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Abstract. In the space H of quaternions, the natural invariant geometry of
the open unit disc ∆H, diffeomorphic to the open half-space H

+ via a Cayley-
type transformation, has been investigated extensively. This was accomplished
by constructing, in a natural geometrical manner, the quaternionic Poincaré
distance on ∆H (and H

+).
The open unit disc ∆H also inherits the complex Kobayashi distance

when viewed as the open unit ball of C
2 ∼= C + Cj ∼= H.

In this paper we give an original, very simple proof of the fact that there
exists no isometry between the quaternionic Poincaré distance of ∆H and the
Kobayashi distance inherited by ∆H as a domain of C

2. This is in accordance
with the well known consequence of the classification theorem for the non
compact, rank 1, symmetric spaces.
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1. Introduction

Let H be the skew field of quaternions. Let ∆H = {q ∈ H : |q| < 1} be the open
unit disc and let H+ = {q ∈ H : ℜe(q) > 0} be the half-space, diffeomorphic via a
Cayley-type transformation. The groups of Möbius transformations of ∆H and of
H+ are the groups of all quaternionic, fractional, linear transformations which leave
∆H and H+ invariant, respectively. These groups are used in [4] to find a direct
approach to a geometric definition of the analogue of the Poincaré distance (i.e.
the real, hyperbolic distance) and differential metric in the quaternionic setting.
These distances and differential metrics allowed the construction and study of the
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invariant quaternionic geometry of the classical hyperbolic domains ∆H and H
+

of H.
With respect to the standard basis {1, i, j, k} of H, the identification H ∼=

R + Ri + Rj + Rk ∼= (R + Ri) + (R + Ri)j ∼= C + Cj leads to the identification
∆H

∼= ∆C2 between the open unit disc of H and the open unit ball ∆C2 of C2. Since
the ball ∆C2 is naturally endowed with the Kobayashi distance and (metric), see
e.g. [11, 22], it is natural to ask which is the relationship between the quaternionic
Poincaré distance and the Kobayashi distance on ∆H

∼= ∆C2 .
By means of the geometrical approach adopted in this paper, we are able to

give an original, very simple proof of a deep result that is classically obtained as
a consequence of the classification of non compact, rank 1, symmetric spaces (see,
e.g., [9], [15]). This result states that:

Theorem 1.1. There exists no isometry between the quaternionic Poincaré distance
and the Kobayashi distance of ∆H

∼= ∆C2 .

Notations and terminology are those used in [4]. The elements of H will be
denoted by q = x0+ix1+jx2+kx3, where the xl are real, and i, j, k, are imaginary
units (i.e. their square equals −1) such that ij = −ji = k, jk = −kj = i, and
ki = −ik = j. We will denote by S3

H
the sphere of quaternions of unitary modulus

{q ∈ H : |q| = 1} and by S the unit sphere of purely imaginary quaternions, i.e.
S = {q = ix1+jx2+kx3 : x2

1+x2
2+x2

3 = 1}. Notice that if I ∈ S, then I2 = −1; for
this reason the elements of S are called imaginary units. We will also use the fact
that for any non-real quaternion q ∈ H\R, there exist, and are unique, x, y ∈ R

with y > 0, and I ∈ S such that q = x + yI.
The paper is organized as follows. In section 2 we survey and illustrate the

construction and the main features of the quaternionic Poincaré distance and dif-
ferential metric of ∆H and describe the geometrical character of the group of
quaternionic Möbius transformations. In Section 3 we briefly recall the definitions
of the Kobayashi distance and differential metric, and the structure theorem for
complex Möbius transformations in the case of the unit ball of Cn. We then con-
clude by giving the announced new proof of Theorem 1.1.

2. Basics of quaternionic invariant geometry

In [4] the authors found an original geometrical approach to the study of the
invariant geometry of the unit open disc of H. The study of the relevant groups
of matrices with quaternionic entries is based on the definition of the Dieudonné
determinant of a quaternionic 2 × 2 matrix, which is recovered in a very natural
way in the same paper [4]:

Definition 2.1. If A =

[

a b

c d

]

is a 2 × 2 matrix with quaternionic entries, then

the (Dieudonné) determinant of A is defined to be the non negative real number

detH(A) =

√

|a|2|d|2 + |c|2|b|2 − 2ℜe(cabd). (2.1)
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This definition (luckily!) agrees with the one given in [3, 8, 12, 21], and allows us
to set

G = {g(q) = (aq + b)(cq + d)−1 : a, b, c, d ∈ H, g invertible },

GL(2, H) = {A 2 × 2 matrix with quaternionic entries : detH(A) 6= 0}

and to present the following result for H, already established in [31]:

Theorem 2.2. The set G of all quaternionic, fractional, linear transformations is
a group with respect to composition. The map

Φ : A =

[

a b

c d

]

7→ LA(q) = (aq + b) · (cq + d)−1 (2.2)

is a group homomorphism of GL(2, H) onto G whose kernel is the center of
GL(2, H), that is the subgroup

{[

t 0
0 t

]

: t ∈ R\{0}

}

.

For a detailed, modern proof of this theorem, and for bibliographical references,
we refer the reader to [4]. The structure-theorem of the complex, fractional, linear
transformations can be extended to the quaternionic environment:

Proposition 2.3. The group G is generated by all the similarities, L(q) = aq + b

(a, b ∈ H, a 6= 0) and the inversion R(q) = q−1. Moreover, all the elements of G

turn out to be conformal.

The basic geometrical ingredient to construct the quaternionic Poincaré distance
(and metric) is the quaternionic cross-ratio: indeed the generalizations of the cross-
ratio to higher dimensions in Rn play a crucial role in conformal geometry. In fact
L. Ahlfors, while studying the conformal structure of Rn, has given in [2] three
different definitions of the cross-ratio of 4 points of R

n. The one that we adopt
here is the one given in [4], that specializes to the quaternionic case the definition
given by C. Cao and P.L. Waterman in [5], and that is new with respect to the
ones given by Ahlfors. This definition of cross-ratio has the peculiar feature that
the quaternionic, fractional, linear transformations act on it transforming its value
by (quaternionic) conjugation. In particular it turns out that

Proposition 2.4. Let CR(q1, q2, q3, q4) := (q1 − q3)(q1 − q4)
−1(q2 − q4)(q2 − q3)

−1

be the cross-ratio of the four quaternions q1, q2, q3, q4. When the cross ratio of
four quaternions is real, then it is invariant under the action of all quaternionic,
fractional, linear transformations.

The above result has a great deal of interest in view of the fact (already
proven in [5] in Clifford algebra setting) that

Proposition 2.5. Four pairwise distinct points q1,q2,q3,q4 ∈ H lie on a same (one-
dimensional) circle or straight line if, and only if, their cross-ratio is real.
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Adopting the point of view due to A.F. Möbius one defines (for i = 3, 2, 1,

respectively) the families Fi = Si ∪ Pi, where Si is the family of all i−(real)
dimensional spheres and Pi is the family of all i−(real) dimensional affine subspaces
of H. With an approach which is diverse from the one used by Wilker in [31], the
authors showed in [4] that

Theorem 2.6. The group G of all quaternionic, fractional, linear transformations
maps elements of Fi onto elements of Fi, for i = 3, 2, 1.

The above result, and the use of the point of view of C. L. Siegel for the
homologous problem in the complex case (see [28], [7]), led to the following, genuine
geometrical approach to the definition of the quaternionic Poincaré distance on ∆H

(often simply called Poincaré distance). Set the non-Euclidean line through two
points q1, q2 ∈ ∆H to be the unique circle, or diameter, containing the two points
and intersecting ∂∆H orthogonally in the two ends q3, q4, and give the following

Definition 2.7. The (quaternionic) Poincaré distance of ∆H is defined as

δ∆H
(q1, q2) =

1

2
log(CR(q1, q2, q3, q4)) (2.3)

where the q3 and q4 are the two ends of the non-Euclidean line through q1 and q2,
and the four points are arranged cyclically on the non-Euclidean line through q1

and q2.

It is very easy to see that

Proposition 2.8. On each complex plane LI = R + IR (for any imaginary unit
I ∈ S) the quaternionic Poincaré distance coincides with the classical Poincaré
distance of ∆I = ∆H ∩ LI.

The group of Möbius transformations is defined as the subgroup M of G whose
elements map ∆H onto itself. It is natural to study how the quaternionic Poincaré
distance behaves under the action of the elements of M. To do this, we need to
know the structure of the group of Möbius transformations of ∆H, whose study
is performed, for example, in [6], and completed in [4], in terms of the (classical)
group Sp(1, 1). The group Sp(1, 1) is defined (see, e.g., [13]) as

Sp(1, 1) =
{

A ∈ GL(2, H) : tAHA = H
}

(2.4)

where H =

[

1 0
0 −1

]

, and it can be written equivalently as (see, e.g., [6])

Sp(1, 1) =

{[

a b

c d

]

: |a| = |d|, |b| = |c|, |a|2 − |c|2 = 1, ab = cd, ac = bd

}

.

The use of the group Sp(1, 1) allowed us to rephrase and complete a result of [6]
as follows:
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Theorem 2.9. The quaternionic, fractional, linear transformation defined by for-
mula g(q) = (aq + b)(cq + d)−1 is a Möbius transformation of ∆H if and only if
[

a b

c d

]

∈ Sp(1, 1). Moreover the map

φ : Sp(1, 1) → M

A =

[

a b

c d

]

7→ LA(q) = (aq + b) · (cq + d)−1 (2.5)

is a group homomorphism whose kernel is the center of Sp(1, 1), that is the sub-
group

{

±

[

1 0
0 1

]}

.

For the purposes of this paper, we need the following characterization of
the quaternionic Möbius transformations, which closely resembles the classical
representation of the complex Möbius transformations:

Theorem 2.10. Each quaternionic Möbius transformation of the form

g(q) = (aq + b) · (cq + d)−1 ∈ M

can be written uniquely as:

g(q) = α(q − q0)(1 − q0q)
−1β−1 (2.6)

where q0 = −a−1b ∈ ∆H and where α =
a

|a|
∈ ∂∆H, β =

d

|d|
∈ ∂∆H.

A detailed proof of the structure result given in Theorem 2.10 can be found in [4].
This structure result, that was also stated without proof in [14], is different from
the one given in a more general setting in [2].

Remark 2.11. Thanks to Lemma 2.3, the Möbius transformations are conformal
(see also [29], [19], [23], [24], [26], [25], [27], [10]). Since any Möbius transformation
maps S3

H
onto itself, the Möbius transformations map non-Euclidean lines of ∆H

onto non-Euclidean lines of ∆H in view of Theorem 2.6.

Combining Propositions 2.4, 2.5 and Remark 2.11, one gets the following
result, whose statement is implicit in the work of Wilker [31] (see also [16]), and
urges a comparison with the complex case.

Proposition 2.12. The Poincaré distance of ∆H is invariant under the action of
the group of all Möbius transformations M and of the map q 7→ q.

It is now possible to mimic the definition of the classical, complex Poincaré
differential metric to set the length of the vector τ ∈ H for the (quaternionic)
Poincaré metric at q ∈ ∆H to be the number

〈τ〉q =
|τ |

1 − |q|2
. (2.7)

The following results, see [4], will be used in the sequel:
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Theorem 2.13. All the elements of the group M of Möbius transformations of ∆H,
as well as the map q 7→ q, leave the quaternionic Poincaré differential metric
invariant.

Proposition 2.14. The quaternionic Poincaré distance δ∆ of the unit disc ∆H is
the integrated distance of the quaternionic Poincaré differential metric of ∆H.

3. Poincaré and Kobayashi distances on the quaternionic unit disc

In this section, we will first of all briefly recall the classical definitions of Kobayashi
distance and differential metric for the open unit ball ∆Cn of the space Cn. To help
the reader to follow the proof of the main result, we will also recall the structure
of the group of all complex Möbius transformations of ∆Cn .

After a result due to L. Lempert, [18], the definition of the Kobayashi distance
for a convex set of Cn can be given in the following simple fashion (for the classical
general definition see, e.g. [11, 22]).

Definition 3.1. Let D be the open, unit disc of C and δD the Poincaré distance of
D. The Kobayashi distance between any two points z1 and z2 of the open unit ball
∆Cn ⊂ C

n is defined as

k∆Cn
(z1, z2)

= inf
ζ1,ζ2∈D

{δD(ζ1, ζ2) | ∃f : D → ∆Cn holomorphic, with f(ζ1) = z1, f(ζ2) = z2}

The Kobayashi differential metric at a point z ∈ ∆Cn is defined, for all w ∈ Cn,
by

γ∆Cn
(z; w)

= inf
ζ∈D

{
|τ |

1 − |ζ|2
| ∃f : D → ∆Cn holomorphic, with f(ζ) = z, dfζ(τ) = w}.

It turns out that, to explicitly compute the distance k∆Cn
(z1, z2), it is enough

to consider the complex line Lz1,z2
of C

n that contains the two points z1, z2 of ∆Cn ,
intersect it with the ball ∆Cn and measure the Poincaré distance between z1 and
z2 in the complex disc Lz1,z2

∩∆Cn . This observation will be useful in the sequel.

Both the Kobayashi distance and the Kobayashi differential metric are invari-
ant, in the obvious sense, under the action of the group of Möbius transformations
of ∆Cn , whose structure we are going to describe (see, e.g. [22]).

Denote by 〈·, ·〉 the classical Hermitian inner product of Cn. For z0 ∈ ∆Cn ,
let Pz0

be the orthogonal projection of Cn onto the subspace [z0] spanned by z0,
i.e. let

P0(z) = 0 if z0 = 0, and Pz0
(z) =

〈z , z0〉

〈z0, z0〉
z0 if z0 6= 0. (3.1)
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Set Qz0
= I − Pz0

to be the projection of C
n onto the orthogonal complement of

[z0]. For sz0
= (1 − |z0|2)

1

2 define the map ϕz0
: Cn \ {z : 〈z , z0〉 = 1} → Cn as

ϕz0
(z) =

z0 − Pz0
(z) − sz0

Qz0
(z)

1 − 〈z , z0〉
. (3.2)

Since {z : 〈z , z0〉 = 1} ∩ ∆Cn = ∅, the map ϕz0
defines a holomorphic map from

∆Cn to Cn, which turns out to be a holomorphic automorphism of ∆Cn . Now, if
U(n) = {U ∈ GL(n, C) : U tU = I} denotes the unitary group of Cn, then for
U ∈ U(n) and z0 ∈ ∆Cn we put

MU,z0
(z) = Uϕz0

(z) = U
z0 − Pz0

(z) − sz0
Qz0

(z)

1 − 〈z , z0〉
. (3.3)

Since the elements of U(n) are C-linear automorphisms of ∆Cn , the set

M = {MU,z0
: U ∈ U(n), z0 ∈ ∆Cn} (3.4)

consists of holomorphic automorphisms of ∆Cn , and is called the set of Möbius
transformations of ∆Cn . The transitivity of the group M and a direct application
of the n-dimensional Schwarz Lemma lead to the following well known result (see,
e.g. [22]):

Theorem 3.2. The group Aut(∆Cn) of all holomorphic automorphisms of the open
unit ball ∆Cn of Cn coincides with the group M of all Möbius transformations of
∆Cn . Moreover, the elements of M are isometries for the Kobayashi distance k∆Cn

and for the Kobayashi differential metric γ∆Cn
.

One of the important properties of the Kobayashi distance is the following:

Proposition 3.3. The Kobayashi distance k∆Cn
of the unit ball ∆Cn is the integrated

distance of the Kobayashi differential metric γ∆Cn
.

Let us now consider the isomorphism H ∼= C + Cj, which yields the iden-
tification ∆H

∼= ∆C2 =: ∆ between the open unit disc of H and the open unit
ball of C2. Now that we have given a direct, geometrical definition of the Poincaré
distance δ∆ of ∆H, the natural question arises to find a direct proof of the fact
that there exists no isometry between δ∆ and the Kobayashi distance k∆. To find
such a proof we begin with the following remark, whose justification can be found,
for example, in [11, 22]:

Remark 3.4. Both the Poincaré distance δ∆ and the Kobayashi distance k∆ have
the property that

δ∆(0, q) = k∆(0, q) = δD(0, |q|)

for all q ∈ ∆. Moreover, the Poincaré differential metric of ∆H defined in (2.7)
and the Kobayashi differential metric γ∆ of ∆C2 both coincide with the Euclidean
differential metric at the origin of the open unit disc of H.

With this in mind, we will prove the following technical result:
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Lemma 3.5. If there exists an isometry f : ∆ → ∆ between the Kobayashi distance
k∆ and the Poincaré distance δ∆, then the identity function of ∆ is an isometry
between k∆ and δ∆, and hence k∆ ≡ δ∆.

Proof. If f is the identity function of ∆, then there is nothing to prove. Otherwise,
let M ∈ M be a quaternionic, Möbius transformation of ∆ such that M(f(0)) = 0.
By Proposition 2.12, the function M ◦ f is an isometry between k∆ and δ∆ that
fixes 0. If we identify H with R4, then Remark 3.4, together with Propositions
2.14 and 3.3, yield that the real differential d(M ◦ f)0 is an orthogonal matrix.
Now the geometrical definition of the Poincaré distance δ∆ given in Definition 2.7
makes it clear that any orthogonal transformation of ∆ is a δ∆-isometry together
with its inverse. Therefore the function F = d(M ◦ f)−1

0 ◦ M ◦ f : ∆ → ∆ is an
isometry between k∆ and δ∆, whose differential dF0 is the identity function. Since
the geodesic curves of both k∆ and δ∆ passing through 0 are the diameters of ∆,
then, in view of Remark 3.4, the isometry F itself is the identity map. �

Given any two points q1, q2 ∈ ∆ there exist a quaternionic Möbius transformation
M of ∆H and a complex Möbius transformation φ of ∆C2 such that M(q1) = 0 =
φ(q1). Now M and φ leave invariant, respectively, δ∆ and k∆, and we want to
investigate the relation between |M(q2)| and |φ(q2)|. Consider q1 = α = α + 0j

and q2 = βj = 0 + βj with α, β ∈ C. Using Theorem 2.10, choose M ∈ M to be
the quaternionic Möbius transformation of ∆H

M(q) = (q − α)(1 − αq)−1

and consider the complex Möbius transformation (of ∆C2) φ(α,0) ∈ M defined by

φ(α,0)(z, w) =
(α, 0) − (z, 0)− (1 − |α|2)1/2(0, w)

1 − zα
.

We get

|M(βj)|2 = |(βj − α)(1 − αβj)−1|2 =
(|β|2 + |α|2)

(1 + |α|2|β|2)
(3.5)

and

|φ(α,0)(0, β)|2 = |(α,−(1 − |α|2)1/2β)|2 = |α|2 + (1 − |α|2)|β|2. (3.6)

Since the equality among (3.5) and (3.6) does not hold in general (due to the
identity principle for real polynomials), remark 3.4 leads to the following

Lemma 3.6. The identity map of ∆ is not an isometry between the Kobayashi
distance k∆ and the Poincaré distance δ∆. In particular k∆ and δ∆ do not coincide.

As a direct corollary of the last two lemmas, and in accordance with a classical
consequence of the classification of non compact, rank 1, symmetric spaces (see,
e.g., [9], [15]), we can now state the following

Theorem 3.7. There exists no isometry between the quaternionic Poincaré distance
and the Kobayashi distance of ∆H

∼= ∆C2 .
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It is very easy to prove that, for any I ∈ S, the Poincaré distance and the
Kobayashi distance coincide on the subsets of ∆ of type ∆I = ∆∩LI , where LI =
{x + yI : x, y ∈ R}. Thanks to our geometrical approach, it is also direct to verify
that all the real, sectional curvatures of the quaternionic, Poincaré differential
metric at 0 (and hence by homogeneity at all points of ∆) coincide with a same
negative constant. As it is known, this is not the case for the Kobayashi differential
metric of ∆C2 (see, e.g., [17]), for which only the holomorphic, sectional curvatures
at all points coincide with a same negative constant.
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