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Abstract. This paper heuristically tackles a challenging schedupiradplem aris-
ing in the field of hydraulic distribution systems in case ebatamination event,
that is, optimizing the scheduling of a set of tasks so thatctnsumed volume
of contaminated water is minimized. Each task consists ofually activating a
given device, located on the hydraulic network of the watstrithution system.
In practice, once contamination has been detected, a giverber of response
teams move along the network to operate each device on kigecdnsumed vol-
ume of contaminated water depends on the time at which eatwteds operated,
according to complex hydraulic laws, so that the value datextto each sched-
ule must be evaluated by a hydraulic simulation.

We explore the potentials of Genetic Algorithms as a viabt for tackling this
optimization-simulation problem. We compare different@tings and propose
ad hoc crossover operators that exploit the combinatdriatire of the feasible
region, featuring hybridization with Mixed Integer LineRrogramming.
Computational results are provided for a real life hydaulkétwork of average
size, showing the effectiveness of the approach. Indeedreatly improve upon
common sense inspired solutions which are commonly addptedhctice.

Keywords: Hybrid Genetic Algorithms, Simulation-Optimization, Sahuling

1 Problem Description

The geo-political scenario arising from 9/11 has spurredaech concerning infrastruc-
tures protection policies and recovery procedures fromnitibnally induced service
disruptions, e.g., because of a terrorist attack. Watdriloigion systems are among
the most vulnerable infrastructures, due to the distridbpteysical layout of their net-
works, and to how critical is the commaodity they supply: &my water. People rely on
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water quality for a number of crucial activities, such asling, washing and bathing
in private households, while clear water is essential irraiggg restaurants, hospitals,
and some manufacturing. Adding deadly contaminant into\airdulic network can
rapidly cause huge damage in terms of human losses, sintaneioiant quickly spreads
through the network and is consumed by the users. In thisenark, monitoring and
promptly recovering is more viable than securing the whadg¢ewdistribution system,
which often has a vast planimetric extent, e.g., a smallroityyvork may reach 20@n
and a thousand of pipes and nodes. The common policy follamvéee deployment of
contamination warning systems consists of installing sgwensors along the network,
strategically located according to optimization procedyd 0], and periodically check-
ing water quality. As soon as a sensor has detected a corgatnan ad hoc recovery
procedure is started, in order to mitigate the impact on tiufation. Besides popu-
lation alerting, two kinds of operations can be performecdetwork devices: opening
hydrants in order to expel contaminated water, and is@atipes by closing theisola-
tion valvesn order to prevent contaminated water to flow toward dengepulated ar-
eas. The objective is to minimize the impact on the poputatisually measured as the
volume of contaminated water consumed by the users durirnga geriod after con-
tamination. This value, which heavily depends on devicéisaton times, can neither
be computed nor approximated by simple analytical calcwliereas it can be simu-
lated. A simulator such as EPANET [11] takes as input the agdtwonfiguration, the
open/closed status of devices, and the time at which eadbedewoperated, and returns
the volume of consumed contaminated water. For real wotldor&s, each simulation
may take various seconds of computing time on a modern canigt for a network
of about 800 nodes and 1100 main pipes) so that the total nurhbenulations cannot
exceed some threshold to be practically usable, even infdmefprocedure such as
ours. In most networks, devices can only be operated mansalteams of workers are
dispatched on the network to open hydrants and close valveg@ This introduces
significant delays and forbids to operate a large numberatds. The hydraulic en-
gineering literature provides several approaches to s#lecmost suitable subset of
devices, given the location of the first alerted sensor: fjthnd [8] propose a multi-
objective approach minimizing the numbeof operated devices as well as the impact
on the population. However, the next major decision coringrthe actual schedule of
devices activations has never been fully addressed. InfiEleslipposes to activate all
the selected devices instantaneously and simultaneausile [8] builds a schedule
heuristically according to common sense criteria. Howetheare is no assurance that
this approach gives a (near) optimum scheduling, i.e., adiding that minimizes the
volume of consumed contaminated water.

This problem has some similarities with the multiple TravglSalesman Problem
(mT SB, wherem salesmen visit the nodes of a graph minimizing total tralelis-
tance. However, while thenT SPobjective function is easily computed, being the sum
of traveled distances, ours requires an expensive siroaldtloreover, whilenT SPs
good quality solutions tend to visit the nodes as soon asigess our problem, the
early closure of a valve may divert contaminant towards leighsumption/demand ar-
eas, so that a delay in the schedule sometimes improves jiaetiob function value.



In this work, that extends [2], we propose a genetic algorithat addresses ex-
plicitly the problem of assigning devices to teams (for aeginumbem of teams) and
scheduling the teams operations, in order to minimize tteme of contaminated wa-
ter consumed by the users. Let us call this problem Respor@3arttamination Problem
(RCP). The genetic algorithm is coupled with an hydrauleidator, that computes the
objective function. We implemented three different chremme representations and
corresponding genetic operators. One representatiorigsak and it is built on the
mathematical models developed for th@ SPand for vehicle routing problems (VRP)
[12], while the other two come from the literature on th& SR namely the Two Chro-
mosome and the Two Part representations [5]. The latter das bxtended to insert
pauses in the schedules while the new one encompasses patisedly. We experi-
mentally compare all these representations on the realriostof a medium sized city.

2 Genetic Algorithmsfor the Scheduling of Operations

Defining a Genetic Algorithm (GA) basically amounts to define structure of chro-
mosomes, the selection operator, the recombination agsr@rossover and mutation),
besides fitness measures and termination conditions. In tRERvaluation of an indi-
vidual fithess requires a long hydraulic simulation, so themobstacle to obtaining
good solutions is limited computing time. Therefore, ourmmimation condition is a
fixed number of invocations to the hydraulic simulator. 8ieach call is expensive, we
store the input/output data of each call in a sort of cachieghmanism with respect to
a unique coding of the solution, the activation times vettorIf the objective func-
tion has been invoked before with the same arguments, itsevialnot re-computed
but retrieved from the cache. Thus, the number of invocatismot proportional to the
number of generations. Other features common to alBAéamilies further introduced
are: a classicabulette wheeprocedure for parent selection, alitist generational re-
placement schemmutation of clones, and random generation of the initiglyation.

2.1 A Genetic Algorithm Based on Sequences

As mentioned, RCP shares the feasibility structure ofr@nSPdefined on a graph
where the mobilization point corresponds to the depand each client node to one of
then devices to operate. Then we can borrow from the encodingsfos¢hemT SP
One of the first TSP encodings representing the sequence wisited nodes in a vector
extends to the case ofteams by adding a second row, the team identifiers.

3|4(1|2|8|5|7|6 (1)
1|2/1|3|2|3|2|2

In the chromosome shown in (1), team number 1 visits nodesi3ldm this order);
team 2 visits 4, 8, 7, and 6, while team 3 visits 2 and 5. Thisgggntation is nameud/o
chromosome techniguee call the relate@GA 2C, and the size of its solution space is
n!m" [5]. This encoding, as all those based on permutationsfestadd by redundancy
which slows dowrGA's convergence. In fact, the first row of th€ 2ncoding describes
a total order on the nodes but it gets decoded into a partidrowhich is total only



within each route. So, any total order complying with thistighorder yields the same
activation sequence. So far with the cons. Regarding thg, phés encoding supports
simple crossover operators, thanks to the representatiomilinear data structure. For
example, one can use thae-point ordered crossov§r]. Given two parentsf andm,

for each integer in the interval[1,n] two offsprings are generated as follows: the first
child inherits the first columns fromf and fills the other columns with the remaining
elements taken fromnin that order. In the example depicted in (2 equal to 4 so the
first 4 columns of the child are inherited frofp while the remaining devices, namely
7, 3, 8, and 5, are taken fromin such order, together with the team information.
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The idea behind this operator is the following. The aim of adjorossover operator is
having offspring inherit those features that made its ancesuccessful. We have no
information about what influences the value of our objedtinrection, lacking a simple
analytic formulation: we can only make reasonable assumgtiA possible assump-
tion is that the sequence of activations could influence satte. So, if a sequence
is successful, keeping parts of this sequence could makeftigring successful as
well. Note that, using a single point crossover, the offapr@lways inherits the first
elements from one of its parents. This is done on purpose¢ sisvices operated as
first strongly influence contaminant spreading, and theifieg¢ments of the sequence
are likely to determine which devices are operated firsgadtl for one team. Figure 1
shows the tree representation of the offspring in (2): ircthitd tree, the rooted subtree
in bold, T4, comes fromf, while the routes ofn, after the shrink due to the deletion of
the already selected nodes, are randomly appendeég according to the team nam-
ing adopted irm. Symmetrically, the second child is generated by inhegithre firsti
columns frommwhile the remaining devices are activated in the order artiéyeams
as inf. Each solution (each tree) is associated with an equivalelass of individu-
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Fig. 1. An example of the tree representation of a crossover

als, each with a different chromosome representation, laisdépresentation impacts
on the crossover results. In order to reduce this impactrbefrossover we shuffle the
columns of each parent while preserving the partial ordesther words, we randomly
pick another representative for the same tree in the eauricalclass. A further level of



redundancy comes from team names; by renaming teams weffgeedi representa-
tions of the same solution. To deal with this symmetry, thaymenerate very different
offspring from very similar parents, we adopt a standardnte@aming approach: the
team operating device 1 takes name 1; the team that openategvice with smallest
identifier amongst the remaining devices takes name 2, and.so

2.2 Two-part Chromosome

In [5] a so called two-part chromosome is proposed, with lawdundancy with respect
to the other encodings so far proposed in the literature. ggrenutation part of the
chromosomeCye,, made ofn integers as usual, is followed by a second p@ptt,
being a string omintegers summing up to. Its K" value tells how many elements are
part of thek!" tour. For example, the same solution depicted in (1) wouttbbee (3).

2 4 2
AN

P
[3[1)[4[8[716][2]5] [2[4]2] (3)
—_— —

Cdev Cpart

This way, the size of the representation space is lowerdtgtorder ofn! (7). As in
[5], we adopt the above mentioned one-point ordered cres$orthe first chromosome
partCqev, and a single point asexual crossover (a random rotatiorihéosecond one
Cpart. Both are closed with respect to this encoding and yieldiiésolutions.

As already mentioned, in RCP introducidglaysin the schedule may improve the
objective function value. To this purpose, a ved@ghuseis added to the chromosome
assigning a pause to each device, ranging from 0 to an uppedd. This can be
equivalently thought of as the teams moving\ariable SpeedFor this reason the
relatedGAis named PV S, as opposed to the constant speed version caled i case
of variable speed, also the third p@Hauseis handled by one-point ordered crossover.

While this encoding has a lower redundancy if compared tittoaal permutation
based encodings, redundancy can not be completely avditkebd, redundancy is in-
herent into this kind of representation, since the encodistinguishes among salesmen
in the representation space, while they are all identiciiénsolution space.

In 2C°S (i.e., the basic @), 2P°S and VS GAs, we adopt the same mutation op-
erator, i.e., swapping two columns of the chromosome, agpgiaindomly with given
probability. Such probability has a base value of 2%, it iréased of 1% in case of
no improvement for 3 consecutive generations, and resétetdase value in case of
improvement.

2.3 A Genetic Algorithm Based on Activation Times

The previous encodings support schedule feasibility sineg encodenT SPsolutions,
and any such solution identifies a feasible schedule. Howthey do not allow to di-
rectly propagate the activation time of a device, that is,liasic piece of information
in our problem, which can not be transmitted unless the wbedgience is inherited. A
straightforward encoding, which emphasizes the scheglitiformation, encodes ac-
tivation times directly in the chromosome, with geiffemodeling activation time of



devicei. Such encoding, being the direct representation of theisalus redundancy
free. The absence of redundancy, however, goes to the @etrohfeasibility, which is
no longer guaranteed and must be explicitly restored aftessover and mutation. In-
deed, a generic vector of activation times does not carmygaldth it any knowledge of
the tours followed in the graph, nor the number of teamsgfloee there is no straight-
forward crossover operator which can preserve feasilsilitge the encoding itself lacks
the necessary information. Consider for example the wellmuniform crossover op-
erator (UX), which selects genes from the two parents basedrandomly generated
binary mask. A time-base@A based on UX may yield vectors spanning the whole
spaceR" (the most obvious relaxation of the feasible region) butréterned solution
may not only be infeasible but also quite different from thasest feasible one. Thus,
restoring feasibility after the application of each gemeperator ensures that each indi-
vidual during the search represents a feasible schedualimthonly feasible schedulings
are allowed to reproduce (Algorithm 1). In the following, weroduce a Mixed In-

Algorithm 1: A genetic algorithm that restores feasibility through d Misolver
Pop+—generate initial population
while not(termination condition do
for Npop/2 timesdo
Select a paif f,m) of population individuals;
Temp < Crossover (fm);
Child; «<—cal | .M LP_sol ver (Temp) ;
Temp < Crossover (m,f) ;
Child, «<—cal | .M LP_sol ver (Temp) ;
randomly apply mutation to individué|
L l<+call_MLPsolver(l);
| Pop< {Childy,...,Childnpop} ;
return best;

teger Linear Programming (MILP) model mapping any vectoactivation times to
its closest feasible point. It will be used to restore feidigjbat every step after the
UX crossover, and this approach will be denotedUxswith a posteriori feasibility re-
store(U XPF). Furthermore, we extend this idea and integrate the MILEehdirectly
within the genetic operator, giving raise to a second apgro@noted aMILPX.

An Integer Programming Model to Restore Feasibility. Lett be a generic vector of
activation times. It is not feasible, i.e., it cannot be obtained by any scheduirthe
teams, we propose to repair it by turning it into the feasjimintt” closest tat by
normL;. As an example, consider a small network with 4 devices plagrtobilization
pointd, 2 teams and the following traveling time matrix
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Vectorsm=[1,1,4,8 andf = [2,5,1, 1] model feasible schedules but the UX operator,
by using the binary mask [1,1,0,0], yields the infeasibliédah= [1,1, 1, 1]; the restoring
procedure returns” = [2,1,1,3] as the closest feasible vector, which is indeed at 3
units distance fromby L;.

Several MILP models can be adopted to fiffd building on those developed for the
mT SP[4] and routing problems in general, among which the follogv2-index flow-
basedformulation [12]. The constraints extend thel SPmodel with traveling times
information, the objective function minimizes the distarfiomt. The unknowns are:

X amatrix(n+1) x (n+ 1) of 0-1 variablesx;; = 1 iff j is activated right after by
the same teanjs activated first by its team iy; = 1; x; = OVi (no self loop arcs).
t7 avector ofn+ 1 activation timest;” is the time at which devickis activated, and
tf is the departure time from the depbt
o avector ofn differences: it is defined a&% =t; — ti'g.

The input parameters are:

t avector ofnideal activation times.
T a matrix(n+1) x (n+ 1); 1j; represents the time that a team takes to move at a
given constant speed from the location of deviteethat of deviceg.

The constraints:

Vi e {l.n} t” > 14 (4)
Vi e {1.n} §=t—t” (5)
ty =0 (6)
; Xgi=m (7)
ie{l..n}
Vi e {l.n} Z Xij = Z Xhi (8)
je{l..n} he{1..n}
Vi e {1..n} > xj=1 9)
je{l.n}
Vi e {1..n} ti"G;SM-l-Xdi(Tdi—i—U—M) (10)
vi,j € {1..n} tiy—i-Tij §t]y+(1—xij)M+in(Tij—i—Tji—l—U—l\/l) (11)

Constraint (4) says that devitcean be activated no earlier than the time it takes to reach
it from d. Eq. (5) is the definition 0. Teams leave the depot at time 0 (6). All teams
depart from the depot (Eqg. (7)). For each nodée total number of teams arriving ito

is equal to the number of teams leavin@), the so called flow balance constraints. All
nodes excepd are visited exactly once (9). Constraint (10) is the lineation of the
implicationxgi = 1 — t;’”“ < 14+ U (whereM is a sufficiently large positive number
andU the upper bound for the potential pause before each acijaso that, together
with (4), it imposes that the starting time of the first degit® equal to their traveling
time fromd plus a potential pause. Constraint (11) links the activetimest” to the
ordering between devices given by matixindeed, (11) linearises the implications:

xj=1=t7+5; <ty xj=1=t7+1;+U>t7.



If U =0then (11) imposes that the arrival time at devji@guals the starting time from

i plus the traveling time fromto j, thus implementing the constant speed variant of the
time-base@A. Conversely, itJ > 0 the same constraint allows for a maximum pause of
U, thus implementing the variable speed variant of the allgori The objective function
associated to problem (4-11) is the minimization||d |1, i.e. Min(Fic(1.n [8]). To
linearise this function, we introduce new unknowisthat represent the absolute value
of 8, and minimize their sum.

Tighter Integration GA-MILP. Restoring feasibility after crossover may yield chil-
dren quite different from their parents, since feasibiliggtoring could disrupt those
patterns responsible for parents’ fitness. For this reagemoved the call to the MILP
solverinsidethe crossover operator, giving raise to a new operator teataliMILPX.
In this way,MILPX generates directly a new individual proven to be feasibk ah
the same time, resembling the most to its parents amongeadiftrasible children.
More precisely, given the chromosomes of the mating indigld f = (fq,..., fy)
andm= (my,...,my), we generate the childthat minimizes the quantity

iminﬂci — fil,|ci — my]).

Stated otherwise, we can consider each chromosome as aipdamt-dimensional
space. The two chromosomésandm of the mating individuals define a hyper-par-
allelepiped that ham and f as two verteces, and with sides parallel to the coordinate
axes (Figure 2). The MILP solver selects the feasible pairthe n-space closest to
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Fig. 2. Graphic representation of the crossover in a 3D space. €&aspresent feasible points,
mand f are the mating individualg;is the closest feasible point (at distarfeto a vertex of the
parallelepiped.

any vertex of the hyper-parallelepiped. In this way, if thekists a feasible pointin the
n-space that inherits each coordinate from one of the tworpsré will be generated
(or, if there exist more points with such feature, one of themefinitely generated as



a spawn). Otherwise, the feasible point closest to one df paints is the spawned
individual. This is implemented by slightly modifying thelMP model (4-11), by in-
troducing a vector of unknown to range on the verteces of the hyper-parallelepiped;
w; = 1 iff the i-th coordinate of chilct is inherited fromf (i.e., ¢ = fj) andw; =0
otherwise (ifc; = my). The definition (5) of the displacemedthecomes (12)

Vie{Ln} &=fw+ml-w)—t" (12)

Summing up, for th&sA based on activation times, we propose two crossolEXfF
andMILPX, which can be used within the same algorithm, being invoki¢td avfferent
probability, yielding the so calleime-based Hybrid GAd-inally, mutation is applied
when a generated offspring already belongs the currentlatpmi (a clone), and con-
sists of swapping the activation time of two devices, réstpfeasibility if necessary.

3 Computational Results

We applied the presentdslAs to the water distribution network of Ferrara, Italy, pop-
ulation 130,000. A previous work on the same network [8leskld the set of devices
to be operated after contamination detection by way of airotiteria GA, targeting
both minimal number of devices and minimal volume of consdimentaminated wa-
ter, supposing to have as many teams as devices, all depattihe same time. From
the Pareto front provided in [8], a point associated with adywade-off was selected,
yielding then = 13 devices to be operated. Commonly, the response procstiuts
as soon as a sensor raises the alarm. As stated in [8], an ed@mhdetects a danger-
ous toxicity plausibly due to several contamination’s kxanas and times; in our case,
42 contamination scenarios exist which can be simulatedfasr optimized. Among
those, we selected the 5 the most equally spread w.r.t. tolijeetive function value
associated to the scheduling computed according t@shsoon as possibleriterion
(ASAP). This scheduling, in turn, is obtained by solving aLldimodel for themT SP
with constraints (4), (6-11), and = 0, minimizing the maximum among the devices
activation times{t;” ,i € 1..n}, which is also called theakespan

CBC COIN-OR [6] is the MILP Solver used to tackle the optintiaa problems in the
Hybrid GAs and to compute the makespan. The hydraulic simulations performed
by EPANET [11], an open-source software developed by the Eln8ironmental Pro-
tection Agency (EPA). Each simulation requires on averdmgmit5 seconds. Since we
use a cutoff of 500 invocations to the hydraulic simulatbe &verage computational
time of eachGAis 5x 500 seconds. Other parameters are the populatioMgize= 20,
and the team numben= 3 (a value set by the managers of the utility company operat-
ing the Ferrara network). With these parameters, CBC runtiine is negligible w.r.t.
EPANET.

Overall, we ran 1%As. The first 10 belong to the time-based Hyl@4s family (sec-
tion 2.3) and differ from each other regarding speed conditiom, i.e. constant speed
(CS) and variable speed (VS), and the chance of usinilithé>X method rather than
UXPF as the crossover operator at the current iteration. Moreifspaly, we tested
five MILPX probability values, namely0, 25,50, 75,100} %. The other thre&As be-
long to the sequence-based family (section 2.1), nameélyS,2P¢S and VS GAs.



For each scenario, we run eaG 10 times. EachGA at each run shares the same
initial population as the oth&BAs. Fig. 3 shows, for eacBA in ascending order, the
average of the objective function values achieved in thelB runs.

All the time-based Hybrid5As rank first, preceding all the sequence-based ones.
The last stack, at the far right of the histogram, represthi@@verage cost of the five
solutions returned by the ASAP policy computed on the 5 chgsenarios.

D Constant Speed Hybrid Time-based GAs - Sequence-based GAs

[ ] Variable Speed Hybrid Time-based GAs I~ 1 As Soon As Possible Solution
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Fig. 3. Average of all the optimal candidates for ea@l configurations and of the A.S.A.P.
known solution

The histogram in Figure 3 allows us for several importansigerations:

(a) the ASAP policy neither provides a lower bound for RCP aoear-optimal solu-
tion, since its average volume of consumed contaminateehigatnuch higher than any
proposedsAs.

(b) Time-based encodings find better solutions than thosedban sequences; this is
probably due to the fact that the time-based Hyl&# work in the same solution space
of the hydraulic simulator.

(c) Constant speed encodings find better solutions thaahlarspeed encodings; this
may be due to the fact that the search space of the variabdel specodings is quite
larger due to pauses. Nevertheless, all variable speedd@#s outperform the con-
stant speed sequence-ba&ss.

(d) For both variable speed and constant speed, a nux&dF andMILPX policy for
the HybridGAs finds, on average, better solutions than totally unbathpoécies.

The histogram in Figure 3 shows that hybrid MIIGAs based on a time represen-
tation have on average a better performance with respeeétertcodings known in the
literature. However, in principle this result could be doduck: indeed, we can only
experiment on a limited number of instances and all algoritiare based on some ran-
domness. For this reason there exists a probability thahéetime-based algorithm
is worse than the others, despite of its better performamdied finite number of the
performed experiments. In order to disprove such conjecture should use signifi-



cance tesf3]. We apply it to the five algorithms described earlier, miyrtheHS, HVS,
2CCS, 2PCS and PV, For the first two, we selected the best configuration witpees

to the percentage of the two crossovers, i.e., 50% foHf@and 75% for theHVS. A
common test used to compare multiple algorithms is the Rradtest [9]. In our case it
affirms, with a confidence less thanTQthat there are some algorithms which perform
significantly differently. In order to find the significanttijfferent pairs, one should use
the so-callegpost-hoc analysiswve adopted the Nemenyi procedure [9], that consists
of pair-wise tests within the whole set of groups. For eadh gfaalgorithms, Table 4
reports the confidence level (the so-calfeslalue) when assuming the two algorithms
have different behaviour. As we can see, such confidenceysox®, and in many cases
below 1074,

HCS HVS 2cCs 2pvVS 2pCS

HCS 1 0.0193 < 0.0001 < 0.0001 < 0.0001
HYS 0.0193 1 0.0499 < 0.0001 < 0.0001
2cCS<00001 00499 1 00054 00016  (cs)
2PYS < 0.0001 < 0.0001 0.0054 1 0. 7043

2PCS < 0.0001 < 0.0001 0.0016 0.7043

Fig. 4. The p—valuefor each pair-wise Nemenyi test. The bold
p— valuesare less tham*. Fig.5. The dominance graph

However, although single confidence levels are low, the gndity of having at
least one errorincreases with the number of comparisons (Nemp = 5%4 = 10).
Conventionally,p-values are considered significant when they are betow 5%. In
order to ensure that the whole table contains no errorspvithlue belowa, Bonferroni
[9] suggests to take as significant in Table 4 only those fairahich the significance
is belowa™® = o /Neomp= 0.05/10= 0.005.

Results in Fig. 4 are graphically depicted in Fig. 5, wheraaow from algorithm
A to B means that algorithrA dominatesB with a p-value below 0.5%. Accordingly
with the histogram in Fig. 3, the dominance graph in Fig. 5ficors that the Hybrid
time-basedSA, with a very little margin of error, achieves lower volumdgonsumed
contaminated water with respect to all sequence-b@ged

4 Conclusions

In this study, we addressed an important problem in the ggafrwater distribution
systems: the near-optimal planning of the response to amt e¥eontamination.

We tackled the problem by way of genetic algorithms whichimjte the value
of a black-box objective function, computed through a hyticasimulator. We imple-
mented two crossover operators taken from the literaturawtiple traveling salesman
problem, then we proposed and implemented two new crossgezators that exploit
a mixed-integer linear programming solver, obtaining arfd/@A-MILP algorithm.



We ran an extensive experimentation, in which we comparesatints of the
various algorithms on 5 scenarios for 10 runs each. Corieglérat each invocation of
the black-box function takes about 5 seconds on a modernuigmgnd that we used a
cutoff of 500 invocations, we have a total computing timelodiat 19 days.

All the proposedsAs improve on the common sense inspired solution. This con-
firms that the actual scheduling times impact on the solut#ne and should be explic-
itly taken into account by any recovery procedure. Comgitieir average behaviour,
we observed that the new, hybrid, algorithms outperfornthalothers. A significance
test confirms this result, with a confidence level below 5%.

In future work, we plan to experiment on other scenarios atditianal devices,
and to test the effect of variable speed @ GA
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