In
order to ensure that the whole table contains no errors withp-value belowα, Bonferroni
[9] suggests to take as significant in Table 4 only those pairsfor which the significance
is belowα∗ = α/Ncomp= 0.05/10= 0.005.

Results in Fig. 4 are graphically depicted in Fig. 5, where anarrow from algorithm
A to B means that algorithmA dominatesB with a p-value below 0.5%. Accordingly
with the histogram in Fig. 3, the dominance graph in Fig. 5 confirms that the Hybrid
time-basedGA, with a very little margin of error, achieves lower volumes of consumed
contaminated water with respect to all sequence-basedGAs.

4 Conclusions

In this study, we addressed an important problem in the security of water distribution
systems: the near-optimal planning of the response to an event of contamination.

We tackled the problem by way of genetic algorithms which optimize the value
of a black-box objective function, computed through a hydraulic simulator. We imple-
mented two crossover operators taken from the literature onmultiple traveling salesman
problem, then we proposed and implemented two new crossoveroperators that exploit
a mixed-integer linear programming solver, obtaining a hybrid GA-MILP algorithm.



We ran an extensive experimentation, in which we compared 13variants of the
various algorithms on 5 scenarios for 10 runs each. Considering that each invocation of
the black-box function takes about 5 seconds on a modern computer and that we used a
cutoff of 500 invocations, we have a total computing time of about 19 days.

All the proposedGAs improve on the common sense inspired solution. This con-
firms that the actual scheduling times impact on the solutionvalue and should be explic-
itly taken into account by any recovery procedure. Comparing their average behaviour,
we observed that the new, hybrid, algorithms outperform allthe others. A significance
test confirms this result, with a confidence level below 5%.

In future work, we plan to experiment on other scenarios and additional devices,
and to test the effect of variable speed in 2C GA.

AcknowledgementsThis work was partially supported by EU projectePolicy, FP7-
ICT-2011-7, grant agreement 288147. Possible inaccuracies of information are under
the responsibility of the project team. The text reflects solely the views of its authors.
The European Commission is not liable for any use that may be made of the information
contained in this paper.

References

1. Alfonso, L., Jonoski, A., Solomatine, D.: Multiobjective optimization of operational re-
sponses for contaminant flushing in water distribution networks. Journal of Water Resources
Planning and Management 136(1), 48–58 (2010)

2. Alvisi, S., Franchini, M., Gavanelli, M., Nonato, M.: Near-optimal scheduling of device ac-
tivation in water distribution systems to reduce the impactof a contamination event. Journal
of Hydroinformatics 14(2), 345–365 (2012)

3. Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.): Experimental Methods
for the Analysis of Optimization Algorithms. Springer (2010)

4. Bektas, T.: The multiple traveling salesman problem: An overview of formulations and solu-
tion procedures. Omega 34(3), 209–219 (2006)

5. Carter, A.E., Ragsdale, C.T.: A new approach to solving the multiple traveling salesperson
problem using genetic algorithms. European Journal of Operational Research 175(1), 246 –
257 (2006)

6. Forrest, J., Lougee-Heimer, R.: CBC User Guide. Computational Infrastructure for Opera-
tions Research, http://www.coin-or.org/Cbc/cbcuserguide.html

7. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-
Wesley (1989)

8. Guidorzi, M., Franchini, M., Alvisi, S.: A multi-objective approach for detecting and re-
sponding to accidental and intentional contamination events in water distribution systems.
Urban Water 6(2), 115–135 (2009)

9. Hollander, M., Wolfe, D.: Nonparametric Statistical Methods, Second Edition. Wiley (1999)
10. Murray, R., Hart, W., Phillips, C., Berry, J., Boman, E.,Carr, R., Riesen, L.A., Watson, J.P.,

Haxton, T., Herrmann, J., Janke, R., Gray, G., Taxon, T., Uber, J., Morley, K.: US environ-
mental protection agency uses operations research to reduce contamination risks in drinking
water. Interfaces 39(1), 57–68 (2009)

11. Rossman, L.: EPANET 2 users manual. National Risk Management Research Laboratory,
Office of research and development, U.S. Environmental Protection Agency, USA.

12. Toth, P., Vigo, D.: The vehicle routing problem. SIAM (2002)


