
	 Editorial Preface

i Services Modeling, Provisioning, and Access
	 Liang-Jie	Zhang,	Kingdee	International	Software	Group,	China
	
 Research Articles
 	
1 A Computational Logic Application Framework for Service Discovery
 and Contracting
	 Marco	Alberti,	New	University	of	Lisbon,	Portugal
	 Massimiliano	Cattafi,	University	of	Ferrara,	Italy
	 Federico	Chesani,	University	of	Bologna,	Italy
	 Marco	Gavanelli,	University	of	Ferrara,	Italy
	 Evelina	Lamma,	University	of	Ferrara,	Italy
	 Paola	Mello,	University	of	Bologna,	Italy
	 Marco	Montali,	Free	University	of	Bozen-Bolzano,	Italy
	 Paolo	Torroni,	University	of	Bologna,	Italy

26 Case Studies and Organisational Sustainability Modelling Presented by Cloud
Computing Business Framework

	 Victor	Chang,	University	of	Southampton	and	University	of	Greenwich,	UK
	 David	De	Roure,	University	of	Oxford,	UK
	 Gary	Wills,	University	of	Southampton,	UK
	 Robert	John	Walters,	University	of	Southampton,	UK

54 Provisioning Virtual Resources Adaptively in Elastic Compute Cloud Platforms
	 Fan	Zhang,	Tsinghua	University,	China
	 Junwei	Cao,	Tsinghua	University,	China
	 Hong	Cai,	IBM	China	Software	Development	Lab,	China
	 James	J.	Mulcahy,	Florida	Atlantic	University,	USA
	 Cheng	Wu,	Tsinghua	University,	China

70 Semantic-Based Access to Composite Mobile Services
	 Xu	Yang,	Virginia	Tech,	USA
	 Athman	Bouguettaya,	RMIT	University,	Australia
	 Xumin	Liu,	Rochester	Institute	of	Technology,	USA

InternatIonal Journal of
Web ServIceS reSearch

Table of Contents

July-September 2011, Vol. 8, No. 3

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Abductive Logic Programming, Analysis, Contracting, Interoperability, Proof Procedure,
Rules, Semantic Discovery, Web Services

A Computational Logic
Application Framework
for Service Discovery

and Contracting
Marco Alberti, New University of Lisbon, Portugal

Massimiliano Cattafi, University of Ferrara, Italy

Federico Chesani, University of Bologna, Italy

Marco Gavanelli, University of Ferrara, Italy

Evelina Lamma, University of Ferrara, Italy

Paola Mello, University of Bologna, Italy

Marco Montali, Free University of Bozen-Bolzano, Italy

Paolo Torroni, University of Bologna, Italy

ABSTRACT
In Semantic Web technologies, searching for a service means identifying components that can potentially
satisfy user needs in terms of inputs and outputs (discovery) and devise a fruitful interaction with the customer
(contracting). In this paper, the authors present an application framework that encompasses both the discovery
and the contracting steps in a unified search process. In particular, the authors accommodate service discovery
by ontology-based reasoning and contracting by reasoning about behavioural interfaces, published in a formal
language. To this purpose, the authors consider a formal approach grounded on Computational Logic. They
define, illustrate, and evaluate a framework, called SCIFF Reasoning Engine (SRE), which can establish if a
Semantic Web Service and a requester can fruitfully inter-operate, by computing a possible interaction plan
based on the behavioural interfaces of both. The same operational machinery used for contracting can be
used for runtime verification.

DOI: 10.4018/jwsr.2011070101

2 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Service Oriented Architecture (SOA) and Web
services are emerging as standard architectures
for distributed application development. Even-
tually, the use of off-the-shelf solutions/services
is becoming possible, although concerns about
the adoption of such components have been
raised. In particular, the search of services on
the basis of the functionality they provide,
rather than on some syntactical property, is
still an open research issue. Some authors are
seeking for a possible solution to this problem
among the technologies for the Semantic Web
(McIlraith et al., 2001; Kifer et al., 2004). The
idea is to augment Web service descriptions by
semantic information that can be used to search
for Semantic Web Services (SWS).

WEB SERVICE DISCOVERY
AND CONTRACTING WITH SRE

In our view, searching for a service means to
identify components that i) can potentially sat-
isfy the user needs, and ii) can be invoked by
the customers and interact with them. Of course,
an interaction is successful if it satisfies user/
service goals and constraints; as an example,
a user might not want to provide a credit card
number to a non-certified service, or a service
could disallow credit card payments for items
out of stock or with more than 30% discount.
Hence, a user request should contain not only
a description (given in semantic terms) of the
user desires, but also the user constraints about
the content and the order of the exchanged
messages, to be matched with the constraints
that constitute a “behavioural interface” of the
user/service. We consider the search of a SWS
as the process of selecting, among a given set of
services, those components that both i) satisfy
the ontological requirements, by providing
the requested functionality; and ii) satisfy the
constraints on interaction, by supporting the
requested behaviour.

In this article we present SRE (SCIFF
Reasoning Engine), a framework for searching

Semantic Web Services that takes into account
requested functionalities as well as requested
behaviours. Following Kifer et al. (2004), SRE
adopts a two-step search process (Figure 1).
For the first phase, called discovery, it extends
a well-known algorithm from the literature
(Paolucci et al., 2002). In particular, it considers
a requester’s desires, and, using ontology-based
reasoning on knowledge expressed in OWL
(Bechhofer et al., 2004), produces a shortlist of
services that can potentially satisfy a request of
such a kind. The second step, called contracting,
matches the requester’s behavioural interface
with those of each shortlisted service. The
purpose is to establish constructively whether
an interaction can be effectively achieved, and
if such interaction leads to achieve the user/
service goals. Our choice has been to represent
behavioural interfaces using a declarative, rule-
based approach, and to exploit computational
logic techniques to perform the reasoning task.
Note that “contract” is a term also used in
other contexts, such as in software engineering
(Design By Contract, Brunel et al., 2004). This
work does not focus on software engineering
issues, and we use the terms “contract” and
“contracting” in the sense it is used by others
in the SWS literature.

We formalise the external behavior inter-
faces of users and web services in a declarative
language which is a modification of the SCIFF
abductive logic programming language (Al-
berti et al., 2008), originally developed for the
specification of open societies. In this new
language, behavioural interfaces are defined
by Integrity Constraints (ICs): a sort of reactive
rules used to generate and reason about expec-
tations on possible evolutions of a given inter-
action. The SCIFF language is equipped with
a proof procedure, which SRE exploits to au-
tomatically reason upon the behavioural inter-
faces. Such a reasoning task aims to establish
if an interaction can be effectively achieved
and, in case of a positive answer, to provide
also a sort of a (partial) plan of a possible in-
teraction.

In previous work (Alberti et al., 2007), we
presented a prototype of the SRE framework,

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 3

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

focused on the contracting step alone. We in-
troduced the idea of representing behavioural
constraints as rules, showing how to reason
from them using abductive inference, and
Abductive Logic Programming, a powerful
formalism for hypothetical reasoning with
rules, in particular (Kakas et al., 1992). This
article describes in greater detail an extended
SRE framework, which supports the discovery
step, and features ontological reasoning in both
the discovery and the contracting phase. The
abductive proof procedure can be used to verify,
at runtime, the compliance of interacting parties
to their contract.

INNOVATIVE SRE FEATURES

SRE advances state-of-the-art solutions on
SWS search process in several directions. The
first one is an increased flexibility of service
descriptions, by choosing a declarative, rather
than procedural, approach to specification, as
advocated in recent literature (van der Aalst et
al., 2005; Montali et al., 2010). An SRE WS
description contains both functional properties
and behavioural specifications. The latter are
given using a declarative approach based on
rules. This choice allows a greater flexibility
when compared to procedural ways of describ-
ing service behavioural aspects, since it only
focuses on constraining the desired behaviour,
and it does not require to idly specify all the
possible behaviours. This may be less signifi-
cant in very simple behaviours, but it makes a
difference when the behaviours to specify are
complex and result from a set of requirements

given in natural language. For example, a service
might not provide enough information on how
to interact for security reasons: in such a case,
the plan of the possible interaction would be
partial and/or incomplete. The ability to reason
with partial information and still provide the
user with an answer is a benefit mainly due
to the declarative, as opposed to procedural,
nature of SRE.

The underlying operational machinery, the
SCIFF abductive proof procedure (Alberti et al.,
2008), enriched with the possibility to access
ontological knowledge, is used for (i) automated
contracting (i.e., computing a partial plan of
interaction that achieves the user’s goals while
satisfying the user’s and the service’s policies)
and possibly (ii) runtime verification of compli-
ance of the interacting parties to their contract,
or possibly to an external interaction protocol
or choreography. Whereas several approaches
and formalisms have been proposed to deal with
one of the aforementioned tasks, SRE provides
a uniform specification language and a reasoner
to perform all of them. While outside the scope
of this article, in order to further demonstrate
the flexibility of SCIFF-based approach, we
would like to point out that in previous work we
applied the same reasoner to a-priori verifica-
tion of compliance of a service specification to
a choreography (Alberti et al., 2006).

Moreover, the use of a computational logic
language bears another important advantage,
given by its built-in unification and constraint-
handling engine: it enables reasoning about the
content of the messages during the contracting
phase. In other words, in SRE one can specify

Figure 1. Looking for the right service in SRE

4 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the external behaviour of a SWS also in terms
of the content of the messages. For instance,
an eCommerce service could specify different
behaviours based on the fact that the invoker
of the service is a premium customer rather
than a newcomer, or it could support special
behaviours for customers that acquire an amount
of goods which exceeds a certain threshold.
Last but not least, we extended the SCIFF
reasoning tool, which can now accommodate
ontological inference also while dealing with
rules. This solves an issue with the behavioural
interfaces that are described by rules that use
different terms.

ROADMAP

The article is structured as follows. First we posi-
tion our technology with respect to the Semantic
Web architecture, and we introduce a simple
running scenario, which we will use throughout
the paper to illustrate the framework. Then,
we describe the discovery and the contracting
phases. In the section “Behavioural Specifica-
tion Language and Semantics” we introduce the
language and tools used by SRE to represent
and reason upon the behavioural interfaces of
the services. In the section “Implementation
Architecture”, we describe the technical details
about the implemented framework, followed by
a discussion of related work and conclusions.

SRE AND THE SEMANTIC WEB

With respect to the semantic Web cake, our
framework affects two layers: ontology and
logical reasoning (Figure 2). They are inter-
nally represented with two different sets of
information and stored in two different files.
Ontological aspects are represented by means
of an OWL-S 1.1 profile, and the reasoning
upon such information is performed by Pellet
(Parsia & Sirin, 2004). Behavioural proper-
ties are defined using a computational logic
language, named SCIFF (Alberti et al., 2008).
This allows us to keep the architecture open
to other SWS description solutions, without

giving up the powerful SCIFF formalism for
representing the interaction issues.

Rule-based languages have been advo-
cated to enhance the semantic information
associated to Web content. As claimed by Bry
and Eckert (2006), a rule-based approach to
reactivity on the Web provides many benefits.
To cite some:

• Rules are easy to understand for humans.
Requirement specifications often come in
the form of rules expressed in a natural or
formal language;

• Rule-based specifications are flexible and
easy to adapt;

• Rules are well-suited to be processed and
analysed by machines;

• Rules can be managed in a single knowl-
edge base or in several knowledge bases
possibly distributed over the Web.

Moreover, if the rules are defined in a logic-
based formal language, computational logic
technologies, i.e., languages, tools, and proof
procedures, can be successfully used to perform
reasoning tasks, such as a-priori verification
of interoperability or runtime verification of
compliance. For these reasons, the integration
of ontological and rule-based knowledge in ser-
vice description is a key advantage of the SRE
approach, as we demonstrate in the remainder
of this paper.

ESHOP SCENARIO

Let us consider an artificial example. User alice
forgot to buy her brother a Christmas present
and now she is desperately searching the Inter-
net for an online shop that sells the last crime
fiction novel featuring detective Montalbano.
She is particularly worried because she needs
to find a shop that can deliver the book to Italy
within 3 days. She can pay cash or by credit
card. She is also worried about frauds, so she
will not provide her credit card number to any
electronic shop, but only to those belonging to
a Better Business Bureau (BBB).

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 5

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

eShop1 is the biggest Internet book seller,
and through its semantic Web services it pro-
vides all kinds of books. Its services are adver-
tised with the generic term “book”. Concerning
delivery, fast delivery (one day) is allowed
only if payment is performed by credit card;
otherwise, standard delivery (one week) is the
default option.

eShop2 is a small Internet seller, specialized
in crime fiction books only. Its service adver-
tisements use again the generic term “book”,
and it accepts “credit card” payment and “cash”
payment. The shop delivers in two days but only
delivers to customers in the European Union. It
proves its membership to the BBB upon request.

eShop3 is a huge consumer electronics
chain, which advertises its Internet service
as “selling hardware.” It accepts all payment
methods, supports delivery in 1 day, provides
its membership to BBB if credit card payment
is chosen.

In our scenario, alice queries a search
engine, which performs a discovery step; in
this phase eShop1 and eShop2 are shortlisted
as possible services (eShop3 is discarded as
it does not sell items related to the concept of
“book”). However, this does not guarantee that
an interaction is possible. Due to alice’s policy,
the credit card number is provided only to
BBB members, so only eShop2 remains viable.
Feasibility of delivery, based on geographical
criteria, has to be checked too.

DISCOVERY AND
CONTRACTING

As in Kifer et al. (2004), we distinguish be-
tween a discovery and a contracting phase.
During discovery, the user request for a service
is compared with each SWS description, and
possible services are selected based on ontologi-
cal matching criteria. The discovery process
returns a shortlist of candidate services, which
might fulfill the user requirements, because
their descriptions match, at least partially, the
client’s requests. Such a shortlist is given in
input to the next phase.

The contracting phase uses the behavioural
interfaces, i.e., the set of rules that each partner
has declared to represent their constraints about
how the interaction should happen. Here we see
exactly which services fulfill the requirements.
In particular, the problem is to decide whether,
given a set of service/user rules, an interaction
between client and service can effectively hap-
pen and achieve the user/service goals.

Discovery

Our framework’s discovery phase uses an ex-
tended version of a semantic matching algorithm
defined by Paolucci et al. (2002). We are aware
of other proposals for semantic matching (e.g.,
Oundhakar et al., 2005; Ragone et al., 2007)
aimed at overcoming its limitations (one com-

Figure 2. Semantic Web cake and addressed levels

6 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

mon criticism is that the algorithm considers
only inputs and outputs of a service, whereas it
ignores preconditions and effects, see Wang et
al., 2006). However, our modular architecture
supports other matching algorithms, and does
not depend on the particular choice.

Given a client’s request, discovery is con-
ceived as the problem of selecting those services
that might satisfy the client’s needs. The client
publishes her needs in terms of information she
is willing to provide as input to the service, and
in terms of outputs she expects from the service.
Similarly, each service advertises its own capa-
bilities as a list of pieces of information that it
requires in input, paired with the information it
will provide in output. Each piece of informa-
tion represents a parameter, and the discovery
problem can be intended as looking for those
services whose input (output) parameters match
the input (output) parameters of the client. The
client’s request is compared with every service
description available, and a set of candidate
services is returned to the client.

Paolucci et al. (2002) assume that each
parameter is described via ontological propo-
sitions. For instance, in SRE, the parameters
are defined in terms of OWL-S concepts. The
parameters of each available service profile are
checked against the parameters in the client’s
request. Subsumption is used to decide if two
parameters match. There are four different
matching levels, depending on the subsumption
relation: exact, if it is possible to establish that
two parameters defined with different terms
both refer to the same concept; plugin and
subsume if a parameter is subsumed/subsumes
the other; and fail if no subsumption relation
can be identified.

In this phase, the main problem is that the
terms/concepts used in the request could differ
from those used in the service description. In
particular, two seemingly different terms could
actually refer to the same concept. In this work,
we do not deal with this problem, which we
leave to further research and extensions of SRE.
We simply assume that there exists a common
ontology, and we let the ontological reasoner
match terms and concepts that may be different

(in that they do not match exactly, according
to the aforementioned classification), but are
in the same ontology.

To increase flexibility, our implementation
generalizes the original algorithm defined by
Paolucci et al. (2002), which requires the number
of input/output parameters to be exactly the same
in the client request and in the service profile,
in order for a service to be discovered. In SRE,
if a service provides more outputs or requires
less inputs than those stated in the client’s query,
such a service may be selected anyway. As a
result, the contracting phase may be provided
with more choices, and it may indeed end up
selecting a service which would be discarded
according to Paolucci et al. (2002). The reason
is that the contract could be satisfactory for both
parties even if the client discards some of the
outputs of the service, or if it provides an input
disregarded by the service. Suppose, e.g., that
eShop2 has launched a marketing campaign to
attract new customers: together with each book
bought on its Web site, eShop2 will provide
also a free voucher of 10$ valid for the next
order. The algorithm in its original form would
disregard eShop2 since it provides both a book
and a voucher, while alice is looking for a book
only. We instead include eShop2 in the set of
discovered services, following the intuition
that alice can freely decide what to do with the
bonus voucher.

Notable alternative approaches include
semantic contexts and similiarity functions
(Isaac et al., 2008). In our scenario, however,
a client sending a request already expressed in
term of a concept would not provide enough
information for identifying a context, thus
making such alternative less interesting from
our viewpoint. Indeed, this would be a very
interesting research direction once we extend
and enrich the amount of information carried
in every client’s request.

Contracting

Based on the output of the discovery phase, SRE
moves on to the next phase to decide whether
an interaction can be achieved. To this end,

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 7

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

SRE tries to establish if there exists a possible
sequence of events (exchanged messages) that
respect the constraints of both the service and
the user. If it does, SRE produces a plan (see
the section on Operational Semantics) whose
(partially ordered) actions are the messages that
should be exchanged. Note that the reasoning
process is user goal-driven: not all the possible
interactions are of interest; only those that satisfy
the user’s needs are. The contracting phase,
as well as the discovery phase, may involve
ontological reasoning, which is delegated to
an external ontological reasoner.

At the logical level, the SWS are repre-
sented in SRE with triplets:

s ws Pws, ,

where s identifies a certain service, ws is the
name of a Web service that provides s, and Pws
is ws’s behavioural specification (see Defini-
tion 1).

A client c may submit a query to SRE by
providing a description of a service it needs (its
goal G), and possibly its behavioural specifica-
tion Pc. SRE answers to c’s query by providing
a number of triplets:

ws, ,e D

each containing the name of a Web service that
provides a certain service s satisfying the goal G,
plus some additional information. Intuitively, ε
encodes a possible sequence of inter-operations
between ws and c regarding s, while Δ contains
a number of additional validity conditions for ε.
For example, in the eShop scenario, if G is “get
book”, ε may be “ws (eShop2) shows evidence
of membership to the BBB, c pays by credit
card”, and Δ may be “delivery in Europe”.

BEHAVIOURAL SPECIFICATION
LANGUAGE AND SEMANTICS

In SRE, the behavioural specification describes
a Web service’s observable behaviour in terms
of events, representing, for instance, exchanged

messages. SRE considers two types of events:
those that one actor receives or can directly
control (e.g., if we consider Web service ws’
behavioural interface, a message generated by
ws itself) and those that one desires (not) to
receive. Such information is represented in SRE
by means of logic atoms (Lloyd, 1987) with
functor H that denote “happened” events, and
with functor E (resp. EN) which denote “de-
sired” (resp. “undesired”) events, also known
as positive (resp. negative) expectations. Both
happened events and expectations represent
hypotheses about events that may happen in
the future, which encode possible interactions
between a client and a service. Arguments of
event atoms can contain variables (convention-
ally with uppercase initial, e.g., M, T), that can
be associated with domains and restrictions, as in
Constraint Logic Programming. For example, a
time variable may be associated with restrictions
representing deadlines. Although our proof-
procedure and implementation support both
continuous and discrete time intervals, in this
paper we will only consider integer domains.

The syntax of event atoms is as follows:

• H(ws, ws1, M, T), for messages (with con-
tent M) that a Web service ws1 receives
from another Web service ws, or (changing
perspective) that ws intends to send to ws1
at some time in the domain of T;

• E(ws1, ws, M, T) for messages (with content
M) expected by ws to be sent to him from
ws1 at some time inside the domain of T;

• EN(ws1, ws, M, T) for messages (with
content M) that are expected by ws not to
be sent to him by ws1 at any time in the
domain of T (note that in negative expecta-
tions variables are implicitly universally
quantified).

Message contents are logical terms. Intui-
tively, the functor represents the type of message
(ask, send, etc.), although there is no predefined
set of keywords.

Web service specifications in SRE are
relations among expected events, expressed by
an Abductive Logic Program (ALP). An ALP

8 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

(Kakas et al., 1993) is a triplet P A IC, , ,
where P is a logic program, A is a set of
predicate symbols named abducibles, and IC
is a set of logical formulas called integrity
constraints. P defines predicates, A the contains
the predicate symbols with no definition in P,
and the role of IC is to control the ways predi-
cates built upon elements of A are hypothesised,
or “abduced”. Reasoning from an ALP is usu-
ally goal-directed (being G a goal), and it
amounts to finding a set of abduced hypotheses
Δ built from predicates in A such that
P G∪ =∆ | and P IC∪ =∆ | . Kowalski and
Sadri (1999) have shown how an abductive
logic programming proof-procedure such as
the IFF by Fung and Kowalski (1997) can
reconcile backward, goal-oriented reasoning
with forward, reactive reasoning.

Definition 1. Web Service Behavioural
Specification. Given a Web service ws, its
behavioural specification Pws is an ALP,
represented by the triplet

P KB A ICws ws wsº , ,

where:

• KBws is ws’s Knowledge Base,
• A is the set of abducible predicates, and
• ICws is ws’s set of Integrity Constraints.

KBws is a set of backward rules (clauses)
which declaratively specifies pieces of knowl-
edge of the Web service. Note that the body of
KBws ‘s clauses may contain E/EN expectations
about the behaviour of the Web services. A is
the set of abducible predicates, which includes
E/EN expectations, H events, and predicates not
defined in KBws. Integrity Constraints (ICs) are
forward rules1, of the form Body→Head. The
Body of ICws is a conjunction of events, literals
and CLP2 constraints (over integer or real num-
bers); Head is either a disjunction of conjunc-
tions of events, literals and CLP constraints, or

false. Operationally, whenever Body becomes
true, the IC fires and forces Head to become
true, possibly by assuming some abducibles
to be true and by activating CLP propagation
procedures. The syntax of KBws and ICws is given
in Table 1 and Table 2, respectively.

Interactions are specified by means of
integrity constraints, i.e., logical relations that
link the messages (modeled by H atoms) sent
or received by a Web service with those (mod-
eled by E/EN atoms) it expects from other Web
services or from the remote user. Constraints
over variables can specify relations of various
types, including temporal relations (e.g., dead-
lines), linear constraints and inequalities. Op-
erationally, such definitions are used to make
assumptions on the possible evolutions of the
interaction. Sample ICs and clauses are given
in Eq. (1) through Eq. (8).

THE ESHOP SCENARIO IN SRE

Let us now show an SRE implementation
of the eShop scenario. The SRE language
does not require any particular keyword in
the argument of events/expectations. In this
example, we will use the following symbols
to identify different types of message content:
ask, pay(Item,PaymentMethod), request_guar
and give_guar respectively for requesting and
giving a guarantee, and deliver to simulate the
actual delivery.

User alice’s behavioural interface states
that if a shop asks to pay cash at some time
Ta, alice will proceed with the payment in a
later time Tr:

(1)

If, instead, the payment is done by credit
card, then alice will require evidence of the
shop’s affiliation to the BBB (2) and only af-
terwards proceed to pay (3).

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 9

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

(2)

H
H

(, , ((,)),)
(, , _ (),
S alice ask pay Item cc T
S alice give guar bbb T

a ∧

gg

p p a p galice S pay Item cc T T T T T

)

(, , (,),) .

→

∧ > ∧ >H

(3)

The behavioural interface of eShop2 is also
represented by means of integrity constraints.
“If an acceptable customer requests an item,
then I expect the customer to pay for the item
with an acceptable payment methods. If the
customer is not acceptable, I will inform him/
her of the failure (4). If an acceptable customer

pays with an acceptable means of payment, I
will deliver the item within two days (5). If a
customer requests evidence of my affiliation to
the BBB, I will provide it (6).”

H(, , (),)
_ () _

C eShop request Item T
accepted customer C accepted

r

→ ∧ ppay How
eShop C ask pay Item How T T T
C eShop

a a r

()
(, , ((,)),)
(,

∧ ∧ >

∧

H
E ,, (,),)

_ ()
(, ,

pay Item How T T T

rejected customer C
eShop C i

p p a∧ >

∨
∧H nnform fail T T Ti i r(),) .∧ >

(4)

(5)

Table 1. Grammar of the knowledge base (KB)

KBws ::= [Clause]*

Clause ::= Atom ← Cond

Cond ::= ExtLiteral [∧ ExtLiteral]*

Extliteral ::= [¬]Atom | true | Expect | Constraint

Expect ::= E(Term, Term, Term, TimeTerm) |

EN(Term, Term, Term, TimeTerm)

TimeTerm ::= Variable | Integer

Table 2. Grammar of the integrity constraints (IC)

ICws ::= [IC]*

IC ::= Body → Head

Body ::= (Event | Expect) [∧ BodyLit]*

BodyLit ::= Event | Expect | Atom | Constraint

Head ::= Disjunct [∨ Disjunct]* | false

Disjunct ::= (Expect | Event | Constraint)

[∧ (Expect | Event \ Constraint)]*

Expect ::= E(Term, Term, Term, TimeTerm) |

EN(Term, Term, Term, TimeTerm)

Event ::= H(Term, Term, Term, TimeTerm)

TimeTerm ::= Variable | Integer

10 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

(6)

The notion of acceptability for customers
and payment methods from eShop’s viewpoint,
given with the accepted_customer/1 and ac-
cepted_pay/1 predicates, can be defined in
eShop’s knowledge base, as we proposed in a
previous work (Alberti et al., 2007). The fact
that only EU residents are accepted customers,
is defined by the following clauses:

accepted customer Customer
resident in Customer Loca

_ ()
_ (,

¬
 ttion
accepted destination Location

rejected custom

),
_ ().

_

eer Customer
resident in Customer Location
not

()
_ (,),

¬

 accepted destination Location
accepted destination euro

_ ().
_ (ppean union

accepted pay cc
accepted pay cash

_).
_ ().
_ ().

(7)

On her side, alice knows she is resident
in the EU:

resident in alice european union_ (, _). (8)

Declarative Semantics

In SRE, a client c specifies a goal G, related to
a requested service. G will often be an expecta-
tion, but in general it can be any goal, defined
as a conjunction of expectations, CLP con-
straints, and any other literals. c also publishes
a (possibly empty) knowledge base KBc, and a
(possibly empty) set of rules ICc. The declara-
tive semantics is meant to define a set of ex-
pectations ε and validity conditions Δ about a
possible course of events that, together with
KBc and KBws, satisfies the conjunction of the
integrity constraints IC ICc wsÈ and the goal
G. Note that we do not assume that all of ws’s
knowledge base is available to SRE, as it need

not be entirely a part of ws’s public specifica-
tions. KBws can even be the empty set. How-
ever, in general, ICs can involve predicates
defined in the KB: such as “delivery in Europe”.
If the behavioural interface provided by ws
involves predicates that have not been made
public through KBws, SRE makes assumptions
about such unknown predicates, and considers
unknowns that are neither H nor E/EN expec-
tations as literals that can be abduced. These
are contained in the set Δ, of a returned triplet
ws, ,e D (see the section “Implementation

Architecture”), and can be regarded as condi-
tions which must be met to assure the validity
of ε as a possible set of expectations achieving
a goal.

We define declaratively the set of abductive
answers ws, ,e D representing possible ways
c and ws can interact to achieve G (we assume
that KBc and KBws are consistent) via the two
following equations:

KB KB Gc ws∪ ∪ ∪∆ =e | (9)

KB KB IC ICc ws c ws∪ ∪ ∪ = ∪e ∆ | (10)

where ε is a conjunction of H and E, EN atoms,
Δ is a conjunction of abducible literals, and the
notion of entailment is grounded on the possible
models semantics defined by Sakama and Inoue
(2000) for abductive disjunctive logic programs.
In the possible models semantics, a disjunctive
program generates several (non-disjunctive)
split programs, obtained by separating the dis-
juncts in the head of rules. Given a disjunctive
logic program P, a split program is defined as
a (ground) logic program obtained from P by
replacing every (ground) rule

r L Ll: 1 ∨ ∨ ←� Γ

from P with the rules in a non-empty subset of
Splitr , where

Split L i lr i= ← ={ }Γ | , ,1…

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 11

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

By definition, P has in general multiple split
programs. A possible model for a disjunctive
logic program P is then defined as an answer
set of a split program of P.

In Sakama and Inoue (2000), the possible
models semantics was also applied to provide
a model theoretic semantics for Abductive
Extended Disjunctive Logic Programs (AEDP),
which is our case. Semantics is given to AEDP
in terms of possible belief sets. Given an AEDP
Π = P A, , where P is a disjunctive logic
program and A is the set of abducible literals,
a possible belief set S of Π is a possible model
of the disjunctive program P EÈ , where P is
extended with a set E of abducible literals
(E AÍ).

Definition 2 (Answer to a goal G). An answer E
to a (ground) goal G is a set E of abducible
literals constituting the abductive portion
of a possible belief set S (i.e., E = S ∩ A)
that entails G.

We rely upon possible belief set semantics,
but we adopt a new notion for minimality with
respect to abducible literals. In Sakama and
Inoue (2000), a possible belief set S is A-
minimal if there is no possible belief set T such
that T A S A∩ ⊂ ∩ . We restate, then, the no-
tion of A-minimality as follows:

Definition 3 (A-minimality possible belief set).
A possible belief set S is A-minimal iff
there is no possible belief set T for the same
split program such that T A S A∩ ⊂ ∩ .

More intuitively, the notion of minimality
with respect to hypotheses that we introduce is
checked by considering the same split program,
and by checking whether with a smaller set of
abducible literals the same consequences can
be made true, but in the same split program.
Finally, we provide a model-theoretic notion
of explanation to an observation, in terms of
answer to a goal, as follows.

Definition 4 (A-minimal answer to a goal).
E is an A-minimal answer to a goal G iff
E=S∩A for some possible A-minimal belief
set S that entails G.

Definition 5 (Possible Interaction about G).
A possible interaction about a goal G
between a client c and a Web service ws is
an A-minimal set e ∪∆ such that Eq. (9)
and (10) hold.

Among possible interactions, we identify
those that are coherent:3

Definition 6 (Coherent Possible Interaction
about G). A possible interaction e ∪∆
about a goal G is coherent iff:

 (11)

Possible interactions about a goal G gen-
erally contain (minimal) sets of events and
expectations about messages raised either by
c and ws. Moreover, further abducible literals
in Δ represent assumptions about unknown
predicates (for c and ws).

Among coherent possible interactions only
those where the course of events expected by
c about ws’s messages is fulfilled by ws’s mes-
sages (i.e., happened events match positive and
negative expectations), and the course of events
expected by ws about c’s messages is fulfilled
by c’s messages.

Definition 7 (Possible Interaction Achieving
G). Given a client c, a Web service ws, and
a goal G, a possible interaction achieving
G is a coherent possible interaction e ∪∆
satisfying the following equations:

e | (, , ,) (, , ,)= →E HX Y Action T X Y Action T
(12)

 (13)

12 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

By Definition 7, every positive expectation
raised by c or ws on the behaviour of the other
party must be fulfilled by an event hypotheti-
cally performed by the other party (Eq. (12)),
and every negative expectation raised by c or
ws on the behaviour of the other party must not
match any event hypothetically performed by
the other party (Eq. (13)).

Operational Semantics

The operational semantics is an extension of
the SCIFF proof-procedure (Alberti et al.,
2008). SCIFF was initially developed to specify
and verify agent interaction protocols in open
environments. It processes events drawing
from a given narrative of events and abduces
expectations, checking that each one of them
is fulfilled by the occurring events.

SRE extends SCIFF and abduces H events
as well as expectations. As opposed to SCIFF,
the event narrative is not an input. It is instead
an output, as all possible interactions are hypoth-
esized. Moreover, in SRE events not matched by
an expectation (acceptable in an open scenario)
cannot be part of a possible interaction achieving
the goal. For this reason, in SRE a new transition
labels each H event with an expected flag as
soon as a matching expectation is abduced. At
the end of the derivation, unflagged H will cause
failure. The reasoning module of SRE, like the
SCIFF proof procedure, has been implemented
in Prolog, and can run on top of SICStus or SWI
Prolog (Fung & Kowalski, 1997).

The soundness and completeness results,
proven for the SCIFF proof-procedure (Alberti
et al., 2008), also hold for SRE.

Operationally, the SCIFF reasoning engine
(SRE) operates on the union of the user’s and
service’s disclosed integrity constraints (
IC ICc ws,) and knowledge bases (KB KBc ws,
) in order to find a (partial) plan e ∪∆ able to
satisfy equations (9) and (10). An example of
such a computation follows.

Example of SRE Computation

In the eShop scenario, it starts with alice’s
goal, which is to obtain a book by interacting

with a shop: alice will start an interaction by
requesting the book, and she will expect the
shop to deliver it:

H
E

(, , (),)
(, , (
alice eShop request book
eShop alice deliveralice

0 ∧
bbook T Td d),) .∧ ≤ ≤0 3

SRE reasons about events and expectations,
and tries to match them in order to find a suc-
cessful arrangement. To this end, SRE tags each
expectation with its holder: in this example,
alice is the entity that holds the expectation of
eShop delivering the book.

Now, the happened request event triggers
new integrity constraints. In particular, it acti-
vates (4), which in turn can be satisfied in two
alternative ways: either the transaction succeeds,
or it fails because alice is rejected as a customer.
The SCIFF proof-procedure generates a proof
tree, which is explored depth-first, as customary.
In the first branch, SCIFF verifies that alice is
an acceptable customer. This can be proven by
reasoning from alice’s and eShop’s knowledge
bases together. SCIFF then abduces that eShop
will ask for payment with one of the accepted
payments. Let us consider the case in which
payment by cc is assumed. In that case, eShop
will ask for the payment and will expect alice
to be responsible for it:

H
E

(, , ((,)),)
(, ,

eShop alice ask pay book cc T
alice eShop pay

a

eShop

Ù

((,),).book cc Tp

The new abduced event fires (2), because
it verifies its body. SRE assumes that alice
will follow her own behavioural interface, by
requesting the guarantee and expecting a reply.
The request event will fire (6), which forces
eShop to provide the guarantee.

In the end, a set of events and a set of
expectations are generated by abduction. If
the expectations are matched by corresponding
events, the abductive process succeeds, other-
wise the exploration of the current branch will
fail, and an alternative branch will be selected
(if there exists one). In this way, the SCIFF
proof-procedure determines if there exists at

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 13

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

least a set of events that satisfies a given ALP,
and computes both the abduced events and the
expectations. A successful computation yields a
sequence of actions that satisfies all the parties’
constraints and goals.

Note that representing the acceptability
of costumers as a mere logic program would
not work in case the customer declared resi-
dent_in(alice,italy), as the term italy does not
syntactically unify with european_union. Other
problems may occur if acceptability is defined
by a transitive, symmetric relation. For example,
a service could accept requests from a set of
trusted peers, and also from customers that are
trusted by them, in a transitive fashion. If the
abductive proof procedure adopts a depth-first
search, symmetric and/or transitive relations
can lead to loops that could prevent the proof-
procedure to terminate in finite time. Our solu-
tion to this problem is described in the section
“Ontological Reasoning in SRE”.

IMPLEMENTATION
ARCHITECTURE

We developed a prototype implementation of
SRE. The framework is organized as a set of
Web services, which provides two facilities:
registering and querying. The first one is used by
service providers, which register by providing a
service description in terms of the pair (OWL-S
profile, behavioural profile). The second facil-
ity accepts requests from the users, and returns
a list of SWS’s that fulfill the requirements.

The Web services composing the system are
shown in Figure 3. A Web Service can register at
our application, by providing its own specifica-
tion. After a syntactic validation performed by
the Syntax Validation module, a service descrip-
tion is sent to the Service Register component
which manages the storing procedures. It stores
OWL-S profiles by means of a RDF store, while
behavioural profiles are directly stored in the
file system. OWL-S profiles are pre-processed,
and a summary of the profile is extracted for
each SWS; this simplifies the matching algo-
rithm described in the section “Discovery,” by

identifying and handling some specific cases.
If the storing procedure terminates successfully,
an acknowledgement is returned to the service
asking for registration.

A user starts the process with a request,
composed of a description of the functionality
she is looking for, together with her own be-
havioural interfaces. The description of the
desired service is given in terms of inputs and
outputs: however we assume such lists as a sort
of “indication’” of the needs of the user, and
some certain flexibility is adopted, as explained
in the section “Discovery”. After an initial
syntactic validation step, the request is passed
to the Service Seeker component, which man-
ages and coordinates the search process orches-
trating the other components. The input/output
list is passed to the Service Matcher component
that selects, among the registered services, only
those that satisfy the user request. To this end,
the Service Matcher implements the algorithm
explained in the section “Discovery”. The
ontology subsumption relation is evaluated by
a simple wrapper for the Pellet reasoner (Parsia
& Sirin, 2004).

The list of services selected by the Service
Matcher is returned to the Service Seeker, which
gives it in turn to the Contracting Reasoner mod-
ule. Such a module reasons about the possibility
and the existence of an interaction that could
effectively satisfy the user needs, as explained in
the section “Contracting”. Its outcomes consist
of a shortlist of services, which for each selected
service contains a possible interaction plan that
justifies why that service has been selected.
This also shows how the user can successfully
interact with the service. Pellet is again used,
in integration with SCIFF, to bridge rules with
ontologically expressed knowledge that is use-
ful for contracting. Finally, the list of selected
services is returned to the user by the Service
Seeker module.

Ontological Reasoning in SRE

SRE represents ontologies in OWL (Web
Ontology Language), the W3C recommenda-
tion for ontology representation on the Web

14 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

(Bechofer et al., 2004), based on Description
Logics (Lutz, 2008) and on XML and RDF
syntax. OWL guarantees expressivity (with
such features as stating subclassing relations,
constructing classes on property restrictions or
by set operators, defining transitive properties
and so on) and decidability (if using OWL Lite
or OWL DL) in a straight-forward and domain
modeling-oriented notation. Moreover, since
OWL is tailored for the Web, it provides support
for expressing knowledge in distributed contexts
(identified by URIs) and its recognized standard
status is a warranty on interoperability and reus-
ability issues. Community-driven development
of Semantic Web tools already provides good
support for OWL ontology management tasks
such as editing (Noy et al., 2001), which has
become a feasible task even for the non-KR-
savvy user.

Figure 4 illustrates a possible ontological
representation of eShop’s constraints concern-
ing acceptable customers and means of pay-
ments, merged with alice’s own knowledge.
For example, we may want to express that
acceptedCustomer is a subclass of the potential-
Customer class, and that it is disjoint from the
rejectedCustomer class. This would correspond
to the following OWL fragment:

<owl:Class

rdf:about=”#acceptedCustomer”>

 <rdfs:subClassOf rdf:resource=”#poten

tialCustomer” />

 <owl:disjointWith rdf:resource=”#reje

ctedCustomer” />

</owl:Class>

The following assertion states that

cash is an instance of the accepted-

Payment class:

<owl:Thing rdf:about=”#cash”>

 <rdf:type

rdf:resource=”#acceptedPayment” />

</owl:Thing>

The following is the declaration of the
paysWith property:

<owl:ObjectProperty rdf:ID=”paysWith”>

 <rdfs:domain rdf:resource=”#potential

Customer” />

 <rdfs:range rdf:resource=”#payment”

/>

</owl:ObjectProperty>

The following assertion states that alice is
an instance of italian, with value ae1254 for the
paysWith property:

Figure 3. The SRE architecture

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 15

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

<owl:Thing rdf:about=”#alice”>

 <rdf:type rdf:resource=”#italian” />

 <paysWith rdf:resource=”#ae1254” />

</owl:Thing>

Now alice no longer needs to explicitly
express that she is a EU resident. If alice sim-
ply declares that she is an Italian resident, then
ontological reasoning can infer that alice is
indeed European by considering, e.g., some
official ontology of the EU, enlisting all the
member states.

Another interesting feature of Description
Logic (and thus OWL) ontologies is the defini-
tion of classes using restrictions on properties.
For instance we could define a class, premium-
Customer, representing the accepted customers
who pay by credit card. This notion could then
be used to add refinements to user constraints
(for instance for the purpose of providing such
customers with a faster delivery service, or with
a lower price) and since alice is an accepted
customer and pays with her credit card, the
ontological reasoning would automatically
recognize her as a premiumCustomer.

Interfacing SCIFF and
Ontological Reasoners

During contracting, we can access and use the
knowledge represented in OWL as illustrated
above, thanks to an existing interface between
SCIFF and the external ontological reasoner
Pellet (Parsia & Sirin, 2004). This solution in-
volves a Prolog meta-predicate which invokes
ontological reasoning on desired goals, an
intercommunication interface from SCIFF to
the external component (which incorporates a
query and results translation schema) and the
actual reasoning module. Both modules can
access both local and networked knowledge.
This approach has proved better, both for per-
formance and expressiveness, than encoding
ontological knowledge as SCIFF rules (Alberti
et al., 2009).

As suggested by Hustadt et al. (2004) and
Vrandecić et al. (2006), goals given to the meta-
predicate are handled by considering single arity
predicates as “belongs to class (with same name
of predicate)” queries and double arity ones

Figure 4. A graphical representation of the ontology

16 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

as “are related by property (with same name
of predicate)” queries. We also implemented a
caching mechanism that reduces the overhead
caused by external communication. In this
way, the meta-predicate first checks if a similar
query (i.e., involving the same predicate) has
been issued before and, only if not, it invokes
the external reasoner and stores its answers as
Prolog facts. The OWL reasoning module uses
the Pellet (Parsia & Sirin, 2004) API, while
the communication interface uses the Jasper
Prolog-Java library (SICStus). This solution
provides full OWL(-DL) expressivity, includ-
ing features such as equivalence of classes and
properties, transitive properties, declaration of
classes on property restriction and property-
based individual classification.

Runtime Verification

The result of the contracting step is a (partial)
sequence of messages that achieve the goal
while respecting both the user’s and the service’s
specification; therefore, if both the user and
the service involved in the interaction stick to
their specifications, then the interaction should
be successful. However, the implementation
of a Web service may not respect its own
specifications, or network problems may arise,
unexpected events may occur, deadlines may
be missed because of overloaded servers or
malicious attacks. On-the-fly verification aims
at finding possible violations of the agreements.
As pointed out in Maximilien and Singh (2005),
automatic monitoring and run-time confor-
mance test can be very useful in modeling trust
and providing rating for empirical selection of
services. SCIFF features on-the-fly verification
(Alberti et al., 2008), and has been applied suc-
cessfully to multi-agent interaction protocols
and service choreographies. For example, the
following narrative:

H
H

(, , (),).
(, , (()
alice eShop request book
eShop alice ask pay cash

0
)),).

(, , (),).
(, , (

1
2H

H
alice eShop pay cash
eShop alice deliver bookk),).3

can be checked as events occur, to show that
it satisfies alice’s specification and goal. The
following:

H
H

(, , (),).
(, , (()
alice eShop request book
eShop alice ask pay cash

0
)),).

(, , (),).
1

2H alice eShop pay cc

breaks the agreement between alice and eShop,
because alice uses a different means of payment
from the one requested by eShop, so the latter
does not react to the last message, and does not
deliver the book. Using SCIFF, users can deter-
mine a broken agreement, and possibly label
other services as unreliable. This mechanism
would be a useful feature for service discovery
engines as it can provide verifiable user feed-
back, which is already built inside SCIFF. Of
course, interacting parties can be verified at
runtime not only against their agreement, but
also against external interaction protocols or
choreographies, if so desired.

Preliminary Performance
Evaluation

We tested SRE using up to 10,000-class on-
tologies and a pool of 4 simple use cases. We
observed that SRE provides a response within
seconds or tens of seconds, and that it spends
most of the time in the communication between
SCIFF and Pellet, and only a smaller fraction
of time in the reasoning tasks.

In order to assess the scalability of such
interface, we tested the performances of the
Contracting Reasoner in simple contracting
scenarios.

We experimented with randomly gener-
ated ontologies. Each ontology, composed of
N classes, was built starting from its root node,
and recursively trying, for each node, five at-
tempts of child generation, each with probability
1/3. In Table 3 the we report the time spent for
loading the ontology into the reasoner and for
the actual query (PC with Intel Celeron 2.4
GHz CPU, times in seconds, average over 50
runs). The approach appears to scale reasonably.

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 17

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

RELATED WORK

Authors have proposed various ways to describe
a Semantic Web Service, and a vast literature
is available on the topic.

The two major proposals, the Web Service
Modeling Ontology (WSMO) (Roman et al.,
2005) and the Semantic Markup for Web Ser-
vices (OWL-S) (Martin et al., 2004) address
both the ontological aspects and the behavioral
issues, when describing a SWS.

WSMO offers a complete suite of tools
for editing, developing and testing SWS de-
scriptions. However, the behavioural aspects
are mainly defined on abstract state machines
semantics, which make it difficult to perform the
reasoning tasks we address in our work. Building
on the WSMO conceptual model, Kifer et al.
(2004) propose a comprehensive solution, for
the discovery and contracting problem based
on Flora-2, in which F-logic is used to express
ontologies and achieve matching and Transac-
tion Logic is used to model declaratively how
services behave. However, SRE provides the
user with the peculiar ability to express not only
her goal, but also the behaviour which constrains
how the goal can be achieved. This also means
that the client could also be a service itself.

OWL-S can be extended by the user: be-
havioural aspects are supported by allowing
their definition using at least two languages,
Knowledge Interchange Format (KIF) (Gen-
esereth & Fikes, 1992) and Semantic Web Rule
Language (SWRL) (Horrocks et al., 2004), plus
the possibility of adding any required language.
OWL-S comes as a general ontology, not as-
sociated with specific dedicated tools. Our
system supports service descriptions by means
of OWL-S profiles.

However, let us emphasize that, in spite
of the many proposals (another logic-based
language for description of web services, for
instance, is described in the Semantic Web
Services Language (SWSL) W3C submission)
(Battle et al., 2005), none to date has reached
consensus, thus a proper standard for defining
the semantics of a Web Service is still a matter

of research. This is, in our opinion, one of the
obstacles to the adoption of SWS standards.

SAWSDL (W3C, 2002) is a W3C recom-
mendation aimed at extending WSDL docu-
ments with semantic annotations. These anno-
tations link the different elements of a WSDL
document with corresponding concepts in a
semantic model (e.g., an ontology), therefore
providing the foundation for semantic-based
service discovery and composition. In this
respect, it could be considered complemen-
tary to our approach: while SAWSDL is an
ontology-agnostic way to annotate the “atomic”
description of a service, SRE encompasses both
a concrete language for the declarative descrip-
tion of the service behavioral interface, where
the involved elements refer to one ontology, and
a proof procedure to concretely carry out the
discovery task. Therefore, SRE could rely on
SAWSDL as a standardized mean to describe the
messages exchanged by the services as well as
their references to the corresponding ontology.

SRE shares motivations and approach
with Baldoni et al. (2007). We also advocate
the application of reasoning techniques on
declarative service interaction specifications
to enable flexibility. However, we believe that
greater emphasis should be devoted to issues
such as practical viability. In particular, our
experimental results show that SRE and SCIFF
are applicable to realistic scenario, and the
implementation we discussed integrations SRE
and SCIFF with existing Web service solutions
and standards.

Our work is related to the automatic com-
position of web services. Given a set of services
that are published on the web, and given a goal,
the purpose of automated composition is to
generate a composition of the available services
that satisfies the goal.

There is a large amount of literature ad-
dressing the problem of automated composition
of web services. However, most of the ap-
proaches address composition at the functional
level, and only a few consider the composition
at a finer degree of detail (i.e., at process-level)
by considering web services as stateful, non-

18 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

deterministic processes. In this context, Pistore
et al. (2004) propose a framework where web
services are modeled at process level and
planning techniques based on symbolic model
checking are used for composing them. Due
to the use of model checking, however, these
techniques work under the rather unrealistic
assumption that web services can exchange a
very limited and statically determined number
of data values. The authors show that reasonable
performance can be obtained for web services
whose variables can assume only two values. To
solve this problem, a novel approach presented
in Pistore et al. (2005) is an automated com-
position based on planning at the “knowledge
level” where a solution plan encodes the desired
composition. “Knowledge-level techniques”
allow us not to fix finite ranges of value for
variables and are very general.

Another related work about composition is
Friesen and Lemcke (2007), where the authors,
inspired by Pistore et al. (2005), describe a
composition algorithm that generates correct
Web services composition respecting user-
defined goals.

Our work can be compared to Pistore et al.
(2005) and Friesen and Lemcke (2007) since it
shares their advantages even if, at the technical
level, our work differs from them in the kind of
information that we represent and store in the
knowledge level (IC logic-based constraints
instead of transition rules or finite state machine)
as well as in the automatic technique we use
(SCIFF abductive proof procedure instead of
planning or an ad hoc combination algorithm).
Behavioural interfaces described as IC allow, in

fact, a more detailed description of web-services
behaviour with respect to the functional one and
the use of them allows a very rich description
of them without any limitation to the range of
variables used. Moreover, differently from these
proposals, our techniques are easily integrated
with reasoning techniques for discovery and
selection of web-services. However, while in
Pistore et al. (2005) the proper knowledge-level
model can be obtained automatically from the
published descriptions of the web services in
standard process modeling and execution lan-
guages like BPEL4ws, this is for us a matter of
future work. Another future work is to compare
our approach in terms of execution time to the
performances of related approaches.

Ragone et al. (2007) use the idea of Concept
Covering and Concept Abduction to overcome
some of the limitations of previous matching
approaches, and to address also the composition
problem. In this work we focus on discovering
a SWS able to satisfy the user requests, and we
concentrate our efforts instead on reasoning
about the interaction aspects.

Another notable work in the trust setting is
represented by the PROTUNE (De Coi et al.,
2008) framework, a rule-based system for trust
negotiation. Trust negotiation has been intro-
duced in the literature in order to address access
control requirements and privacy preferences
in open distributed environments. PROTUNE
agents exchange rules and evidences to inter-
operate and make decisions related to security
and privacy. The rule-based language adopted
in PROTUNE is function-free and limited to
stratified logic programs. This class of programs

Table 3. Evaluating the impact of extending the SCIFF with ontological reasoning (pellet)

Interfacing SCIFF with Pellet

N Load Query Total

100 ~ 0 ~ 0 ~ 0

500 1.0 ~ 0 1.0

1000 1.0 ~ 0 1.0

5000 2.0 1.2 3.2

10000 4.0 2.8 6.8

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 19

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ensures the existence of a single (2-valued)
model which is an essential recommendation
for security and trust. Declaratively, PROTUNE
is grounded on Answer Set Semantics, and
provided in two implementations (tuProlog and
XSB). The SRE language is more flexible than
the one of PROTUNE. In particular, it accom-
modates functions and domain variables, and
for this reason it can model a large number of
realistic scenarios more accurately.

Concerning the problem of making
ontological knowledge available to a logic
programming framework such as SCIFF, a
first approach is to exploit the common root
of logic programming and description logics
in first order logic, by finding their intersection
and translating ontologies to LP clauses. These
problems have been addressed by Grosof et
al. (2003), who named this intersection DLP
(Description Logics Program) and by Hustadt
et al. (2004) who proposed a method for transla-
tion. On these basis, the dlpconvert (Motik et
al., 2005) tool was developed; it converts (the
DLP fragment of) OWL ontologies to datalog
clauses. We used dlpconvert to translate do-
main knowledge described in OWL to SCIFF
clauses. Reasoning is then performed by SCIFF
in the usual way. However, this solution limits
ontological expressivity. First of all, since the
DLP fragment is a proper subset of DL, some
OWL axioms are not included. For instance,
out of the features mentioned as available by
Vrandečić et al. (2006). DisjointClasses and
the important DL (and OWL) feature of class
definition by restriction on properties are miss-
ing. Moreover, some axioms’ translation is not
actually suitable for reasoning with goal-driven
operational semantics, such as resolution or
unfolding, employed in SCIFF, because it
leads to loops. For all these reasons, we are
investigating an alternative approach, which
involves the interface with Pellet, instead, and
incurs no expressivity limitations.

In Motik (2006) and Lukacsy et al. (2008)
the authors propose techniques for reasoning
on Description Logic (respectively SHOIN
and SHIQ) which are not based on the usual
tableau algorithms but are instead related to,

respectively, bottom-up Datalog and Deduc-
tive Database inference, and top-down Prolog
resolution. In both cases the motivation comes
from the attempt to offer better results in ABox
reasoning with large data sets of individuals.
Since Deductive Database deal natively with
rules, extending the obtained reduction of the
DL KB with a rule level appears straightforward.
Motik (2006) shows that it is sufficient to append
rules to the obtained KB. Our work is focused
on very expressive rules to describe behavioural
interfaces, so it goes far beyond the restrictions
(motivated by computational reasons) of Motik
(2006) and Lukacsy et al. (2008).

An extensive study of how rules and ontolo-
gies can be integrated, with a specific focus on
Semantic Web, can be found in de Bruijn (2008)
where a language, WSML, is proposed to be
used as a Web Service Modeling Language in
the WSMO framework (while our work aims
to retain full compatibility with OWL).

In Behrends et al. (2008), the authors intro-
duce the MARS framework, focused on the rule
layer of the Semantic Web cake. In particular,
MARS is equipped with a rule-based language
which combines ECA rules with event and
action algebras for respectively covering the
specification of events and actions. Like SRE,
MARS follows a declarative style of modeling;
however, the MARS language is introduced as
a general language aimed at specifying rules for
the semantic web, and it is not equipped with
specific reasoning techniques able to deal with
the discovery and the contracting for (semantic)
web services.

Various approaches have been proposed to
deal with incompatibilities that may arise when
services interact in unforeseen ways (Dumas
et al., 2008). Typical incompatibilities can be
classified into signature incompatibilities (when
a service requires an operation which is not pro-
vided by the other, or when the message format is
different) and protocol incompatibilities (when
the two services expect different orderings of
messages). Service adapters can be synthesized
(automatically or manually, depending on the
approach) to solve such incompatibilities. Cur-
rently, our approach assumes that incompatibili-

20 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ties regarding terminology or message format
have already been solved. It does not attempt to
deal automatically with operations not provided
or protocol incompatibilities (which result in
failure). An approach to service adaptation could
be to synthesize not only messages, but also
integrity constraints. This, however requires an
extension of the underlying SCIFF framework
and is subject of future work.

Lamparter’s Ph.D. thesis (2007) presents
a framework for the formal expression and
matching of Web Service behavioural interfaces
in order to achieve improved and automatic
interoperability with the goal of a ‘market’ of
Web Services. The author argues that a very
important requirement to meet for this purpose
is that beahviours are specified using unargu-
ably shared concepts. For this reason the thesis’
main contribution is allegedly the proposal for
an ontology which unambiguously defines the
vocabulary for communication in the afore-
mentioned market. Besides the ‘Core Policy
Ontology,’ Lamparter also provides ontologies
for Bids and Contracts.

Such ontologies are ‘core ontologies’ in the
sense that they occupy a middle ground between
top (very general) ontologies and domain spe-
cific ones. In particular they are built upon the
DOLCE framework (which encomprises the
DOLCE vocabulary, Ontologies of Descriptions
and Situations, of Information Objects and of
Plans) which the author perceives as the most
successful and sound attempt to formally model
general concepts, in particular with respect to
time variations.

The language chosen for the ontologies is
the W3C standard OWL-DL for the part that
lies within Description Logic expressivity and
SWRL, with limitation to the ‘safe fragment’
(conditions restrict variables in the head to
maintain decidability), for the ‘rule’ part. Match-
making and other queries on the ontologies are
performed by means of SPARQL.

Our work and the author’s one differ in
goals and approach, because we propose a
framework to specify Web Service semantic
information without focusing on providing
an actual formalization for the concepts used

for Web Service descriptions and behavioural
interfaces.

Our work has strong links with the au-
tomatic composition of services. However,
some important differences distinguish this
contribution. The SRE framework, in its current
implementation, does not address the level of
the single operations that must be invoked to
use a service. SRE is focused on a higher level
of abstraction, where the functionalities offered
by the services are the object of the reasoning.
In this sense, SRE solutions are orthogonal with
respect to composition issues. Moreover, SRE
focuses on finding a match between a request
and a service providing a solution to such a
request. Although the algorithms adopted in
SRE could treat also many-to-many cases, the
current implementation permits to reason upon
a user request and if an interaction can happen
with a single service provider: situations like
a user request matched against a set of many
providers are left for future extensions. Finally,
SRE computes a possible plan of how the user
can interact with a service in order to satisfy
a goal. Such plan is partial, since it primarily
depends on how much information the user/
service is willing to disclose.

Finally, “Contract” is a term also used
in multi-agent literature (see for instance the
CONTRACT project Web site, http://www.
ist-contract.org/), but it has little relation with
Web service contracting as we intend it here.

CONCLUSIONS AND
FUTURE WORKS

We presented a framework for Web service
discovery and contracting. The discovery phase
has been implemented following a well known
approach, while the contracting phase makes
use of a powerful, yet simple, declarative and
rule-based behavioural interfaces description
language and an abductive logic program-
ming proof-procedure. Ontological reasoning
is also used, both during the discovery phase,
and during the contracting phase. SRE helps
automate many key processes, such as dis-

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 21

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

covery, contracting, runtime verification and
user feedback provision. A SRE prototype
has been used to conduct some experimental
analysis, which demonstrated the viability
of the approach. Based on the implemented
scenarios, we conclude that the use of SRE
provides good expressivity when defining the
behaviours, with the typical advantages of de-
clarative approaches and of a solid underlying
computational counterpart.

Other issues are left to future work. Let us
briefly review them. A problem with ontologies
is that different terms may refer to similar con-
cepts in different ontologies, and, vice-versa,
different concepts may have similar (same)
names in different ontologies. This opens up the
wide research problem of ontology alignment,
which SRE does not currently address.

Moreover, the evaluation of the SRE frame-
work and the experimental results we discuss
here refer to a rather simple case study. Test-
ing the system on a large scale and with more
complex scenarios is also one of our intended
future activities.

We also plan to extend our application by
providing support to other service description
languages, such as WSMO, SWSL, and SAWS-
DL. We plan also to encode SRE rules using
emerging standards such as the Rule Interchange
Format (RIF) and its Framework for Logic
Dialects (RIF-FLD). From the architectural
viewpoint, SRE will be extended to consider
also the WSDL description of the single services,
so as to provide a more comprehensive solution
to the discovery issue; alternative matching
approaches (possibly letting the user choose
among options) will be considered.

ACKNOWLEGMENT

This work has been partially supported by the
FIRB project TOCAI.it (RBNE05BFRK) and
by the Italian MIUR PRIN 2007 project No.
20077WWCR8. We thank the anonymous ref-
erees for their valuable feedback on a previous
version of this article.

REFERENCES

Alberti, M., Cattafi, M., Gavanelli, M., Lamma, E.,
Chesani, F., Montali, M., et al. (2009) Integrating
abductive logic programming and description logics
in a dynamic contracting architecture. In Proceed-
ings of the IEEE International Conference on Web
Services (pp. 254-261). Washington, DC: IEEE
Computer Society.

Alberti, M., Chesani, F., Gavanelli, M., Lamma,
E., Mello, P., & Montali, M. (2006, July 10-12). An
abductive framework for a-priori verification of web
services. In Proceedings of the Eighth Symposium on
Principles and Practice of Declarative Programming,
Venice, Italy (pp. 39-50). New York, NY: ACM Press.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.,
Mello, P., Montali, M., & Torroni, P. (2007). Web
service contracting: specification and reasoning
with SCIFF. In E. Franconi, M. Kifer, & W. May
(Eds.), Proceedings of the 4th European Semantic
Web Conference: Research and Applications (LNCS
4519, pp. 68-83).

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.,
Mello, P., & Torroni, P. (2008). Verifiable agent in-
teraction in abductive logic programming: the SCIFF
framework. ACM Transactions on Computational
Logic, 9(4). doi:10.1145/1380572.1380578

Alferes, J., Damásio, C., & Pereira, L. (2003). Se-
mantic web logic programming tools. In F. Bry, N.
Henze, & J. Maluszynski (Eds.), Proceedings of the
International Workshop on Principles and Practice
of Semantic Web Reasoning (LNCS 2901, pp. 16-32).

Apt, K. R., & Turini, F. (Eds.). (1995). Meta-logics
and logic programming. Cambridge, MA: MIT Press.

Baldoni, M., Baroglio, C., Martelli, A., & Patti, V.
(2007). Reasoning about interaction protocols for
customizing web service selection and composition.
Journal of Logic and Algebraic Programming, 70(1),
53–73. doi:10.1016/j.jlap.2006.05.005

Barklund, J. (1995). Metaprogramming in logic . In
Kent, A., & Williams, J. G. (Eds.), Encyclopedia of
computer science and technology. New York, NY:
Marcell Dekker.

Battle, S., Bernstein, A., Boley, H., Grosof, B.,
Gruninger, M., Hull, R., et al. (2005). Semantic
web services language. Retrieved from http://www.
w3.org/Submission/SWSF-SWSL

Bechhofer, S., van Harmelen, F., Hendler, J., Hor-
rocks, I., McGuinness, D., Patel-Schneider, P., &
Stein, L. (2004). OWL web ontology language refer-
ence. Retrieved from http://www.w3.org/TR/owl-ref/

22 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Behrends, E., Fritzen, O., May, W., & Schenk, F.
(2008). Embedding event algebras and process
for ECA rules for the semantic web. Fundamenta
Informaticae, 82(3), 237–263.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The
semantic web. New York, NY: Scientific American.

Brunel, J., Di Natale, M., Ferrari, A., Giusto, P., &
Lavagno, L. (2004). SoftContract: an assertion-based
software development process that enables design-
by-contract. In Proceedings of the Conference on
Design, Automation and Test in Europe (pp. 358-363).
Washington, DC: IEEE Computer Society.

Bry, F., & Eckert, M. (2006). Twelve theses on reac-
tive rules for the web. In Proceedings of the Workshop
on Reactivity on the Web, Munich, Germany.

de Bruijn, J. (2008). Semantic web language lay-
ering with ontologies, rules, and meta-modeling.
Unpublished doctoral dissertation, Computer Sci-
ence and Physics of the University of Innsbruck,
Innsbruck, Austria.

De Coi, J. L., Olmedilla, D., Bonatti, P. A., & Sauro,
L. (2008). Protune: A framework for semantic web
policies. Poster presented at the International Se-
mantic Web Conference.

Dumas, M., Benatallah, B., & Motahari Nezhad, H.
R. (2008). Web service protocols: Compatibility and
adaptation. Data Engineering Bulletin, 31(3), 40–44.

Friesen, A., & Lemcke, J. (2007). Composing web-
service-like abstract state machines (ASM). In Pro-
ceedings of the IEEE Congress on Web Services (pp.
262-269). Washington, DC: IEEE Computer Society.

Fung, T. H., & Kowalski, R. A. (1997). The IFF
proof procedure for abductive logic programming.
The Journal of Logic Programming, 33(2), 151–165.
doi:10.1016/S0743-1066(97)00026-5

Genesereth, M., & Fikes, R. (1992). Knowledge
interchange format version 3.0 reference manual.
Stanford, CA: Stanford Logic Group.

Grosof, B. N., Horrocks, I., Volz, R., & Decker, S.
(2003). Description logic programs: combining logic
programs with description logic. In Proceedings of
the ACM Conference on World Wide Web (pp. 48-57).
New York, NY: ACM Press.

Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S.,
Grosof, B., & Dean, M. (2004). SWRL: A semantic
web rule language combining OWL and RuleML. Re-
trieved from http://www.w3.org/Submission/SWRL/

Hustadt, U., Motik, B., & Sattler, U. (2004). Reduc-
ing SHIQ- description logic to disjunctive datalog
programs. In Proceedings of the AAAI Symposium
(pp. 152-162).

Isaac, A., Matthezing, H., van der Meij, L., Schlobach,
S., Wang, S., & Zinn, C. (2008, June 1-5). Putting
ontology alignment in context: usage scenarios,
deployment and evaluation in a library case. In
S. Bechhofer, M. Hauswirth, J. Hoffmann, & M.
Koubarakis (Eds.), Proceedings of the 5th European
Semantic Web Conference on the Semantic Web:
Research and Applications, Tenerife, Canary Islands,
Spain (LNCS 5021, pp. 402-417).

Jaffar, J., & Maher, M. (1994). Constraint logic
programming: a survey. The Journal of Logic Pro-
gramming, (19-20): 503–582. doi:10.1016/0743-
1066(94)90033-7

Kakas, A. C., Kowalski, R. A., & Toni, F. (1993).
Abductive logic programming. Journal of Logic
and Computation, 2(6), 719–770. doi:10.1093/
logcom/2.6.719

Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U.,
Lausen, H., & Fensel, D. (2004). A logical frame-
work for web service discovery. In Proceedings of
the IEEE International Conference on Web Services
(p. 119). Washington, DC: IEEE Computer Society.

Kowalski, R. A., & Sadri, F. (1999). From logic
programming towards multi-agent systems. Annals
of Mathematics and Artificial Intelligence, 25(3-4),
391–419. doi:10.1023/A:1018934223383

Lamparter, S. (2007). Policy-based contracting in
semantic web service markets. Unpublished doctoral
dissertation, Universität Karlsruhe (TH), Karlsruhe,
Germany.

Lloyd, J. W. (1987). Foundations of logic pro-
gramming (2nd extended ed.). Berlin, Germany:
Springer-Verlag.

Lukacsy, G., Szeredi, P., & Kadar, B. (2008). Prolog
based description logic reasoning. In M. G. de la
Banda & E. Pontelli (Eds.), Proceedings of the 24th
International Conference on Logic Programming
(LNCS 5366, pp. 455-469).

Lutz, C. (2008). Description logic resources. Re-
trieved from http://dl.kr.org/

Martin, D., Paolucci, M., McIlraith, S., Burstein, M.,
McDermott, D., & McGuinness, D. (2004). Bringing
semantics to web services: the OWL-S approach.
World Wide Web (Bussum), 10(3).

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 23

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Maximilien, E. M., & Singh, M. P. (2005). Multia-
gent system for dynamic web services selection. In
Proceedings of the AAMAS Workshop on Service-
Oriented Computing and Agent-Based Engineering
(SOCABE), Utrecht, The Netherlands.

McIlraith, S. A., Son, T. C., & Zeng, H. (2001).
Semantic web services. IEEE Intelligent Systems,
16(2), 46–53. doi:10.1109/5254.920599

Montali, M., Pesic, M., van der Aalst, W. M. P.,
Chesani, F., Mello, P., & Storari, S. (2010). De-
clarative specification and verification of service
choreographies. ACM Transactions on the Web, 4(1).

Motik, B. (2006). Reasoning in description logics
using resolution and deductive databases. Unpub-
lished doctoral dissertation, Universität Karlsruhe
(TH), Karlsruhe, Germany.

Motik, B., Vrandecić, D., Hitzler, P., Sure, Y., &
Studer, R. (2005). Dlpconvert - Converting OWL DLP
statements to logic programs. System demonstrated
at the 2nd ESWC Workshop on Inductive Reasoning
and Machine Learning for the Semantic Web.

Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Ferg-
erson, R. W., & Musen, M. A. (2001). Creating seman-
tic web contents with Protégé-2000. IEEE Intelligent
Systems, 16(2), 60–71. doi:10.1109/5254.920601

Oundhakar, S., Verma, K., Sivashanugam, K., Sheth,
A., & Miller, J. (2005). Discovery of web services in
a multi-ontology and federated registry environment.
International Journal of Web Services Research, 2(3),
1–32. doi:10.4018/jwsr.2005070101

Paolucci, M., Kawamura, T., Payne, T. R., & Sycara,
K. P. (2002). Semantic matching of web services
capabilities. In Proceedings of the International
Semantic Web Conference.

Parsia, B., & Sirin, E. (2004). Pellet: An OWL DL
reasoner. In Proceedings of the 3rd International
Semantic Web Conference.

Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., &
Traverso, P. (2004). Planning and monitoring web
service composition. In C. Bussler & D. Fensel (Eds.),
Proceedings of the 11th International Conference on
Artificial Intelligence (LNCS 3192, pp. 106-115).

Pistore, M., Marconi, A., Bertoli, P., & Traverso, P.
(2005). Automated composition of web services by
planning at the knowledge level. In Proceedings of
the 19th International Joint Conference on Artificial
Intelligence.

Ragone, A., Di Noia, T., Di Sciascio, E., Donini,
F., Colucci, S., & Colasuonno, F. (2007). Fully
automated web services discovery and composition
through concept covering and concept abduction.
International Journal of Web Services Research,
4(3), 85–112. doi:10.4018/jwsr.2007070105

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara,
R., Stollberg, M. et al. (2005). Web service modeling
ontology. Applied Ontology, 1(1).

Sakama, C., & Inoue, K. (2000). Abductive logic
programming and disjunctive logic programming:
their relationship and transferability. The Journal of
Logic Programming, 44(1-3), 75–100. doi:10.1016/
S0743-1066(99)00073-4

SICStus. (n. d.). SICStus Prolog. Retrieved from
http://www.sics.se/sicstus

van der Aalst, W. M. P., Dumas, M., ter Hofstede,
A. H. M., Russell, N., Verbeek, H. M. W., & Wohed,
P. (2005). Life after BPEL? Russell: The Journal of
the Bertrand Russell Archives, 3670(3670), 35–50.

Vrandecić, D., Haase, P., Hitzler, P., Sure, Y., &
Studer, R. (2006). DLP-an introduction. Karlsruhe,
Germany: University of Karlsruhe.

W3C. (2002). Semantic annotations for WSDL work-
ing group. Retrieved from http://www.w3.org/2002/
ws/sawsdl/

Wang, H., Li, Z., & Fan, L. (2006, December 18-
22). An unabridged method concerning capability
matchmaking of web services. In Proceedings of the
IEEE/WIC/ACM International Conference on Web
Intelligence (pp. 662-665). Washington, DC: IEEE
Computer Society.

ENDNOTES
1 With “forward rules” here we mean rules that

are used by the SCIFF proof procedure in a
forward reasoning style, as opposed to the
rules in the Knowledge base, that are used as
in Prolog in a backward manner.

2 Constraint Logic Programming (Jaffar &
Maher, 1994).

3 This notion is introduced to encode in the
logic of SRE the intuitively understandable
incompatibility between E and EN (the same
event should not be expected to and not to
occur at the same time).

24 International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Marco Alberti is a researcher at the Center for Artificial Intelligence (CENTRIA) of the Universi-
dade Nova de Lisboa. His research interests are in the areas of Artificial Vision, Abductive Logic
Programming, Constraint Logic Programming, Multi-Agent Systems, Normative Systems, Legal
Reasoning, Service-Oriented Architectures. He has participated in the program committee of
international conferences and workshops in the areas of Computational Logics and Multi-Agent
Systems and in international and national research projects. He is member of Italian Association
for Artificial Intelligence, and the Italian group of logic programming (GULP).

Massimiliano Cattafi is a PhD student in artificial intelligence and computational logic at the
Department of Engineering of the University of Ferrara, currently focusing on rule based pro-
gramming and constraint satisfaction problems.

Federico Chesani is a post-doc at the DEIS department of the University of Bologna. He got
his PhD in 2007, with a thesis entitled "Specification, Execution and Verification of Interaction
Protocols". His research topics concern computational logic and abduction, argumentation, and
applications of logic-based tools to Semantic Web Services, Service Discovery, Composition and
Contracting, commitment-based multi-agent systems, integration between rule-based languages
and ontologies. He has been author and co-author of more than 50 refereed papers, and has
been also involved as a reviewer for international conferences and workshops such as CLIMA
and IJCAI. He is also member of the Logic Programming National Interest Group (GULP).

Marco Gavanelli is assistant professor at the Department of Engineering of the University of
Ferrara since 2004. He has published more than 50 papers on various aspects of logic pro-
gramming and artificial intelligence, ranging from constraint logic programming to visual
recognition, multi-criteria optimization, abductive logic programming, programming with sets.
He is member of the Italian Association for Artificial Intelligence (AI*IA) and is coordinator of
its interest group in knowledge representation and automatic reasoning (RCRA). He is member
of the executive board of the Logic Programming National Interest Group (GULP). He has
organized national and international events, and was guest editor of special issues of top-class
national and international journals.

Evelina Lamma is Full Professor in Artificial Intelligence at the Faculty of Engineering of the
University of Ferrara. Her research activity focuses around logic computational logic, logic
languages and theirs extensions, artificial intelligence, knowledge representation, intelligent
agents and multi-agent systems, machine learning and data mining, Web Service composition
and verification. She is author of several papers on these issues. She is member of the executive
board of the Association for Logic Programming (ALP), and member of the Italian Association
for Artificial Intelligence (AIIA), and the Logic Programming National Interest Group (GULP).
She took part to several national and international research projects, and she was leader of the
University of Ferrara group within the UE IST-32530 project named SOCS.

International Journal of Web Services Research, 8(3), 1-25, July-September 2011 25

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Paola Mello is Full Professor in Artificial Intelligence at the University of Bologna since 1994.
She has published over 180 papers on implementation, application and theoretical aspects of
programming languages, especially logic languages and their extensions towards modular and
object-oriented programming, artificial intelligence, knowledge representation, expert systems
and multi-agent systems, and the application of computational logic to workflow patterns and
Web Service composition. She is founding member and current President of the Italian Association
for Artificial Intelligence and was executive member of the Logic Programming National Inter-
est Group (GULP) and of several national and international (UE) research projects, including
COMPUNET, Esprit ALPES, CRAFT, IST-FET SOCS.

Marco Montali is currently an assistant professor with a fixed term contract in the KRDB Re-
search Centre at the Free University of Bozen-Bolzano. He received his PhD in 2009 from the
University of Bologna. His dissertation received the 'Marco Cadoli' prize, awarded by the Italian
Association on Logic Programming (GULP) for the best two theses focused on Computational
Logic and discussed between 2007 and 2009. He is co-author of more than 50 papers on compu-
tational logics and extensions, formal verification and monitoring, (declarative) business process
modeling and business rules, service choreographies, clinical guidelines and care-flow protocols,
process mining, commitment-based multiagent systems. His current research interests are in the
area of specification and verification of artifact-centric business processes and services, and in
the combined management of data and processes.

Paolo Torroni is an assistant professor in Computing at the University of Bologna. He obtained
his PhD from the University of Bologna’s Department of Electronics, Computer Science, and
Systems Engineering in 2002, with a dissertation on logic-based reasoning and interaction in
multi-agent systems. He is active in the area of artificial intelligence, where he authored more
than 80 refereed publications, received 2 best paper awards, and edited 7 books for Springer.
He has been invited for keynote talks and tutorials at several international conferences. His
scientific publication record includes state-of-the-art surveys, technical and vision papers. His
current recent interests are: contract-regulated multi-agent interaction, service engineering,
social Web, hypothetical reasoning, diagnosis, and argumentation.

