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Let r,d ≤ n be nonnegative integers. In this paper we study the basic properties of a discrete dynamical model of signed integer
partitions that we denote by 𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆. A generic element of this model is a signed integer partition with exactly 𝑑𝑑 all distinct
nonzero parts, whose maximum positive summand is not exceeding 𝑆𝑆 and whose minimum negative summand is not less than
−𝑆𝑆𝑆 − 𝑆𝑆𝑆. In particular, we determine the covering relations, the rank function, and the parallel convergence time from the bottom
to the top of 𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆 by using an abstract Sand Piles Model with three evolution rules. e lattice 𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆 was introduced by the
�rst two authors in order to study some combinatorial extremal sum problems.

1. Introduction

Discrete dynamical models whose con�gurations are integer
partitions are also called Sand Piles Models and they have
been deeply investigated. In these models an integer partition
is treated as a sequence of piles of grains of sand and each
singular grain as a single integer unit. An evolution rule in
these models is a rule which describes how to move some
particular grains of a con�guration in order to obtain another
con�guration.e famous Brylawski paper [1] can be consid-
ered the �rst implicit study of an integer partitions lattice by
means of two evolution dynamical rules which determine the
covering relations of this lattice. In [1] Brylawski proposed
a dynamical approach to study the lattice 𝐿𝐿𝐵𝐵𝑆𝑆𝑆𝑆 of all the
partitions of a �xed positive integer 𝑆𝑆 with the dominance
order.

However, the explicit identi�cation of a speci�c set of
integer partitions with a Sand Piles Model begins in [2, 3].

In the Sand Piles Model introduced by Goles and Kiwi
in [3], denoted by SPM𝑆𝑆𝑆𝑆, a sand pile is represented by
an ordered partition of an integer 𝑆𝑆, that is, a decreasing

sequence 𝑎𝑎 𝑎 𝑆𝑎𝑎1𝑆… 𝑆 𝑎𝑎𝑆𝑆𝑆 having sum 𝑆𝑆, and the movement
of a sand grain respects the following rule.

Rule 1 (vertical rule). One grain can move from a column to
the next one if the difference of height of these two columns
is greater than or equal to 2.

In the model 𝐿𝐿𝐵𝐵𝑆𝑆𝑆𝑆 (introduced by Brylawski, 1973 [1]),
the movement of a sand grain respects Rule 1 and Rule 2,
which is described as follows.

Rule 2 (horizontal rule). If a column containing 𝑝𝑝 𝑝 1 grains,
is followed by a sequence of columns containing 𝑝𝑝 grains and
then one column containing 𝑝𝑝−1 grains, one grain of the �rst
column can slip to the last one.

e Sand PilesModel SPM𝑆𝑆𝑆𝑆 is a special case of themore
general Chip Firing Game (CFG), which was introduced by
Spencer in [4] to study some “balancing game”. ere are
a lot of specializations and extensions of this model which
have been introduced and studied under different names,
different aspects and different approaches. e SPM𝑆𝑆𝑆𝑆 can
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be also related to the Self-Organized Criticality (SOC) system
introduced by Bak et al. in [5]. e study of such systems
have been developed in an algebraic context ([6]), in a
combinatorial games theory setting ([3, 7, 8]) and in the
theory of cellular automata [9, 10].

In the papers [8, 11–20], several dynamicalmodels related
to SPM(𝑛𝑛𝑛 have been studied. Almost all systems studied
in the previous works have a linear topology and they have
extended the classical models SPM(𝑛𝑛𝑛 and 𝐿𝐿𝐵𝐵(𝑛𝑛𝑛 to obtain
more general models. An excellent survey on these topics is
[21].

Let now 𝑟𝑟 and 𝑑𝑑 be non-negative integers less or equal
than 𝑛𝑛 and [𝑛𝑛𝑛 the 𝑛𝑛-set {1,… , 𝑛𝑛𝑛. In [22] the authors
have introduced and studied a poset (𝑆𝑆(𝑛𝑛, 𝑟𝑟𝑛, 𝑆𝑛 related to
some extremal combinatorial sums problems (see also [23–
26] for studies on these problems). Such a poset can be
seen as a lattice of particular integer partitions with all dis-
tinct summands which can be positive or negative, whose
maximum positive summand is not exceeding 𝑟𝑟 and whose
minimum negative summand is not less than −(𝑛𝑛− 𝑟𝑟𝑛. Such a
poset is an involution poset; that is, it has an involution map
that gives it some special symmetric properties, and it is also
a lattice isomorphic (as noted in [27]) to the direct product
𝑀𝑀(𝑟𝑟𝑛 𝑀 𝑀𝑀(𝑛𝑛 − 𝑟𝑟𝑛∗, where 𝑀𝑀(𝑛𝑛𝑛 is the lattice introduced by
Stanley, [28], in order to solve an Erdös andMoser conjecture
(here we denote by𝑀𝑀(𝑛𝑛, 𝑟𝑟𝑛∗ the dual lattice of𝑀𝑀(𝑛𝑛−𝑟𝑟𝑛).e
structure of𝑀𝑀(𝑛𝑛𝑛 is well known. For example, since𝑀𝑀(𝑛𝑛𝑛 is
Peck, it follows that 𝑆𝑆(𝑛𝑛, 𝑟𝑟𝑛 is Peck by [29].is lattice contains
an interesting sublattice (𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛, 𝑆𝑛 that is the set of all
the integer partitions of 𝑆𝑆(𝑛𝑛, 𝑟𝑟𝑛 having exactly 𝑑𝑑 non-zero
summands. Also this sublattice has been introduced in [22]
and its structure at present is incompletely understood. For
example, we know that it is a graded poset because it is a �nite
distributive lattice, but its rank function is unknown. In [30]
Andrews introduced the concept of signed partition: a signed
partition is a �nite sequence of integers𝜆𝜆𝑘𝑘,… , 𝜆𝜆1, 𝜆𝜆−1,… , 𝜆𝜆−𝑙𝑙
such that 𝜆𝜆𝑘𝑘 ≥ ⋯ ≥ 𝜆𝜆1 > 0 > 𝜆𝜆−1 ≥ ⋯ ≥ 𝜆𝜆−𝑙𝑙. In [30, 31]
the signed partitions are studied from an arithmetical point
of view.

In this paper we study the lattice 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛 as a Sand
Piles Model of signed integer partitions with three evolution
rules. e �rst of these rules is an outside adjunction rule
on the “positive” piles. e second rule is a switching rule
between “negative” piles and “positive” piles which allows
to maintain constant the number of the piles. e third
rule is an outside elimination rule on the negative “piles”.
We prove that the covering relation in the lattice 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛
is uniquely determined from the three previous rules. e
paper is articulated as follows. In Section 1 we recall some
basic de�nitions and preliminary results, for example, the
de�nition of 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛 and some of its properties. In Section
2 we explain how to see the signed partitions of 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛 as
con�gurations of our Sand Piles Model and also we de-
scribe its evolution rules. In Section 3 we prove (eorem 3)
that the covering relation in the lattice 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛 is uniquely
determined by three evolution rules of our Sand Piles Model.
We determine the rank function of 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛 and we compute
the rank of 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛, that is, the sequential convergence time
from the minimum to the maximum in 𝑆𝑆(𝑛𝑛, 𝑑𝑑, 𝑟𝑟𝑛. Finally, in

Section 4 we give some estimates for the parallel convergence
time in our model.

If (𝑋𝑋, 𝑋𝑛 is a poset and 𝑥𝑥, 𝑥𝑥 𝑥 𝑋𝑋, we write 𝑥𝑥 𝑦 𝑥𝑥 (or 𝑥𝑥 𝑥
𝑥𝑥) if 𝑥𝑥 covers 𝑥𝑥. Now we brie�y recall the de�nition of the
lattice 𝑆𝑆(𝑛𝑛, 𝑟𝑟𝑛 that we have introduced in [22] in amore formal
context. In this paper we always denote with 𝑛𝑛 and 𝑟𝑟 two �xed
non-negative integers such that 𝑟𝑟 𝑋 𝑛𝑛. We call (𝑛𝑛, 𝑟𝑟𝑛-string an
𝑛𝑛-pla of integers

𝑎𝑎𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛−𝑟𝑟, (1)

such that

(i) 𝑎𝑎1,… , 𝑎𝑎𝑟𝑟 𝑥 {1,… , 𝑟𝑟, 0𝑛;
(ii) 𝑏𝑏1,… , 𝑏𝑏𝑛𝑛−𝑟𝑟 𝑥 {−1,… , −(𝑛𝑛 − 𝑟𝑟𝑛, 0𝑛;
(iii) 𝑎𝑎𝑟𝑟 ≥ ⋯ ≥ 𝑎𝑎1 ≥ 0 ≥ 𝑏𝑏1 ≥ ⋯ ≥ 𝑏𝑏𝑛𝑛−𝑟𝑟;
(iv) the unique element in (1) which can be repeated is 0.

If 𝑤𝑤 is a (𝑛𝑛, 𝑟𝑟𝑛-string, we call parts of 𝑤𝑤 the integers 𝑎𝑎𝑟𝑟,
…, 𝑎𝑎1, 𝑏𝑏1 …𝑏𝑏𝑛𝑛−𝑟𝑟, non-negative parts of 𝑤𝑤 the integers
𝑎𝑎𝑟𝑟,… , 𝑎𝑎1 and non-positive parts of 𝑤𝑤 the integers 𝑏𝑏1 …𝑏𝑏𝑛𝑛−𝑟𝑟.
We set ∑(𝑤𝑤𝑛 𝑤𝑤 ∑𝑟𝑟

𝑖𝑖𝑤1 𝑎𝑎𝑖𝑖 + ∑
𝑛𝑛−𝑟𝑟
𝑗𝑗𝑤1 𝑏𝑏𝑗𝑗, and if 𝑚𝑚 𝑥 𝑚 is such that

∑(𝑤𝑤𝑛 𝑤 𝑚𝑚, we say that 𝑤𝑤 is a signed partitions of 𝑚𝑚; in this
case we write 𝑤𝑤 𝑤 𝑚𝑚. We set 𝑤𝑤+ 𝑤 𝑎𝑎𝑟𝑟 …𝑎𝑎1 ∣ and 𝑤𝑤− 𝑤 ∣
𝑏𝑏1 …𝑏𝑏𝑛𝑛−𝑟𝑟. Also, we denote by |𝑤𝑤|> the number of parts of 𝑤𝑤
that are strictly positive, with |𝑤𝑤|< the number of parts of 𝑤𝑤
that are strictly negative and we set ||𝑤𝑤|| 𝑤 |𝑤𝑤|> + |𝑤𝑤|<. 𝑆𝑆(𝑛𝑛, 𝑟𝑟𝑛
is the set of all the (𝑛𝑛, 𝑟𝑟𝑛-strings. If 𝑤𝑤 𝑤 𝑎𝑎𝑟𝑟 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑛𝑛−𝑟𝑟
and 𝑤𝑤′ 𝑤 𝑎𝑎′𝑟𝑟 …𝑎𝑎′1 ∣ 𝑏𝑏′1 …𝑏𝑏′𝑛𝑛−𝑟𝑟 are two (𝑛𝑛, 𝑟𝑟𝑛-strings, we set
𝑤𝑤+ 𝑤 𝑤𝑤′

+ if 𝑎𝑎
′
𝑖𝑖 𝑤 𝑎𝑎𝑖𝑖 for all 𝑖𝑖 𝑤 𝑟𝑟,… , 1, 𝑤𝑤− 𝑤 𝑤𝑤′

− if 𝑏𝑏
′
𝑗𝑗 𝑤 𝑏𝑏𝑗𝑗 for

all 𝑗𝑗 𝑤 1,… , 𝑛𝑛 − 𝑟𝑟 and 𝑤𝑤 𝑤 𝑤𝑤′ if 𝑤𝑤+ 𝑤 𝑤𝑤′
+ and 𝑤𝑤− 𝑤 𝑤𝑤′

−. On
𝑆𝑆(𝑛𝑛, 𝑟𝑟𝑛 we consider the partial order on the components, that
we denote by𝑆. To simplify the notations, in all the numerical
examples the integers on the right of the vertical bar | will
be written without minus sign. Since (𝑆𝑆(𝑛𝑛, 𝑟𝑟𝑛, 𝑆𝑛 is a �nite
distributive lattice it is also graded, with minimum element
0⋯0 ∣ 12⋯ (𝑛𝑛 − 𝑟𝑟𝑛 and maximum element 𝑟𝑟(𝑟𝑟 − 1𝑛⋯21 ∣
0⋯0.

We recall now the concept of involution poset (see [32, 33]
for some recent studies on such class of posets). An involution
poset (IP) is a poset (𝑋𝑋, 𝑋, 𝑋𝑋𝑛 with a unary operation 𝑋𝑋 𝑤 𝑥𝑥 𝑥
𝑋𝑋 𝑋 𝑥𝑥𝑋𝑋 𝑥 𝑋𝑋, such that

(I1) (𝑥𝑥𝑋𝑋𝑛𝑋𝑋 𝑤 𝑥𝑥, for all 𝑥𝑥 𝑥 𝑋𝑋;
(I2) if 𝑥𝑥, 𝑥𝑥 𝑥 𝑋𝑋 and if 𝑥𝑥 𝑋 𝑥𝑥, then 𝑥𝑥𝑋𝑋 𝑋 𝑥𝑥𝑋𝑋.

e map 𝑋𝑋 is called complementation of 𝑋𝑋 and 𝑥𝑥𝑋𝑋 the
complement of 𝑥𝑥. Let us observe that if 𝑋𝑋 is an involution
poset, by (I1𝑛 follows that 𝑋𝑋 is bijective and by (I1𝑛 and (I2𝑛
it holds that if 𝑥𝑥, 𝑥𝑥 𝑥 𝑋𝑋 are such that 𝑥𝑥 < 𝑥𝑥, then 𝑥𝑥𝑋𝑋 < 𝑥𝑥𝑋𝑋.
If (𝑋𝑋, 𝑋, 𝑋𝑋𝑛 is an involution poset and if 𝑍𝑍 𝑍 𝑋𝑋, we will set
𝑍𝑍𝑋𝑋 𝑤 {𝑧𝑧𝑋𝑋 𝑤 𝑧𝑧 𝑥 𝑍𝑍𝑛. We note that if 𝑋𝑋 is an involution
poset then𝑋𝑋 is a self-dual poset because from (I1𝑛 and (I2𝑛 it
follows that if 𝑥𝑥, 𝑥𝑥 𝑥 𝑋𝑋 we have that 𝑥𝑥 𝑋 𝑥𝑥, if and only if 𝑥𝑥𝑋𝑋 𝑋
𝑥𝑥𝑋𝑋, and this is equivalent to say that the complementation is
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an isomorphism between 𝑋𝑋 and its dual poset 𝑋𝑋∗. In [22]
has been shown that (𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 is an involution poset and its
complementation map 𝑐𝑐 is the following:

𝑎𝑎𝑘𝑘 …𝑎𝑎1 0…0 ∣ 0…0 𝑏𝑏1 …𝑏𝑏𝑙𝑙
𝑐𝑐

= 𝑎𝑎′𝑆𝑆𝑟𝑘𝑘 …𝑎𝑎′1 0…0 ∣ 0…0 𝑏𝑏′1 …𝑏𝑏′𝑆𝑆𝑟𝑆𝑆𝑟𝑙𝑙𝑆
(2)

where {𝑎𝑎′1𝑆… 𝑆 𝑎𝑎′𝑆𝑆𝑟𝑘𝑘} is the usual complement of {𝑎𝑎1𝑆… 𝑆 𝑎𝑎𝑘𝑘}
in {1𝑆… 𝑆 𝑆𝑆}, and {𝑏𝑏′1𝑆… 𝑆 𝑏𝑏′𝑆𝑆𝑟𝑆𝑆𝑟𝑙𝑙} is the usual complement of
{𝑏𝑏1𝑆… 𝑆 𝑏𝑏𝑙𝑙} in {𝑟1𝑆… 𝑆 𝑟(𝑆𝑆 𝑟 𝑆𝑆𝑆} (e.g., in 𝑆𝑆(𝑆𝑆 𝑆𝑆, we have that
(𝑆310 ∣ 001𝑆𝑐𝑐 = 2000 ∣ 023). If 𝑑𝑑 is an integer such that
0 ≤ 𝑑𝑑 ≤ 𝑆𝑆, we set now 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆 = {𝑆𝑆 𝑆 𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆 = 𝑑𝑑}. It’s
easy to see that (𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 is a sub-lattice of (𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 and
obviously |𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆| =  𝑆𝑆𝑑𝑑 . In the sequel we always denote,
respectively, by 0 and 1 the minimum and the maximum
element of the lattice 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆.

3. Evolution Rules

In this section we describe a discrete dynamical model with
three evolution rules. In this model a con�guration will be
a generic element of 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆. In the sequel, to comply with
the terminology concerning the Sand Piles Models, if 𝑆𝑆 𝑆
𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆, we represent the sequence of the positive parts
of 𝑆𝑆 as a not-increasing sequence of columns of stacked
squares and the sequence of the negative parts of 𝑆𝑆 as a not-
decreasing sequence of columns of stacked squares. We call
a column of stacked squares a pile and each square of a pile
is called a grain. For example, if 𝑆𝑆 = 10𝑆 𝑆𝑆 = 𝑛𝑆 𝑑𝑑 = 𝑛, the
con�guration

.

.

(3)

is identi�ed with the partition (𝑆𝑆 3𝑆 1𝑆 0𝑆 0𝑆 0 ∣ 0𝑆 0𝑆 𝑟1𝑆 𝑟3𝑆 =
𝑆33100 ∣ 0113 𝑆 𝑆𝑆(10𝑆 𝑛𝑆 𝑛𝑆. We denote by 𝐷𝐷(𝑆𝑆𝑆 𝑆= 𝐷𝐷+(𝑆𝑆𝑆 𝑆
𝐷𝐷𝑟(𝑆𝑆𝑆 the con�guration associated to𝑆𝑆, where𝐷𝐷+(𝑆𝑆𝑆 is the
Young diagram (represented with not-increasing columns) of
the partition (𝑎𝑎𝑆𝑆𝑆… 𝑆 𝑎𝑎1𝑆 and 𝐷𝐷𝑟(𝑆𝑆𝑆 is the Young diagram
(represented with not-decreasing columns) of the partition
with negative summands (𝑟𝑏𝑏1𝑆… 𝑆 𝑟𝑏𝑏𝑆𝑆𝑟𝑆𝑆𝑆. Our goal is to
de�ne some rules of evolution that starting from the mini-
mum of 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆 allow us to reconstruct the Hasse diagram
of 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆 (and therefore to determine the covering relations
in 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆).

Let 𝑆𝑆 = 𝑎𝑎𝑆𝑆 …𝑎𝑎1 ∣ 𝑏𝑏1 …𝑏𝑏𝑆𝑆𝑟𝑆𝑆 𝑆 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆. We formally set
𝑎𝑎0 𝑆= 0, 𝑎𝑎𝑆𝑆+1 𝑆= 𝑆𝑆 + 1 and 𝑏𝑏0 𝑆= 0. If 0 ≤ 𝑖𝑖 ≤ 𝑆𝑆 + 1 we call
𝑎𝑎𝑖𝑖 the 𝑖𝑖th-plus pile of 𝑆𝑆, and if 0 ≤ 𝑗𝑗 ≤ 𝑆𝑆 𝑟 𝑆𝑆 we call 𝑏𝑏𝑗𝑗 the
𝑗𝑗th-minus pile of 𝑆𝑆. We call 𝑎𝑎𝑖𝑖 plus singleton pile if 𝑎𝑎𝑖𝑖 = 1
and 𝑏𝑏𝑗𝑗 minus singleton pile if 𝑏𝑏𝑗𝑗 = 𝑟1. If 1 ≤ 𝑖𝑖 ≤ 𝑆𝑆 + 1 we set
Δ+𝑖𝑖 (𝑆𝑆𝑆 = 𝑎𝑎𝑖𝑖 𝑟𝑎𝑎𝑖𝑖𝑟1 and we callΔ

+
𝑖𝑖 (𝑆𝑆𝑆 the plus height difference

of 𝑆𝑆 in 𝑖𝑖. If 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆 𝑟 𝑆𝑆 we set Δ𝑟𝑗𝑗 (𝑆𝑆𝑆 = |𝑏𝑏𝑗𝑗| 𝑟 |𝑏𝑏𝑗𝑗𝑟1| and we
call Δ𝑟𝑗𝑗 (𝑆𝑆𝑆 the minus height difference of 𝑆𝑆 in 𝑗𝑗. If 1 < 𝑖𝑖 ≤ 𝑆𝑆,

we say that𝑆𝑆 has a plus cliff at 𝑖𝑖 if Δ+𝑖𝑖 (𝑆𝑆𝑆 𝑤 2. If 1 < 𝑗𝑗 ≤ 𝑆𝑆 𝑟 𝑆𝑆,
we say that 𝑆𝑆 has a minus cliff at 𝑗𝑗 if Δ𝑟𝑗𝑗 (𝑆𝑆𝑆 𝑤 2.

Remark 1. e choice to set 𝑎𝑎0 = 0, 𝑎𝑎𝑆𝑆+1 = 𝑆𝑆 and 𝑏𝑏0 = 0
is a formal trick for decrease the number of rules necessary
for our model. is means that when we apply the next
rules to one element 𝑆𝑆 𝑆 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆 we think that there is
an “invisible” extra pile in the imaginary place 𝑆𝑆 + 1 having
exactly 𝑆𝑆 + 1 grains, an “invisible” extra pile with 0 grains in
the imaginary place to the right of 𝑎𝑎1 and to the le of | and
another “invisible” extra pile with 0 grains in the imaginary
place to the le of 𝑏𝑏1 and to the right of |. However the piles
corresponding respectively to 𝑎𝑎0 = 0, 𝑎𝑎𝑆𝑆+1 = 𝑆𝑆 + 1 and 𝑏𝑏0 = 0
must be not considered as parts of 𝑆𝑆.

3.1. Evolution Rules

𝑅𝑅1: If the 𝑖𝑖th-plus pile has at least one grain and if𝑆𝑆 has a
plus cliff at 𝑖𝑖 + 1 then one grain must be added on the
𝑖𝑖th-plus pile:

•

.

.
.
.

(4)

𝑅𝑅2: If there is not a plus singleton pile and there is aminus
singleton pile, then the latter must be shied to the
side of the lowest not empty plus pile:

••
.
.

.

.

(5)

𝑅𝑅3: One grain must be deleted from the 𝑗𝑗th-minus pile if
𝑆𝑆 has a minus cliff at 𝑗𝑗:

•

.

.
.
.

(6)

Remark 2. (i) Under the hypothesis in 𝑅𝑅3, the 𝑗𝑗th minus pile
must have at least 2 grains.

(ii) In 𝑅𝑅2 the lowest not empty plus pile can also be the
invisible column in the place 𝑆𝑆 + 1. In this case all the plus
piles are empty and an eventual minus singleton pile must be
shied in the place 𝑆𝑆.

4. Covering Relations in 𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆

In this section we describe the covering relation in the lattice
𝑆𝑆(𝑆𝑆𝑆 𝑑𝑑𝑆 𝑆𝑆𝑆. e main result of this section is the eorem 3.
In the sequel we write 𝑆𝑆𝑤𝑘𝑘 𝑆𝑆′ (or 𝑆𝑆′ = 𝑆𝑆𝑤𝑘𝑘) to denote
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that𝑤𝑤′ is a 𝑛𝑛-pla of integers obtained from𝑤𝑤 applying 𝑅𝑅𝑘𝑘, for
𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘.

eorem 3. (i) If 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 and 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑘𝑘 for some
𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘, then 𝑤𝑤′ 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 and 𝑤𝑤′ ⋗ 𝑤𝑤.

(ii) If 𝑤𝑤𝑘𝑤𝑤′ 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 and 𝑤𝑤′ ⋗ 𝑤𝑤, then 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑘𝑘 for
some 𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘.

Proof. (i) Let 𝑤𝑤 𝑘 𝑤𝑤𝑤𝑤 …𝑤𝑤𝑘 ∣ 𝑏𝑏𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤, 𝑤𝑤𝑤𝑤𝑟𝑘 𝑘
𝑤𝑤 𝑟 𝑘 (the invisible pile in the place 𝑤𝑤 𝑟 𝑘) and 𝐷𝐷 𝑘 𝐷𝐷𝑤𝑤𝑤𝑤.
We distinguish the three possible cases related to the previous
rules.

Case 1. Let us assume that 𝑤𝑤 𝑟 𝑟𝑟 𝑟 𝑘, 𝑤𝑤𝑟𝑟 ≠ 0 and that 𝑤𝑤 has a
plus cliff at 𝑟𝑟 𝑟 𝑘. If 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑘, then 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑤 …𝑤𝑤𝑟𝑟𝑟𝑘𝑤𝑤𝑤𝑟𝑟 𝑟
𝑘𝑤𝑤𝑤𝑟𝑟𝑛𝑘 …𝑤𝑤𝑘 ∣ 𝑏𝑏𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤. It is clear that ||𝑤𝑤

′|| 𝑘 𝑤𝑤 because
𝑤𝑤𝑟𝑟 ≠ 0. Since there is a plus cliff at 𝑟𝑟 𝑟 𝑘 we have 𝑤𝑤𝑟𝑟𝑟𝑘 𝑛 𝑤𝑤𝑟𝑟 𝑟 𝑘,
hence 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑤𝑤𝑟𝑟 𝑟 𝑘 > 𝑤𝑤𝑟𝑟 𝑟 𝑘 > 𝑤𝑤𝑟𝑟 > 𝑤𝑤𝑟𝑟𝑛𝑘, and this implies
that 𝑤𝑤′ 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤. We must show now that 𝑤𝑤′ covers 𝑤𝑤
in 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤. Since 𝑤𝑤 and 𝑤𝑤′ differ between them only in the
place 𝑟𝑟 for 𝑤𝑤𝑟𝑟 and 𝑤𝑤𝑟𝑟 𝑟 𝑘, respectively, it is clear that there does
not exist an element 𝑧𝑧 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 such that 𝑤𝑤 𝑤 𝑧𝑧 𝑤 𝑤𝑤′.
Hence 𝑤𝑤′ ⋗ 𝑤𝑤.

Case 2. Let us assume that in 𝐷𝐷 there is not a plus singleton
pile and that there is a minus singleton pile 𝑏𝑏𝑗𝑗 𝑘 𝑛𝑘 for some
𝑘 ≤ 𝑗𝑗 ≤ 𝑛𝑛 𝑛 𝑤𝑤. Since 𝑤𝑤𝑤𝑤𝑟𝑘 𝑘 𝑤𝑤 𝑟 𝑘, we can assume that
𝑤𝑤𝑟𝑟𝑟𝑘 > 0, 𝑤𝑤𝑟𝑟 𝑘 0, for some 𝑘 ≤ 𝑟𝑟 ≤ 𝑤𝑤. is means that
𝑤𝑤 has the following form: 𝑤𝑤 𝑘 𝑤𝑤𝑤𝑤 …𝑤𝑤𝑟𝑟𝑟𝑘00…0 ∣
0…0𝑤𝑛𝑘𝑤𝑏𝑏𝑗𝑗𝑟𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤, where 𝑤𝑤𝑟𝑟𝑟𝑘 > 𝑘 (otherwise 𝐷𝐷 has a
plus singleton pile). Applying 𝑅𝑅𝑘 to 𝑤𝑤 we obtain 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑘,
where 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑤 …𝑤𝑤𝑟𝑟𝑟𝑘𝑘0…0 ∣ 0…00𝑏𝑏𝑗𝑗𝑟𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤. It is
clear then that 𝑤𝑤′ 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑤 and ||𝑤𝑤′|| 𝑘 𝑤𝑤 since 𝑤𝑤′ is
obtained from 𝑤𝑤 with only a shi of the pile 𝑛1 to the le
in the place 𝑟𝑟. Let us note that the only elements 𝑧𝑧𝑘𝑘 𝑧𝑧𝑘 𝑤
𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑤 such that 𝑤𝑤 𝑤 𝑧𝑧𝑘 𝑤 𝑤𝑤′ and 𝑤𝑤 𝑤 𝑧𝑧𝑘 𝑤 𝑤𝑤′ are
𝑧𝑧𝑘 𝑘 𝑤𝑤𝑤𝑤 …𝑤𝑤𝑟𝑟𝑟𝑘𝑘0…0 ∣ 0…0𝑤𝑛𝑘𝑤𝑏𝑏𝑗𝑗𝑟𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤 and 𝑧𝑧𝑘 𝑘
𝑤𝑤𝑤𝑤 …𝑤𝑤𝑟𝑟𝑟𝑘00…0 ∣ 0…00𝑏𝑏𝑗𝑗𝑟𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤, but ||𝑧𝑧𝑘|| 𝑘 𝑤𝑤 𝑟 𝑘 and
||𝑧𝑧𝑘|| 𝑘 𝑤𝑤 𝑛 𝑘, hence 𝑧𝑧𝑘𝑘 𝑧𝑧𝑘 are not elements of 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤. is
implies that 𝑤𝑤′ covers 𝑤𝑤 in 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤.

Case 3. If 𝑘 < 𝑗𝑗 ≤ 𝑛𝑛 𝑛 𝑤𝑤 and 𝑤𝑤 has a minus cliff at 𝑗𝑗, we
apply 𝑅𝑅𝑘 to𝑤𝑤 on the pile 𝑏𝑏𝑗𝑗 and we obtain𝑤𝑤

′ 𝑘 𝑤𝑤𝑤𝑘, where
𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑤 …𝑤𝑤𝑘 ∣ 𝑏𝑏𝑘 …𝑏𝑏𝑗𝑗𝑛𝑘𝑤𝑏𝑏𝑗𝑗 𝑟 𝑘𝑤𝑏𝑏𝑗𝑗𝑟𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤. Since 𝑤𝑤 has a
minus cliff at 𝑗𝑗, we have𝑛𝑏𝑏𝑗𝑗𝑟𝑏𝑏𝑗𝑗𝑛𝑘 𝑘 |𝑏𝑏𝑗𝑗|𝑛|𝑏𝑏𝑗𝑗𝑛𝑘| 𝑟 𝑘, therefore
𝑤𝑤′ 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑤 because 0 𝑟 𝑏𝑏𝑗𝑗𝑛𝑘 𝑟 𝑏𝑏𝑗𝑗 𝑟𝑘 > 𝑏𝑏𝑗𝑗𝑟𝑘 > 𝑏𝑏𝑗𝑗 > 𝑏𝑏𝑗𝑗𝑟𝑘 and
||𝑤𝑤′|| 𝑘 𝑤𝑤 since 𝑏𝑏𝑗𝑗 ≤ 𝑛𝑘 implies 𝑏𝑏𝑗𝑗𝑟𝑘 < 0. As in the Case 1, we
note that𝑤𝑤′ covers𝑤𝑤 in 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 because they differ between
them only for a grain in the place 𝑗𝑗.

(ii) As in (i), we take 𝑤𝑤 𝑘 𝑤𝑤𝑤𝑤 …𝑤𝑤𝑘 ∣ 𝑏𝑏𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤
and 𝑤𝑤𝑤𝑤𝑟𝑘 𝑘 𝑤𝑤𝑟𝑘 (the invisible pile in the place 𝑤𝑤𝑟𝑘). Let𝑤𝑤

′′ 𝑘
𝑤𝑤′′𝑤𝑤 …𝑤𝑤′′𝑘 ∣ 𝑏𝑏

′′
𝑘 … 𝑏𝑏′′𝑛𝑛𝑛𝑤𝑤 a generic element of 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 such that

𝑤𝑤′′ ⊒ 𝑤𝑤 and 𝑤𝑤′′ ≠𝑤𝑤. If we show that there exists an element

𝑤𝑤′ 𝑘 𝑤𝑤′𝑤𝑤 …𝑤𝑤′𝑘 ∣ 𝑏𝑏
′
𝑘 …𝑏𝑏′𝑛𝑛𝑛𝑤𝑤 of 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 such that 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑘𝑘

for some 𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘 𝑘 and𝑤𝑤′′ ⊒ 𝑤𝑤′ we complete the proof. Since
𝑤𝑤′′ ≠𝑤𝑤, there is a place where the corresponding component
of𝑤𝑤′′ is an integer strictly bigger than the integer component
of𝑤𝑤 corresponding to the same place. We distinguish several
cases.

Case 𝐴𝐴. 𝑤𝑤′′𝑟𝑟 > 𝑤𝑤𝑟𝑟 for some 𝑟𝑟 𝑤 𝑖𝑤𝑤 𝑛 𝑘𝑘… 𝑘 𝑘𝑖.

𝑤𝑤𝑆𝑆𝑏𝑏𝑆𝑆𝑤𝑤𝑆𝑆𝑆𝑆 𝐴𝐴𝑘. 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑤𝑤𝑟𝑟𝑟𝑘. In this case we apply𝑅𝑅𝑘 in the place
𝑟𝑟 to obtain 𝑤𝑤′ 𝑘 𝑤𝑤𝑤𝑘 such that 𝑤𝑤′′ ⊒ 𝑤𝑤′.

𝑤𝑤𝑆𝑆𝑏𝑏𝑆𝑆𝑤𝑤𝑆𝑆𝑆𝑆 𝐴𝐴𝑘. 𝑤𝑤𝑟𝑟𝑟𝑘 𝑘 𝑤𝑤𝑟𝑟 𝑟 𝑘. Since 𝑤𝑤
′′
𝑟𝑟 > 0 and 𝑟𝑟 ≤ 𝑤𝑤 𝑛 𝑘, then

𝑤𝑤′′𝑟𝑟𝑟𝑘 > 𝑤𝑤
′′
𝑟𝑟 > 𝑤𝑤𝑟𝑟, therefore 𝑤𝑤

′′
𝑟𝑟𝑟𝑘 𝑟 𝑤𝑤𝑟𝑟 𝑟 𝑘 > 𝑤𝑤𝑟𝑟𝑟𝑘. Now, if 𝑟𝑟 𝑟 𝑘 𝑘 𝑤𝑤,

then 𝑤𝑤 𝑟 𝑤𝑤′′𝑤𝑤 > 𝑤𝑤𝑤𝑤 and we can apply 𝑅𝑅𝑘 in the place 𝑤𝑤. We can
assume therefore 𝑟𝑟 𝑟 𝑘 < 𝑤𝑤. If 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑘 we proceed as in
A1 with 𝑅𝑅𝑘 in the place 𝑟𝑟 𝑟 𝑘, otherwise, if 𝑤𝑤𝑟𝑟𝑟𝑘 𝑘 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑘 and
𝑟𝑟𝑟𝑘 𝑘 𝑤𝑤we proceed as before with𝑅𝑅𝑘 in the place 𝑤𝑤. Iterating,
it follows that the cases to be examined are 𝑤𝑤𝑟𝑟𝑟𝑘𝑘 𝑟 𝑤𝑤𝑟𝑟𝑟𝑘𝑘𝑛𝑘 𝑟 𝑘
or 𝑤𝑤𝑟𝑟𝑟𝑘𝑘 𝑘 𝑤𝑤𝑟𝑟𝑟𝑘𝑘𝑛𝑘 𝑟𝑘 and 𝑟𝑟𝑟𝑘𝑘 𝑘 𝑤𝑤. In all these case we can apply
𝑅𝑅𝑘 in the place 𝑟𝑟 𝑟 𝑘𝑘 𝑛 𝑘.

𝐶𝐶𝑤𝑤𝑆𝑆𝑆𝑆 𝐶𝐶. 𝑤𝑤′′𝑤𝑤 > 𝑤𝑤𝑤𝑤. In this case we just apply 𝑅𝑅𝑘 in the place 𝑤𝑤.

𝐶𝐶𝑤𝑤𝑆𝑆𝑆𝑆 𝐶𝐶. 𝑏𝑏′′𝑗𝑗 > 𝑏𝑏𝑗𝑗 for some 𝑗𝑗 𝑤 𝑖𝑘𝑘… 𝑘 𝑛𝑛 𝑛 𝑤𝑤𝑖.

𝑤𝑤𝑆𝑆𝑏𝑏𝑆𝑆𝑤𝑤𝑆𝑆𝑆𝑆 𝐶𝐶𝑘. 𝑏𝑏′′𝑗𝑗 < 0. en 𝑏𝑏𝑗𝑗 𝑟 𝑛𝑘 and we can apply 𝑅𝑅𝑘 in the
place 𝑗𝑗.

𝑤𝑤𝑆𝑆𝑏𝑏𝑆𝑆𝑤𝑤𝑆𝑆𝑆𝑆 𝐶𝐶𝑘. 𝑏𝑏′′𝑗𝑗 𝑘 0 and 𝑏𝑏𝑗𝑗 𝑟 𝑛𝑘. We apply 𝑅𝑅𝑘 in the place 𝑗𝑗.

𝑤𝑤𝑆𝑆𝑏𝑏𝑆𝑆𝑤𝑤𝑆𝑆𝑆𝑆 𝐶𝐶𝑘. 𝑏𝑏′′𝑗𝑗 𝑘 0, 𝑏𝑏𝑗𝑗 𝑘 𝑛𝑘 and 𝑤𝑤𝑟𝑟 𝑘 𝑘 for some 𝑟𝑟 𝑤 𝑖𝑘𝑘… 𝑘 𝑤𝑤𝑖.
If 𝑤𝑤𝑘 𝑘 𝑘 then 𝑤𝑤 𝑘 𝑤𝑤𝑤𝑤𝑤 𝑛 𝑘𝑤…𝑘𝑘 ∣ 0…0𝑤𝑛𝑘𝑤𝑏𝑏𝑗𝑗𝑟𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤

with ||𝑤𝑤|| 𝑘 𝑤𝑤, therefore we can not have 𝑤𝑤′′ 𝑤 𝑤𝑤𝑤𝑛𝑛𝑘 𝑤𝑤𝑘 𝑤𝑤𝑤 such
that 𝑤𝑤′′ ⊑ 𝑤𝑤 and 𝑤𝑤≠𝑤𝑤′′. We can assume then 𝑟𝑟 > 𝑘, and
therefore 𝑤𝑤𝑟𝑟𝑛𝑘 𝑘 ⋯ 𝑘 𝑤𝑤𝑘 𝑘 0. Since ||𝑤𝑤′′|| 𝑘 ||𝑤𝑤|| 𝑘 𝑤𝑤, it
must be 𝑤𝑤′′𝑟𝑟 > 𝑤𝑤′′𝑟𝑟𝑛𝑘 > 0, hence 𝑤𝑤′′𝑟𝑟 𝑟 𝑘 and 𝑤𝑤𝑟𝑟 𝑘 𝑘. Now, if
𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑤𝑤𝑟𝑟 𝑟 𝑘, we apply 𝑅𝑅𝑘 in the place 𝑟𝑟. We can suppose then
that 𝑤𝑤𝑟𝑟𝑟𝑘 𝑘 𝑤𝑤𝑟𝑟 𝑟 𝑘 𝑘 𝑘. Since 𝑤𝑤′′𝑟𝑟𝑛𝑘 > 0, it must be 𝑤𝑤′′𝑟𝑟𝑟𝑘 𝑟 4,
therefore, if 𝑤𝑤𝑟𝑟𝑟𝑘 𝑘 𝑤𝑤

′′
𝑟𝑟𝑟𝑘 then 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑘 and we can apply

𝑅𝑅𝑘 in the place 𝑟𝑟 𝑟 𝑘. Hence we can assume 𝑤𝑤𝑟𝑟𝑟𝑘 < 𝑤𝑤′′𝑟𝑟𝑟𝑘. If
𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑘 we apply then 𝑅𝑅𝑘 in the place 𝑟𝑟 𝑟 𝑘 because
𝑤𝑤′′𝑟𝑟𝑟𝑘 𝑟 𝑘 > 𝑤𝑤𝑟𝑟𝑟𝑘 𝑘 𝑘. en we can suppose 𝑤𝑤𝑟𝑟𝑟𝑘 𝑘 𝑤𝑤𝑟𝑟𝑟𝑘 𝑟 𝑘 𝑘 𝑘.
Iterating this reasoning, we apply 𝑅𝑅𝑘 in some place 𝑟𝑟 𝑟 𝑘𝑘, with
𝑘𝑘 𝑟 𝑘, or we obtain for 𝑤𝑤 and 𝑤𝑤′′ the following forms:

𝑤𝑤 𝑘 𝑤𝑤 𝑤𝑤𝑤 𝑛 𝑘𝑤…𝑘𝑘𝑘0…0 ∣ 0…0 𝑤𝑛𝑘𝑤 𝑏𝑏𝑗𝑗𝑟𝑘 …𝑏𝑏𝑛𝑛𝑛𝑤𝑤𝑘

𝑤𝑤′′ 𝑘 𝑤𝑤′ 𝑤𝑤′ 𝑛 𝑘…𝑘𝑘𝑘0…0 ∣ 0…00 𝑏𝑏′′𝑗𝑗𝑟𝑘 …𝑏𝑏′′𝑛𝑛𝑛𝑤𝑤
(7)

with 𝑤𝑤 𝑟 𝑤𝑤′ > 𝑤𝑤. We can apply therefore 𝑅𝑅𝑘 in the place 𝑤𝑤.

𝑤𝑤𝑆𝑆𝑏𝑏𝑆𝑆𝑤𝑤𝑆𝑆𝑆𝑆 𝐶𝐶4. 𝑏𝑏′′𝑗𝑗 𝑘 0, 𝑏𝑏𝑗𝑗 𝑘 𝑛𝑘 and 𝑤𝑤𝑟𝑟 ≠ 𝑘 for each 𝑟𝑟 𝑤 𝑖𝑘𝑘… 𝑘 𝑤𝑤𝑖.
In this case there is at least one place 𝑟𝑟 𝑤 𝑖𝑘𝑘… 𝑘 𝑤𝑤𝑖 such

that 𝑤𝑤𝑟𝑟 𝑘 0. We take this 𝑟𝑟maximal, so that 𝑟𝑟 𝑘 𝑤𝑤 or 𝑟𝑟 < 𝑤𝑤 and
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𝑎𝑎𝑖𝑖𝑖𝑖 > 0. en, since 𝑏𝑏′′𝑗𝑗 = 0, 𝑏𝑏𝑗𝑗 = −𝑖, 𝑎𝑎′′𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎𝑖𝑖𝑖𝑖 > 0 and
||𝑤𝑤|| = ||𝑤𝑤′′|| = 𝑑𝑑, it must be necessarily 𝑎𝑎′′𝑖𝑖 > 0. We apply
then 𝑅𝑅2 shiing the negative grain from the place 𝑗𝑗 into a
positive grain in the place 𝑖𝑖, that is, we take 𝑤𝑤′ = 𝑤𝑤𝑤2 with
𝑎𝑎′𝑖𝑖 = 𝑖 and 𝑏𝑏

′
𝑗𝑗 = 0 and all other components unchanged.

Hence in all the previous cases we obtain an element𝑤𝑤′ =
𝑤𝑤𝑤𝑘𝑘, for some 𝑘𝑘 = 𝑖𝑘 2𝑘 𝑘, such that 𝑤𝑤′ ⊑ 𝑤𝑤′′.

Below we draw the Hasse diagram of the lattice 𝑆𝑆𝑆𝑆𝑘 𝑘𝑘 2𝑆
by using the evolution rules 𝑅𝑅𝑖𝑘 𝑅𝑅2𝑘 𝑅𝑅𝑘 starting to the mini-
mum element of this lattice, which is 00 ∣ 𝑖2𝑘. We label a
generic edge of the next diagram with the integer 𝑘𝑘 if it leads
to a production that uses 𝑅𝑅𝑘𝑘, for 𝑘𝑘 𝑘 𝑘𝑖𝑘 2𝑘 𝑘𝑘:

.

.

2

1
3

3

1

3

2

3

1

3
2

3

.

.

.

.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

(8)

Since 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆 is a �nite distributive lattice it is also graded�
in the next proposition we determine its rank function.

Proposition 4. e rank function 𝜌𝜌 of 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆 is 𝜌𝜌𝑆𝑤𝑤𝑆 =
∑𝑆𝑤𝑤𝑆 − ∑𝑆0𝑆 − 𝑆|𝑤𝑤|> − |0|>𝑆.

Proof. We denote by 𝜚𝜚 the rank function of the graded lattice
𝑆𝑆𝑆𝑆𝑆𝑘 𝑆𝑆𝑆. It is easy to verify that 𝜌𝜌𝑆𝑤𝑤𝑆 = ∑𝑆𝑤𝑤𝑆 − ∑𝑆0𝑆 for each
𝑤𝑤 𝑘 𝑆𝑆𝑆𝑆𝑆𝑘 𝑆𝑆𝑆 (see also [22]). Let 𝑤𝑤 𝑤 𝑤𝑤𝑡𝑡 𝑤 ⋯ 𝑤 𝑤𝑤𝑖 𝑤 0 be any
saturated chain from 0 to𝑤𝑤. Let us assume that in this chain𝑤𝑤
is obtained from 0 with 𝑘𝑘 applications of 𝑅𝑅2, for some integer
𝑘𝑘 ≥ 0. To each step 𝑙𝑙 𝑘 𝑘𝑖𝑘𝑙 𝑘 𝑡𝑡𝑘 where we apply 𝑅𝑅2, there

is the following situation: 𝑤𝑤𝑙𝑙 ⊐ 𝑢𝑢𝑙𝑙 ⊐ 𝑤𝑤𝑙𝑙−𝑖, for exactly one
only element 𝑢𝑢𝑙𝑙 𝑘 𝑆𝑆𝑆𝑆𝑆𝑘 𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆. is means that 𝜚𝜚𝑆𝑤𝑤𝑆 =
𝑆𝑡𝑡 𝑖 𝑖𝑆 𝑖 𝑘𝑘, that is, 𝜌𝜌𝑆𝑤𝑤𝑆 = 𝜚𝜚𝑆𝑤𝑤𝑆 − 𝑘𝑘. e integer 𝑘𝑘 is also the
difference between the number of positive parts of 𝑤𝑤 and the
number of positive parts of 0. Hence the thesis follows.

In the next proposition we compute the rank of the lattice
𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆.

Proposition 5. rank𝑆𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆 = 𝑑𝑑𝑆𝑆𝑆 − 𝑑𝑑𝑆.

Proof. If 𝑆𝑆 ≥ 𝑑𝑑 > 𝑆𝑆 − 𝑆𝑆, then 𝑖 = 𝑆𝑆𝑙 𝑆𝑆𝑆 − 𝑑𝑑 𝑖 𝑖𝑆0𝑙0 ∣ 0𝑙0
and
0 = 𝑆𝑑𝑑 − 𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑙𝑖0𝑙0 ∣ 𝑆−𝑖𝑆 𝑆−2𝑆𝑙 𝑆− 𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆 . (9)

So that |𝑖|> − |0|> = 𝑆𝑆 − 𝑆𝑆. If 𝑑𝑑 > 𝑆𝑆 − 𝑆𝑆 and 𝑑𝑑 > 𝑆𝑆, then
𝑖 = 𝑆𝑆𝑙𝑖 ∣ 0𝑙0𝑖𝑙 𝑆𝑑𝑑− 𝑆𝑆𝑆 and 0 = 𝑆𝑑𝑑 − 𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑙𝑖0𝑙0 ∣
𝑆−𝑖𝑆𝑆−2𝑆𝑙 𝑆−𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆. So that |𝑖|> − |0|> = 𝑆𝑆 − 𝑑𝑑. If 𝑑𝑑 𝑑
𝑆𝑆 − 𝑆𝑆 and 𝑑𝑑 𝑑 𝑆𝑆, then 𝑖 = 𝑆𝑆𝑙 𝑆𝑆𝑆 − 𝑑𝑑 𝑖 𝑖𝑆0𝑙0 ∣ 0𝑙0
and 0 = 0𝑙0 ∣ 0𝑙0𝑆−𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆 − 𝑆𝑑𝑑 − 𝑖𝑆𝑆𝑆𝑙 𝑆−𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆.
erefore |𝑖|> − |0|> = 𝑑𝑑. Finally, if 𝑑𝑑 𝑑 𝑆𝑆 − 𝑆𝑆 and 𝑑𝑑 > 𝑆𝑆,
then 𝑖 = 𝑆𝑆𝑙𝑖 ∣ 0𝑙0𝑆−𝑖𝑆𝑙 𝑆−𝑆𝑑𝑑 − 𝑆𝑆𝑆𝑆 and 0 = 0𝑙0 ∣
0𝑙0𝑆−𝑆𝑆𝑆𝑆−𝑆𝑆𝑆−𝑆𝑑𝑑−𝑖𝑆𝑆𝑆𝑙 𝑆−𝑆𝑆𝑆−𝑆𝑆𝑆𝑆.erefore |𝑖|>−|0|> = 𝑆𝑆.
e rank of 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆 is obviously 𝜌𝜌𝑆𝑖𝑆−𝜌𝜌𝑆0𝑆, that we compute
in all the previous cases applying the Proposition 4.e thesis
follows then from simply arithmetic manipulations.

5. Dynamics of 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆 as Sand Piles Model

In this section we study the lattice 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆 as a discrete
dynamical system. For the terminology concerning the dis-
crete dynamical system we refer to [21]. In such a context,
we call con�guration a generic element of 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆. e
initial con�guration is 0. �ach con�guration converges, in
sequential and in parallel, toward the unique �xed point 𝑖
because of the lattice structure of the model. Let us note
that if 𝑤𝑤 is a con�guration, when we use the evolution rules
in parallel, on each column of 𝑤𝑤 we can apply (due to the
nature of the Rules 𝑅𝑅𝑖𝑘 𝑅𝑅2𝑘 𝑅𝑅𝑘) exactly one evolution rule,
hence our model is deterministic. With the same notations
of [3], we denote respectively by 𝑇𝑇sec𝑆𝑤𝑤𝑆 and 𝑇𝑇par𝑆𝑤𝑤𝑆 the
number of time steps required to reach 𝑖 starting from the
con�guration𝑤𝑤, using the sequential or the parallel updating
scheme. Obviously 𝑇𝑇sec𝑆𝑤𝑤𝑆 is independent of the order in
which the sites are updated because 𝑆𝑆𝑆𝑆𝑆𝑘 𝑑𝑑𝑘 𝑆𝑆𝑆 is a graded
lattice. Moreover it is also clear that

𝑇𝑇sec 𝑆𝑤𝑤𝑆 = 𝜌𝜌 𝑖 − 𝜌𝜌 𝑆𝑤𝑤𝑆 . (10)
We study now some properties of the dynamics in parallel. If
𝑤𝑤 and 𝑤𝑤′ are two different con�gurations, we say that 𝑤𝑤′ is a
parallel successor of𝑤𝑤, and we write𝑤𝑤 𝑤 𝑤𝑤′ or𝑤𝑤′ = 𝑤𝑤 𝑤, if
𝑤𝑤′ is the con�guration which is obtained with all the possible
parallel applications of the Rules 𝑖–𝑘 on the parts of 𝑤𝑤. If we
can apply in parallel 𝑚𝑚𝑖𝑖 times 𝑅𝑅𝑖𝑖 on 𝑤𝑤, for 𝑖𝑖 = 𝑖𝑘 2𝑘 𝑘, we set
𝑀𝑀𝑆𝑤𝑤𝑆 𝑀= 𝑆𝑚𝑚𝑖𝑘𝑚𝑚2𝑘𝑚𝑚𝑘𝑆 and |𝑀𝑀𝑆𝑤𝑤𝑆| 𝑀= 𝑚𝑚𝑖 𝑖 𝑚𝑚2 𝑖 𝑚𝑚𝑘. Let us
note that 𝑚𝑚2 can be only 0 or 𝑖. Obviously there is a unique
�nite sequence 𝑆𝑤𝑤0𝑘 𝑤𝑤𝑖𝑘𝑙 𝑘𝑤𝑤𝑠𝑠𝑆 of con�gurations such that

𝑤𝑤0 = 0 𝑤 𝑤𝑤𝑖 𝑤 ⋯ 𝑤 𝑤𝑤𝑠𝑠−𝑖 𝑤 𝑤𝑤𝑠𝑠 = 𝑖. (11)
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e sequence in (11) is obviously a chain of length 𝑠𝑠 in
(𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆 that we call fundamental chain of 𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. It
is clear that 𝑇𝑇par(0𝑆 = 𝑠𝑠. We also call fundamental sequence
of 𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 the �nite integer sequence

𝑀𝑀 𝑤𝑤0 𝑆 𝑀𝑀 𝑤𝑤1 𝑆… 𝑆 𝑀𝑀 𝑤𝑤𝑠𝑠𝑠1 . (12)

Remark 6. If (𝑤𝑤0𝑆 𝑤𝑤1𝑆… 𝑆𝑤𝑤𝑠𝑠𝑆 is the fundamental chain of
𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 then

𝑠𝑠𝑠1

𝑖𝑖=1
𝑀𝑀 𝑤𝑤𝑖𝑖 = rank (𝑆𝑆 (𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 . (13)

In the next result we compute the exact value of 𝑇𝑇par(0𝑆 for
a wide range of the integers parameters 𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆 and in another
case we provide a lower estimate.

eorem 7. (i) If 𝑆𝑆 = (𝑆𝑆 𝑠 𝑆𝑆𝑆 = 𝑆𝑆, 𝑇𝑇par(0𝑆 = 2𝑆𝑆 𝑠 1.
(ii) If 𝑆𝑆 = (𝑆𝑆 𝑠 𝑆𝑆𝑆 𝑑 𝑆𝑆, 𝑇𝑇par(0𝑆 = 𝑆𝑆 𝑑 𝑆𝑆 𝑠 1 = 𝑆𝑆 𝑠 1.
(iii) If 𝑆𝑆 𝑑 (𝑆𝑆 𝑠 𝑆𝑆𝑆 and 𝑆𝑆 𝑟 𝑆𝑆, 𝑇𝑇par(0𝑆 𝑟 2𝑆𝑆 𝑠 2.
(iv) If 𝑆𝑆 𝑟 𝑆𝑆 𝑟 (𝑆𝑆 𝑠 𝑆𝑆𝑆 and 2𝑆𝑆 = 𝑆𝑆, 𝑇𝑇par(0𝑆 = 2𝑆𝑆 𝑠 1.
(v) If 𝑆𝑆 𝑟 𝑆𝑆 𝑟 (𝑆𝑆 𝑠 𝑆𝑆𝑆 and 2𝑆𝑆 𝑠 𝑆𝑆 𝑑 0, 𝑇𝑇par(0𝑆 = 𝑆𝑆 𝑠 1.
Moreover, in all the previous cases the fundamental

sequence of 𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 is symmetric and unimodal.

Proof. (i) If 𝑆𝑆 = (𝑆𝑆 𝑠 𝑆𝑆𝑆 = 𝑆𝑆 then 0 = 0…0 ∣ 1… (𝑆𝑆 𝑠 𝑆𝑆𝑆 and
1 = 𝑆𝑆𝑟1 ∣ 0𝑟0. In this case the �rst and the last rule which
applies is always 𝑅𝑅2: in between all the rules 𝑅𝑅1𝑆 𝑅𝑅2𝑆 𝑅𝑅3 apply
in a very symmetric way, in view of their de�nition and of
the symmetry of three parameters of 𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆. e number
of rules which apply at each step follows this sequence:
1𝑆… 𝑆 (𝑆𝑆 𝑠 1𝑆𝑆 𝑆𝑆𝑆 (𝑆𝑆 𝑠 1𝑆𝑆… 𝑆 1 and the unimodularity and
the symmetry of the sequence of parallel con�gurations is
therefore straightforward. Moreover there exists a unique
time 𝑇𝑇 = 𝑆𝑆 in which the maximal number 𝑆𝑆 of rules apply;
the string at which the 𝑆𝑆 rules apply is always of the following
type:

if 𝑆𝑆 is even: (𝑆𝑆 𝑠 1𝑆…1…0 ∣ 0…2…𝑆𝑆, where in
both positive and negative part each number is the
previous minus 2;
if 𝑆𝑆 is odd: (𝑆𝑆 𝑠 1𝑆…2…0 ∣ 0…1…𝑆𝑆, where in
both positive and negative part each number is the
previous minus 2.

Hence 𝑇𝑇par(0𝑆 = 2𝑆𝑆 𝑠 1.
(ii) If 𝑆𝑆 = (𝑆𝑆 𝑠 𝑆𝑆𝑆 𝑑 𝑆𝑆 then 0 = 0…0 ∣ 1… (𝑆𝑆 𝑠 𝑆𝑆𝑆 and

1 = 𝑆𝑆… (𝑆𝑆 𝑠 𝑆𝑆 𝑑 1𝑆…0 ∣ 0…0. e �rst rule which applies
is always 𝑅𝑅2 and the last one is always 𝑅𝑅1. In this case there
are several strings obtainedwith themaximal number of rules
which is 𝑆𝑆: the �rst one which appears from the bottom in the
fundamental sequence of 𝑆𝑆(𝑆𝑆𝑆 𝑆𝑆𝑆 𝑆𝑆𝑆 is:

if𝑆𝑆 is even, (𝑆𝑆𝑠1𝑆(𝑆𝑆𝑠3𝑆…10…0 ∣ 0…2…𝑆𝑆, where
in both positive and negative part each number is the
previous minus 2;
if 𝑆𝑆 is odd, (𝑆𝑆𝑠1𝑆(𝑆𝑆𝑠3𝑆…20…0 ∣ 0…1…(𝑆𝑆𝑠2𝑆𝑆𝑆,
where in both positive and negative part each number
is the previous minus 2.

e number of steps with 𝑆𝑆 rules is exactly (𝑆𝑆 𝑠 𝑆𝑆 𝑑 1𝑆
and the number of rules which apply at each step follows
this sequence: 1𝑆… 𝑆 (𝑆𝑆 𝑠 1𝑆𝑆 𝑆𝑆𝑆…𝑆𝑆𝑆 (𝑆𝑆 𝑠 1𝑆𝑆… 𝑆 1: hence the
unimodularity and the symmetry of the sequence of the
parallel con�gurations is straightforward. Finally, 𝑇𝑇par(0𝑆 =
𝑆𝑆 𝑑 𝑆𝑆 𝑠 1 = 𝑆𝑆 𝑠 1.

(iii) With these parameters, 0 = 0…0 ∣ 0… (𝑆𝑆 𝑠 𝑆𝑆 𝑠
𝑆𝑆 𝑑 1𝑆… (𝑆𝑆 𝑠 𝑆𝑆𝑆 and 1 = 𝑆𝑆… (𝑆𝑆 𝑠 𝑆𝑆 𝑑 1𝑆0…0 ∣ 0…0. e
�rst rule from the bottom which applies is always 𝑅𝑅3 and the
last rule from the top which applies is always 𝑅𝑅1. In this case
there are several strings obtained with the maximal number
of rules which is still 𝑆𝑆, and the number of rules which apply
at each step follows this sequence: 1𝑆… 𝑆 (𝑆𝑆 𝑠 1𝑆𝑆 𝑆𝑆𝑆…𝑆𝑆𝑆 (𝑆𝑆 𝑠
1𝑆𝑆… 𝑆 1: therefore the unimodularity and the symmetry of
the sequence of the parallel con�gurations follow such as the
lower bound for 𝑇𝑇par(0𝑆.

(iv) With these parameters, 0 = (𝑆𝑆 𝑠 𝑆𝑆 𝑑 𝑆𝑆𝑆𝑟1𝑟0 ∣
1… (𝑆𝑆𝑠𝑆𝑆𝑆 and 1 = 𝑆𝑆𝑟 (𝑆𝑆𝑠𝑆𝑆𝑑1𝑆𝑟0 ∣ 0𝑟0. In this case the
�rst and the last rule which applies is always 𝑅𝑅1: in between
all the rules 𝑅𝑅1𝑆 𝑅𝑅2𝑆 𝑅𝑅3. e number of rules which apply at
each step follows this sequence: 1𝑆… 𝑆 (𝑆𝑆 𝑠 1𝑆𝑆 𝑆𝑆𝑆 (𝑆𝑆 𝑠 1𝑆𝑆… 𝑆 1
and the unimodularity and the symmetry of the sequence of
parallel con�gurations is immediate. Moreover there exists a
unique time 𝑇𝑇 = 𝑆𝑆 in which the maximal number 𝑆𝑆 of rules
apply. Hence 𝑇𝑇par(0𝑆 = 2𝑆𝑆 𝑠 1.

(v) With these parameters, 0 = (𝑆𝑆 𝑠 𝑆𝑆 𝑑 𝑆𝑆𝑆𝑟1𝑟0 ∣
1… (𝑆𝑆 𝑠 𝑆𝑆𝑆 and 1 = 𝑆𝑆𝑟 (𝑆𝑆 𝑠 𝑆𝑆 𝑑 1𝑆𝑟0 ∣ 0𝑟0. In this
case the �rst and the last rule which applies is always 𝑅𝑅1. A
difference with the previous case is that here there are several
strings obtained with the maximal number of rules which
is 𝑆𝑆; the number of string at which 𝑆𝑆 rules apply is exactly
(𝑆𝑆 𝑠 2𝑆𝑆 𝑑 1𝑆. e very interesting thing is that 𝑇𝑇par(0𝑆 = 𝑆𝑆 𝑠 1
is independent of 𝑆𝑆 in this case, as in case (ii𝑆. Obviously also
in this case we have the unimodularity and the symmetry of
the sequence of the parallel con�gurations.
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