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Abstract. Cancer screening is a method of preventing cancer by early detecting
and treating abnormalities. One of the most critical screening phase idimvita
planning since screening resources are limited and there are marlg peap

vite. For this reason, smart resource allocation approaches arecheed

In the paper, we propose and compare two solutions for smart invitatzon p
definition, one based on greedy approaches and one based ona@urio-
gramming techniques that enable the definition of the optimal invitation plan.

1 Introduction

Cancer screening is a process finalized to the preventidmedflbess from its starting
phases. Early diagnosis of tumors is fundamental, becatisely intervention makes
the healing easier and reduces the risk of death. In factysitancer, breast cancer and
many other tumors are preventable and fully curable if theyearly diagnosed.

We focused on cervical cancer screening, that enablesehéfidation of tumors in
the cervix. To reduce the mortality related to this kind ohbr it is necessary to ensure
periodically pap-test screening [2] for the entire femabpydation with age between
25 and 64 years.

The screening process is managed by the screening centagerand consists of
several phases. First of all, the involved patients (conmgohe so-calledarget popu-
lation) are identified, by excluding, e.g., people that have alr@achncer and residents
in other areas. Given the target population, the next steycieate an invitation plan for
the screening examination. This plan should be coherehttivittime availability of the
centers in which the screening examinations are perfor@ade this planning phase
is finished, invitations are sent by mail to the target potata and usually patients are



visited at the screening center in the scheduled time Sltis.screening process then
proceeds in different ways, depending on the result of theesiing examination.

Among all these phases, the most complex one, from an om@féomnal point of
view, is the invitation planning since the number of patseisttypically high and the
pap-test center resources (time and personnel) are linfiedthis reason, we need
smart resource allocation approaches, exploiting opétiaa technology.

Baker and Atherill [1] study, by means of simulations of ge¢leory, the order of
patients to be invited. The order is then optimized by medrgssswort of hill climbing
algorithm; the objective is to minimize the dissatisfantif the patients (modelled as
a function of the waiting time), and the server idle time. @tlhuthors [3,5] use a
weighted sum of the patients average waiting time and sétieetime. In [1], authors
analyzed datasets of pap-test invitations in order to iffeptobabilistic models of
patient attendance and appointment rebooking.

In this paper, we describe the research activity carriedidriman industrial project
of the Emilia Romagna region of Italy for handling the intit@s of cervix cancer
screening in the Bologna district. In particular, we expllaow invitation plans are cur-
rently generated and we propose two solutions to improvefti@ency of the process.
The first is based on greedy algorithms: we show two algostand the corresponding
results. The second is based on Constraint Programmingitpsds that provide the
optimal invitation plan.

Performance evaluations have been conducted on exact andtiesolutions by
means of simulations on different scenarios involvingeti#ht groups of women and
different pap-test center resources.

2 Pap-test invitation management

The definition of the pap-test invitation plan is a very coexptask since it involves
many women and consequently requires a lot of resourceslved information in-
clude: pap-test center resources, last pap-test exaonndéte, screening history of
each woman in the target population, women addresses.

Pap-test center resources are represented by time peffedsdoeach day for the
execution of the examinations. These time periods can &aagh month so each
center regularly communicates its monthly agenda to theesing center manager.
Usually the time assigned for each pap-test execution is ibdites. For this reason,
given a pap-test invitation at timé&, the next one can be scheduled at tiffiglus
10 minutes. Moreover, given the pap-test duration, the rarrobpatients that can be
invited a dayD in a pap-test center is the number of 10 minute slots cordaimés
available time period.

The last pap-test examination date is important becauseetkteexpected pap-test
should be performed three years after the last one.

The screening history of a woman is the collection of all thenés happened during
her screening process (e.g., received/refused invistmap-test results). Depending on
these events, the woman is classified into three main priesiels: High Priority (HP),
Normal Priority (NP) and Low Priority (LP). A woman is clasd as High Prior-
ity when during her screening history a high risk event hazioed (e.g., if a tumor



was found and treated in the last two years). Normal Prigsitgssociated to women
that have accepted the last pap-test invitation and reselts normal. Low priority is
assigned to women who have not accepted the last pap-tésttion. The screening
protocol prescribes to track such women and retry the pstar@tation several times.
Statistics show that LP women have very low probability ofegating an invitation:
typically less than 30% of the invited women show up. For te@son, overbooking
is a common practice: in our instance, the examination thuras reduced down to 3
minutes for LP patients. The assigned priority is one of tlsthimportant parameters
for the definition of the pap-test invitation plan becauseally a fixed percentage of
the time-periods available in the pap-test centers is afibatfor each priority level.

During the round, centers might be early or late on callshéfirst case, the center
can be excluded from the invitation plan. In the second eassgbooking is performed.

The address of a woman is important because she should bediinithe nearest
pap-test center in order to increase the probability of shgwp.

Given the information described above, the definition ofrttunthly invitation plan
is made in several steps. The screening center managereedam the pap-test cen-
ter the availability agenda for the next month expressediiutas. A list of women to
invite is identified by filtering the target population by @dsing among the target popu-
lation only those women whose invitation expires beforertatedeadline. The overall
time availability is subdivided in slots of 10 minutes ealpercentage of slots is then
assigned to each priority level (default percentages &% for High priority, 30 for
Normal priority and 20 for Low priority). The manager triesuristically to match the
availability of the resources and the number of patients:

— If the number of slots is much higher than the number of p&di¢m invite, the
manager moves the invitation expiration deadline to inelad many patients as
possible without anticipating too much their invitations.

— If the number of slots is not enough, the manager decidessifriecessary to per-
form overbooking on some priority classes or postpone soriations to the next
month with a time tolerance.

If a reasonable solution could not be obtained despite thedie fixes, the manager
contacts the pap-test centers asking for additional tiradahility.

3 Greedy approach

The invitation planning activity, shown in the previous tsa, relies heavily on trial-
and-error, is very error prone, and does not guarantee alitynfor even near-to opti-
mality). Its only chances of success stand in the managepisrience.

We developed two greedy algorithms to support the screer@nter manager in the
definition of the pap-test invitation: Priority-Date and igleted.

The Priority-Date greedy algorithm schedules the women considering two aspects: the

expected invitation date and the priority.
Women in the target population are divided into three déffgrists depending on
their priority. Women in the same priority list are then aretkw.r.t. their expected date.



In each day, available slots are subdivided in three groopsreing to a percentage
associated to each priority level (as described in SectjoR&ch group represents the
maximum number of slots that can be used for each prioritgllev

For each priority list, women are extracted from the top eflibt and assigned to
slots reserved for the corresponding priority. If for somienity the allotted time slots
in a month exceed the number of patients of the same pri¢higyremaining slots are
assigned to women of lower priorities.

The Weighted greedy algorithm tries to balance the two aforementioned criteria in or-
der to limit the introduced delays and to give importance ighlpriority classes. In
fact, Priority-Date tends to provide extreme solutionsyhich high priority classes are
scheduled too eagerly, and low priority patients can bergsignificant delay.

We give to each patient a weight that depends on her assdalay and priority:

W = delay(Patient) - p(Patient)

wheredelay(Patient) is a function that returns the delay of tReatient invitation with
respect to the expected examination date @ifeutient) is a coefficient associated to
the priority level of Patient (the highest the coefficient, the highest the importance
given to the delay). Moreover, as in the Priority-Date ailfpon, the user can state that
in each day some slots are reserved for patients of a specdiity

The patients are then ordered according to their weightgerGihe ordered list,
the algorithm starts the assignment from the first day of tbettmand associates to a
slot reserved for a particular priority level the patienttod corresponding priority with
the highest weight. The slots non assigned for this pridetgl are associated to the
women with the highest objective function values indepetigidrom their priorities.

3.1 Experiments on greedy algorithms

In order to test the proposed algorithms and highlight theids and cons, we set up a
simulation with very difficult conditions (more women to itesthan the available time).
The instance spans over 5 months, and involves 2400 womérewitected invitation
dates randomly generated with uniform distribution. Outhe 2400 women, 1150
were given low priority, 950 normal and 300 high. The pag-tesiter has a daily time
availability of 50 minutes (5 pap-test examinations of 1Gmtés or 16 if we consider
overbooking with 3 minutes for each examination), 7 days elkwe

As shown in Table 1, the Priority-Date algorithm, configuveth default parame-
ters (50% of time for high priority, 30% for normal prioritynd 20% for low priority),
gives too much importance to the high priority women intrcidg significant delays
for the low priority women (up to 75 days of delay). The intwation of an objective
function in the weighted greedy algorithm represents afugiem of the Priority-Date
one, capable of reducing the delays for low priority womemttu52) as shown in Table
1. It also introduces, for each day, a better allocation efabailable slots by balancing
priorities and delays in the objective function.

The problem of this greedy algorithm is that it cannot idigrdin optimal invitation
plan as it only discovers local optima. Consider for inseaaday in which low priority



Table 1. Max number of delay/anticipation days

Algorithm  |Priority|Max AnticipationMax Delay

Priority-Date  HP 22 1
Weighted HP 0 16
Priority-Date NP 5 9
Weighted NP 0 16
Priority-Datg LP 0 75
Weighted LP 2 52

patients are subject to overbooking, and a free slot of 1@t We can accommodate
either 1 high priority woman with a time delay of one day or @& lariority women with

a time delay of one day each. If we have assigned to the highmal@nd low priority
levels respectively a weight of 10, 7 and 4 in the objectivecfion. The algorithm
orders patients according to their weight: first the higlofity woman whose weight is
(10-1 = 10), then the three low priority patients whose weight i = 4 each. Indeed,
even if the delay of low priority women rises up to two daysythee still ordered after
the high priority woman. The weighted algorithm then sedele first patient in the list,
assigns the slot of 10 minutes to the high priority womansttielaying the three low
priority women of one day. This solution codt$+4-2+4-2+44-2 = 34.

Looking globally to our list, we observe that the one gerestas not the optimal
solution as reserving the 10 minutes slot for inviting theo® Ipriority women and
delaying the high priority invitation of one day has a lowestl0-2+4+4+4 = 32.

For this reason we used artificial intelligence techniquesb @onstraint Program-
ming for identifying the optimal invitation plan (the plahat has the lowest sum of all
the woman objective function values). This approach isiilesd in details in Section 4.

4 Constraint Programming

The greedy algorithms presented in Section 3 provide reddersolutions in a very
short time. The generated appointment schedules were &alro the final users, that
deemed them acceptable. However, due to the combinatatiatenof the problem, a
greedy algorithm in general does not provide the optimalt8wi, and it never proves
optimality.

We decided to experiment with optimization algorithms, ider to find the opti-
mal solution, and to compare the quality of the solutionggitey optimal and greedy
algorithms. The aim was to evaluate the viability of an Actédl Intelligence module,
exploiting a complete algorithm, in the appointment scliediapplication.

Constraint Programming (CP) languages are devoted ethplioi the solution of
hard combinatorial problems. Initially born as a rib of Lodgtrogramming, CP was
then extended also to the object-oriented paradigm. Mo@&tanguages contain li-
braries and solvers for different domains. Popular insgtarare CP(FD), in which the
unknowns range on Finite Domains, and ®(in which variables range on the set of
real numbers. The corresponding solvers are based on @eshsnriched with prop-



agation algorithms reaching Arc-Consistency (and its gaizations) for the FD do-
main, and on (Integer) Linear Programming for the domairhefreals.

We first experimented the viability of a CP(FD) model, butid dot provide op-
timal solutions in reasonable time. We then applied a®®)Polution, exploiting an
integer linear programming model, that opens the way toiefficsolvers based on
linear programming enriched with a branch and bound styateg

4.1 CP(R) Model

At a first sight, one could think to associate a decision Weial D;, representing the
appointment date, to each patient. Unluckily, the numbgagients could be large, and
many of them share same category and expected date, so thk space can contain
an exponential number of symmetric solutions obtained bynpé&ng patients with
same features, that gives a well known combinatorial exphosf the search space [4].
Symmetric solutions can be pruned by adding the constraifits < AD; whenever

i < j. However, the number of variables is still very large. Theme, we decided to
classify the patients into groups, each group being idendtifly a expected date and a
category, and associate a variable to each group.

Suppose we haveg groups andwd days. For each group of patientsand for each
possible invitation dayd, we define a positive decision variallg;; > 0, representing
the number of patients from groypinvited in dayid.

For each decision variable there ix@st associated to such assignment. For the
group of patientg the cost depends on the category and on the introduced délay w
respect to the expected day(g). Categories with higher priorities will contribute with
a higher cost than low-priority categories. The cost depeymd the delay through a
nonlinear function. If the invitation date coincides withetexpected date, the cost is
zero; the same holds if the invitation date is before the ebtgoedate, provided that
the anticipation is limited: there exists a parametatefining the maximal number of
days a patient can be called in advance. The protocol refjdeys not to be higher
than 40 days; we defined a parameidthat defaults to 40). Delays superior dcor
patients called more tham days before their expected date contribute to the total with
a very high cosi\/. A delay between 0 anélcontributes with a cost proportional to the
number of days of delay, multiplied to the priority coeffitie(¢) of the groupg. The
objective function is then:

ng nd

minz Z I, iqcost(g,id — ed(g))

g=14id=1
were the cost is defined as

0 if a<d<0
cost(g,d) =4 p(g)-d if 0<d<é
M if d<avd>$

The constraints (1) impose that the total capacity of thaslagt exceededapacity
is the total number of minutes available for visits in a gig&y; duration is the dura-
tion of a visit, and it depends on the category and on the dajcfwenables the user to
define detailed policies for overbooking, varying the vilitations).



Zgil I, ;q duration(g,id) < capacity(id) Vid € 1..nd @)

Note that an instance could be infeasible if the number ofdaynot enough to
accommodate all patients; in such a case a constraint stdesrnot provide a solution,
but simply returns failure. To provide the manager a redsierenswer also in this case,
we avoid infeasibility by introducing an additional day kitnlimited capacity and with
a high costM to accommodate all patients.

Each patient should be invited exactly once, stated asm@ns(2), wherdg| is the
number of patients belonging to the grogp

Z?dd:1 Iy =19 Vge€l.ng 2

Finally, the percentage of time devoted to visiting pasesfteach category should
be respected. Actually, in order to fully exploit the powéthe optimizer, the problem
should not be too constrained (otherwise, if there are nedfsen degrees, the optimal
solution boils down to the same solution given by a greedgritlym). We decided to
guide the optimization process toward the specificationtheffinal user as follows.
We ask the user to impose a capacity per day per group of p@t@apPerc(c,id).
We check whether the total allotted time for each categoep@ugh for visiting all the
patients in that category. If the allotted time is enough,jmvpose that in each day the
number of patients of categoeyis at most the one specified by the user (3). Otherwise
(if the total time is not enough for that category), for ea@y dve impose that the
number of patients of categoryis at least the one prescribed by the user (4).

Vid € 1..nd,Vc € 1..nc s.t.
S CapPerc(c,id') < .1, _ duration(c,id") = (3)
ZZZCI(C) I, iaduration(g,id) > CapPerc(c, id)

Vid € 1..nd,¥c € 1..nc s.t.
Z?dd,zl CapPerc(c,id') > E?j,zl duration(c,id") = (4)
Zgicl(c) I, ;qduration(g, id) < CapPerc(c,id)

The model consisting of the objective function, constsaiftt), (2), (3), (4) and
the integrality constraint for each variahlg ;4 is solved through branch and bound
exploiting a linear relaxation for bound computation. Tmarizh and bound algorithm
solves the problem to optimality and proves the solutiorptineal.

5 Experiments

We selected a series of experiments to compare the quatitthamuntime of the greedy
algorithms with respect to the use of the GJ&olver. In the experiments, we used an
instance with 204 patients to be scheduled in a period of cmthm with random ex-
pected day. The patients are divided into three categ®igatients HP, 74 NP and
104 LP. The visiting time is 10 minutes without overbookimdile it is reduced to 3



minutes in case of overbooking (only for LP patients). Thailability of the screen-
ing centre is 50 minutes per day, which is not enough to viktha patients without
overbooking, thus some of the patients have to be be movdz timiowing month.

In Figure 1 we show the distribution of the difference betwegpected day and
invitation day for each of the categories for the weighteslegy algorithm detailed in
Section 3. In abscissa we represent the difference expéetgd invitation day, i.e.,
negative numbers represents anticipation with respedtacoptimal invitation date,
while positive numbers represent delay. In ordinate, we tla number of patients (for
each category) that has such an anticipation/delay. Tteeitdgh gives high priority to
high risk patients, which are anticipated, with respechtirtideal date, up to 20 days.
Correspondingly, delays are introduced for lower priopdyients. This shows that there
is room for improvement: intuitively, some of the early jgatis could be swapped with
patients that are delayed.
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Fig. 1. Distribution of the patients: weighted greedy algorithm

Figure 2 shows the distribution in the optimal solution. Banticipations and de-
lays are drastically reduced: no patient is anticipatedentivein 4 days or delayed more
than 9 days. The values of objective function in the two situes synthesize the same
information visually presented in the graph: the greedutsmh has cost 2037, while
the optimal cost is almost an order of magnitude better: 325.

The same can be said in the case with overbooking, as showigunes 3 and 4.
The corresponding costs are 558 for the greedy solution 88ddt the optimal one.

We used ILOG CPLEX 9.0 as solver; it was able to find the optigadiition in a
very small time on an Intel Celeron CPU 2.4 GHz, 512MB RAM cartep. In order to
test the scalability of the algorithm, we experimented withigher number of patients,
up to 20,000. The algorithm scales very well: all the instaneere solvable within one
minute, which is by far acceptable for an algorithm that is omce every month. The
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Fig. 2. Distribution of the patients: optimal solution

scalability can be easily explained: the unknowns in our ef®do not depend directly
on the number of patients, which can be large, but the numbgroaips, that cannot
grow beyond the number of possible days multiplied by the bemof categories.

6 Conclusions

In the paper we have proposed greedy and exact algorithntisfanvitation plan gen-
eration for cancer screening.

Invitation plans, generated during experiments performigld different patient and
resource configurations, were submitted to the final udessdeemed them acceptable,
in any case better than the current hand-generated plans.

Clearly, the choice between a greedy and an optimal algorghould take into
account issues related to scalability, efficiency and soiuwquality. Small instances (up
to hundreds of patients to be scheduled in a month time hoyizan be effectively
solved via the exact approach proposed in this paper. Whetintkehorizon raises up
to several months we can either face the overall instande avijreedy approach or
we can decompose it by dividing the time horizon in monthlgesd and solve each
sub-instance with the exact algorithm.
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